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Abstract: Bacterial leaf blight (BLB), a vascular disease caused by Xanthomonas oryzae pv. oryzae
(Xoo), induces a significant reduction in rice yield in severe epidemics. This study investigated the
transcriptional regulation of the OsDHODH1 gene in rice cultivars exposed to the Xoo K3 isolate.
The symptoms were monitored on a daily basis, and the lesion length of inoculated rice plants
was scored 21 days post inoculation (dpi). The most resistant and the highly susceptible cultivars
were used for gene expression analysis. The dihydroorotate dehydrogenase (DHODH) domain
is shared by many proteins in different plant species, and in Arabidopsis, this protein is encoded
by the AtPYD1 gene. To investigate the functional role of the OsDHODH1 gene under bacterial
infection, we inoculated the Arabