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Abstract: This research reported the in vitro pathogenicity of Verticillium lecanii strains, L2 and L5,
and Beauveria bassiana strains, B76 and B252, against Megoura japonica using leaf-dip method. The
virulence potential of these four entomopathogenic fungal strains of V. lecanii and of B. bassiana were
compared between fungi conidia (concentrations 1 × 106, 1 × 107, and 1 × 108 conidia mL−1) and
culture filtrate. Moreover, binary combination of four different fungal strains (L2 + B76, B76 + L5,
L2 + B252, and L2 + B76 + B252 + L5) were evaluated against M. japonica under control condition.
Aphid mortality was recorded after two, four, six, and eight days of post-treatment. In the conidial
concentration bioassay, strain B76 showed maximal mortality (85.3%) against bean aphid, and strain
L5 showed the lowest effect (60.0%) at the highest concentration (1 × 108 conidia mL−1) at eight days
post-treatment. Whereas, binary combinations of B76 and L2 strains showed the highest effect against
M. japonica (90.5%) than other combinations. Moreover, in comparison with the effect of filtrate and
conidia bioassay, 91.4% and 84.1% were achieved in strain B76, and the lowest effect (63.8% and
55.1%) was recorded in strain L5.

Keywords: Verticillium lecanii; Beauveria bassiana; Megoura japonica; binary combination;
filtrates; conidial

1. Introduction

The bean aphid Megoura japonica (Matsumura) is one of the most dangerous agricultural insect
pests on legume plants, such as common bean, soybean, and mung bean [1]. Bean aphid is distributed
widely all over the world [2]. They suck cell sap from plants and also transmit various viruses in
different crops [3]. The management of M. japonica is through synthetic pesticides. However, the
unselective application of pesticides has resulted in many visible problems, such as resistance to
pesticides, killing natural enemies, environmental pollution, and human health issues [4]. To overcome
problems related to widespread use of chemical pesticides, alternative methods such as biocontrol
substances have extensively been researched in the world. Many microbial insecticides based on
pathogenic organisms, such as virus, bacteria, fungus, and nematode, have played a significant role in
the field of crop protection and are being used to control an extensive range of insects [5–9].

Entomopathogenic fungal strains, including Verticillium lecanii, Beauveria bassiana, Isaria fumosorosea,
and Metarhizium anisopliae, were used as the specific biological pesticides, which are environmentally
friendly and can be used against many sucking insect pests [5,10–12]. Spores germinated after attaching
to the epidermis of the host insects, and the hyphae penetrate the body of the insects, which causes the
death of the host within a few days [13,14]. In addition, these entomopathogenic fungi have no or

Agriculture 2020, 10, 114; doi:10.3390/agriculture10040114 www.mdpi.com/journal/agriculture

http://www.mdpi.com/journal/agriculture
http://www.mdpi.com
http://www.mdpi.com/2077-0472/10/4/114?type=check_update&version=1
http://dx.doi.org/10.3390/agriculture10040114
http://www.mdpi.com/journal/agriculture


Agriculture 2020, 10, 114 2 of 10

little harmfulness on mammals. Their residuals are target specific and less vulnerable to resistance
evolution [15,16]. These virulent fungi were focused on by researchers in the past decades for their
potential as biological control agents around the world, and these could exist at the epizootic or
enzootic levels in their host population.

V. lecanii and B. bassiana are among the most well researched virulent entomopathogenic fungi
belonging to order of Hypocreals. They have a wide range of insect pest colonization [17,18]. These
two kinds of fungal strains are easily collected from the phylloplane of vegetation, as well as from
infected insects and soil [19,20]. As a bio-insecticide, V. lecanii has been used to control black bean
aphid Aphis fabae (Hemiptera: Aphididae) under control conditions [21]. The entomopathogenic fungi
have been developed as one of the major new bioactive agents for plant pathogen and insect pest
control [22–24]. Fungal conidia are produced asexually and become the basis of infection in insect pests
of crops. Infection through conidia starts when they are attached to the host cuticle, then germinate
following the activation of the enzymatic reaction and invaded the body of the insects by germ tube,
appressoria, and penetration pegs [25]. Refined culture filtrates of entomopathogenic fungi, V. lecanii
and B. bassiana, decreased the reproductive rate of aphids [26,27] and prevented feeding of the larva of
Spodoptera littoralis and Bemisia tabaci [28,29]. Increased fungus concentration decreased the number of
adult parasitoids and also negatively affected its developmental stages [30]. Filtrate culture contains
many enzymes like chitinases, lipases, and protease, and these enzymes help in the infection process
by degrading the cuticle of insects. The concentration of an enzyme can be enhanced by the use of
different additives in the culture media, like colloidal chitin [27].

This paper focused on the evaluation of the efficacy of our collected fungal strains (V. lecanii and
B. bassiana) with different application materials (conidia, filtrate) on bean aphids. Furthermore, we also
aimed to determine the combined effect of different entomopathogenic fungal strains against bean
aphids. This result could be helpful for establishing an effective integrated pest management method
which could reduce bean aphid population below economic thresholds, while minimizing the use of
synthetic chemical pesticides.

2. Results

2.1. Inhibition Effect of Different Concentrations of the Fungal Spore on Bean Aphid

The conidial bioassay results showed the significant effect of the different fungal trains (p <

0.01; Table 1). Moreover, the factorial analysis of variance revealed a significant effect of different
concentrations (F = 296.72, p < 0.01), different time intervals (F = ******, p < 0.01), and their interaction
(p < 0.01, Table 1). All strains of B. bassiana and V. lecanii caused significant bean aphid mortality at
all different concentrations. The maximum effect of the fungal strain (85.3%) was collected on the
eighth day after treatment with the concentration of 1 × 108 conidia mL−1 from strain B76, whereas
the minimum effect (71.4%) was collected at the lowest concentration of B76 (i.e., 1 × 106 conidia
mL−1, Figure 1). The virulence from fungal strain B252 against M. japonica showed a similar tendency
to the condition of strain B76. The highest mean effect (66.0%) of strain B252 was collected with a
concentration of 1 × 108 conidia mL−1 at 8 dpi. The minimum mean effect of strain B252 (49.9%) was
collected at the lowest concentration (1 × 106 conidia mL−1). Similarly, the effect of V. lecanii strains, L2
and L5, on M. japonica presented that corrected mortality of bean aphid improved with the exposure
time and concentration of fungal strains (Figure 1).
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Table 1. Analysis of variance (ANOVA) for the mortality of M. japonica by three different concentrations
from four entomopathogenic fungi strains at different times against bean aphids.

Source of Variation DF Sums of Squares Mean Squares F Ratio Prob

Treatment 4 39,204.6 9801.15 ****** 0.000
Concentration 2 3151.77 1575.88 296.72 0.000

Time 3 57,007.1 19002.4 ****** 0.000
Treatment × Concentration 8 849.592 106.199 20.00 0.000

Treatment × Time 12 12,258.7 1021.56 192.34 0.000
Concentration × Time 6 625.468 104.245 19.63 0.000

Treatment × Concentration × Time 24 454.597 18.9415 3.57 0.000
RESIDUAL 120 637.332 5.31110

Total 179 114,189. 637.928
CV% 7.0

CV%: Coefficient of variation.
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Figure 1. The mortality of Megoura japonica by different concentrations of Verticillium lecanii (L2 and L5)
and Beauveria bassiana (B76 and B252) spores at different time intervals. Columns show the mortality of
aphids with different fungal strains ± SE (n = 50). The different letters express significant differences
between different treatments (three-way factorial analysis of variance (ANOVA); least significant
difference (LSD) test at α = 0.05). DAT: Days after treatment.

2.2. Fungal Strain Combinations Against Bean Aphid

In the combination bioassays test, the results showed a high significant effect of all treatments (F =

618.56; p < 0.01), the different time intervals (F = 775.30, p < 0.01), and the interaction between different
times and different treatments on fungal strains (F = 40.60, p < 0.01, Table 2). The highest inhibition
effect of the fungal strain (90.5%) was observed for L2 + B76, while the effect of the combination of
B76 + L5 was 81.1%. Binary combination of L2 + B252 caused 71.6% corrected bean aphid mortality
(Figure 2). Nevertheless, for the combination of four different fungal strains (L2 + L5 + B76 + B252),
the bean aphid mortality rate was recorded as 69.4%. This phenomenon was most probably due to
the reduced number of spores of the high virulence strain (B76 and L2) in the combination (B76 +

L2 + B252 + L4). So, its effect was reduced to be significantly lower against M. japonica than other
combinations (Figure 2).
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Table 2. Analysis of variance (ANOVA) for the mortality of M. japonica by the binary combinations
from four fungal strains of V. lecanii and B. bassiana at different time intervals.

Source of Variation DF Sums of Squares Mean Squares F Ratio Prob

Treatment 4 20,964.9 5241.22 618.56 0.000
Time 3 19,708.0 6569.34 775.30 0.000

Treatment × Time 12 4127.90 343.992 40.60 0.000
RESIDUAL 40 338.932 8.47329

Total 59 45,139.7 765.080
CV% 7.2

CV%: Coefficient of variation.Agriculture 2020, 10, x FOR PEER REVIEW 4 of 10 
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Figure 2. The mortality of Megoura japonica by the binary combinations from strains of Verticillium
lecanii and Beauveria bassiana (L2 + B76, B76 + L5, L2 + B252, L2 + B76 + B252 + L5, and control) recorded
at different time intervals. Columns show the bean aphid mortality with different fungal strains ± SE
(n = 50). The different letters express the significant difference between different treatments (two-way
factorial analysis of variance (ANOVA); least significant difference (LSD) test at α = 0.05). DAT: Days
after treatment.

2.3. Comparison of the Mortality of Bean Aphid by Fungi Filtrate and Conidia

The filtrate bioassay results revealed that the overall mean effect of different fungi filtrate against
bean aphid was higher in comparison to their conidial treatments. Statistical processing results showed
that there was a significant effect of fungal conidia and filtrates on corrected bean aphid mortality (F =

117.71, p < 0.01, Table 3). The highest effect of the filtrate solution was strain B76, with 91% recorded on
the eighth day of treatment, while the effect of strain B76 conidia was recorded as 84% on the eighth
day of treatment (p < 0.01). Other fungal strains had similar results. However, the lowest effect of
filtrates and conidia was in fungal strain L5, recorded as 63.8% and 55.1%, respectively (Figure 3).

Table 3. Analysis of variance (ANOVA) for the comparison of the mortality of M. japonica by filtrate
and the conidia from different fungal strains (V. lecanii and B. bassiana).

Source of Variation DF Sums of Squares Mean Squares F Ratio Prob

Treatment 8 15,365.3 1920.66 117.71 0.000
RESIDUAL 18 293.692 16.3162

Total 26 15,659.0 602.268
CV% 6.0

CV%: Coefficient of variation.
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Figure 3. Comparison of the mortality of M. japonica by filtrate and the conidia from different fungal
strains (V. lecanii and B. bassiana). Columns show the mortality of aphids by different fungal strains ± SE
(n = 50). The different letters express the significant difference between different treatments (one-way
factorial analysis of variance (ANOVA); least significant difference (LSD) test at α = 0.05).

3. Discussion

Developing biological control methods, based on entomopathogenic fungi with resistance to
pathogens and insect pests, is one of the core areas of current biological control research. Many virulent
fungal strains were found to be effective against different insect pests [31,32]. This study determined
the effect of different entomopathogenic fungi against bean aphid. The results of this study presented
that four strains, V. lecanii (L2 and L5) and B. bassiana (B76 and B252), could be effective biocontrol
agents against bean aphids. This study result is also similar to previous research showing the effect of
different strains of V. lecanii and B. bassiana against aphids [26,33].

In all experiments, the effect of fungal strains appeared to be dose and time-dependent and
increased by increasing time after application and the conidia concentrations of fungus, [34] which
was also demonstrated in our conidial treatment study. They use different concentrations of the
entomopathogenic fungus, B. bassiana, against Metopeurum fuscoviride and A. fabae, and reported that
the highest concentration (1 × 108 spores mL−1) exhibited the highest mortality percent on seventh
day post-treatment. It was also demonstrated that the mortality of aphids increased with time and
conidial concentration exposure [35,36]. Similarly, it was described that the mortality percentage
was affected by the concentration of conidia, temperature, and exposure time [37]. The mortality
percentage was directly proportional to the concentration of conidia using different concentrations
of B. bassiana (1 × 106, 1 × 107 and 1 × 108 conidia mL−1) Rhopalosiphum padi, Schizaphis graminum,
Lipaphis erysimi, and Brevicoryne brassicae. All concentrations were effective for the control of aphids,
but the highest concentration (1 × 108 conidia mL−1) caused the highest percentage mortality [38].
The research was conducted for the determination of the virulence of V. lecanii and its result showed
that concentration of 1 × 108 conidia mL−1 had the best effect, with an 86% mortality rate of nymphal
observed after five days of application [39]. It was also reported that at concentrations of 107 and 108

conidia mL−1 of V. lecanii, the maximum mortality rate of M. persicae was recorded as 100% after 12
days of application [40]. Similarly, the effect of B. bassiana on M. persicae was also determined under the
controlled condition with the concentration of 1 × 107 conidia mL−1 and showed that three strains of
B. bassiana (BAU019, BAU004, and BAU018) showed high effect on aphids, with a mortality of over
75% [34,41–44]. According to filtrate treatment, our results are similar to results which revealed that
degradation of the insect body was observed at higher infiltrate treated aphids, and the reduction of
aphid population was higher in higher dose filtrate treatment [27]. The maximum efficacy was due
to the production of metabolites in the culture filtrate that helped to degrade the cuticle and deform
the hemocoel. As compared with the filtrate, conidia need more time to germinate and release the
required enzymes for the degradation of the insect body. It was demonstrated that the use of filtrate
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application for the control of insects was the best method, and also effective for insects which had a
short life cycle because these insects have more chances to shed the conidia from their body by molting,
since germination of conidia needs a specific time [45,46]. According to their findings, our results were
similar. Filtrate had more ability to control the insect population, because they contained toxic enzymes
for the degradation of the insect body. Through filtrate optimization, the production of enzymes could
be enhanced easily with fungal genetic manipulation. Filtrate production, storage, and transportation
are more suitable than conidia, and it meets the commercialization requirements. In this study, the
effect of different fungal strains was found to be time dependent in cases of conidia, filtrate suspension,
and combinations. The maximal effect was recorded after eight days, while the minimal effect was
recorded after two days. These results are similar to research that showed an increase in the effect with
the increase in time and concentration [39].

Regarding the pathogenicity of different fungal combinations, our results showed that the highest
synergistic effects were a combination of fungal strains (B76 + L5, and L2 + B76). However, there
was no synergistic effect for the combination of fungal strains L2 + B252 and L2 + B76 + B252 + L5.
These fungal strains may show synergies if applied in a sequential combination, as demonstrated in
the case of nematodes and pathogenic fungi [47]. Therefore, the use of the entomopathogenic fungi
is considered safe and environmentally friendly compared to chemical pesticides [48], so they are
recommended against harmful pests, such as aphids.

4. Materials and Methods

4.1. Insect Culture

Bean aphids were collected from the Institute of Plant Protection, Beijing, China. Then, they were
reared on Chinese cabbage plants (Brassica rapa) placed in cages in the growth chamber at 50–60%
relative humidity and 25 ± 2 ◦C, with a 16:8 h light:dark photoperiod. The first instar aphid was used
for all bioassays in this study.

4.2. Fungal Isolates

All fungal isolates (Table 4) were collected from fields in China and cultured on potato dextrose
agar (PDA) medium (20.0 g agar, 200.0 g potatoes, 20.0 g dextrose, and 1 L distilled water) on
Petri-dishes for 20 days in the dark at 25 ± 2 ◦C.

Table 4. Name of fungal strains, hosts and geographical of the entomopathogenic fungi.

Name Symbols Geographical Origin

Verticilliun lecanii 2 L2 Institute of Plant Protection, Beijing, China
Verticilliun lecanii 5 L5 Institute of Plant Protection, Beijing, China

Beauveria bassiana 76 B76 Institute of Plant Protection, Beijing, China
Beauveria bassiana 252 B252 Institute of Plant Protection, Beijing, China

4.3. Conidial Suspension

The conidia were collected from PDA dishes in 0.02% Tween solution after 20 days culture and
were filtered using sterile cheesecloth. The spore concentrations of all fungal strains were counted
under the microscope using a hemocytometer. The conidia viability was checked before using for the
design of the bioassays experiment [49].

4.4. Fungal Filtrate

The primary culture of the four strains (B76, B252, L2, and L5) was prepared by mixing 100 mL of
Adamek liquid medium (ALM) with 5 mL of conidial suspension and shaken for 3 days at 150 rpm.
The secondary culture (1.0%) was prepared by mixing 250 mL of ALM with 2.5 mL of the primary
culture medium and shaken for 6 days at 150 rpm, 25 ◦C. The mycelium was removed by centrifugation



Agriculture 2020, 10, 114 7 of 10

for 15 min at 12,000 rpm, 4 ◦C and then the supernatant was filtered through the 0.45 µm pore-size
filter (Millipore Corp) to get the filtrate.

4.5. Pathogenicity Bioassays

The effect of the entomopathogenic fungal strains (B76, B252, L2, and L5) against bean aphids was
measured by conducting their conidial and filtrate bioassays, and evaluating the binary combinations
of different fungal strains. All bioassays were measured using the leaf-dip method [50] with slight
modifications. All treatments were performed on 90 mm Petri dishes containing a thin layer of
1.0% agar, and a 60 mm detached leaf disk of Chinese cabbage was placed on the Petri dish. The
control leaves were dipped only in 0.02% Tween. Fifty newly molted bean aphids up to 12 h old
(first instar) were released on the treated and control leaf on a Petri dish, and then they were stored
at 50–60% relative humidity and 25 ± 2 ◦C with a 16:8 h light:dark photoperiod. All the treatments
were replicated 3 times (each treatment has 5 Petri dishes for each time). For the bioassay treatment
of binary combination, the uppermost concentration 1 × 108 conidia mL−1 of each fungal strain was
mixed with the 1 mL conidia of each other fungal strain for all combinations, and then a 2 mL mixed
combination sample for each treatment was collected. The combinations, L2 + B76, B76 + L5, L2 +

B525, and L2 + B76 + B252 + L5 were designed. For all treatments, the effect was recorded on 2, 4,
6 and 8 days. All dead bean aphids from each experiment were maintained at 25 ± 2 ◦C and 90%
relative humidity in dark to confirm mortality by the pathogens. The effect of all fungal strains was
determined using Abbott’s formula: Effect (%) = (X − Y)/X) × 100 (X: the percent living in the control;
Y: the percent living in the treatment) [51].

4.6. Data Analysis

The data was analyzed using Statistix 8.1 (Analytical Software, Tallahassee, FL, USA). Comparisons
of the treatment means were performed, using variances (ANOVA) to determine the significance of
individual differences of the least significant difference (LSD) test at α = 0.05 level.

5. Conclusions

In brief, this study shows the effect of four different fungal strains of V. lecanii (L2 and L5) and B.
bassiana (B76 and B252) against M. japonica. Through a series of bioassays, the results demonstrated that
different fungal strains of V. lecanii (L2 and L5) and B. bassiana (B76 and B252) have different virulence
potential. The different application materials and their dosages also affect pathogenicity on bean aphid.
Filtrate application is the most suitable material for the control of M. japonica. In the combination of
bioassays, the binary combination of strains of B76 and L2 exhibited high mortality of bean aphid
(90.5%). Thus, the results of this study suggest that these fungal strains may be used as novel biological
control agents against bean aphids.
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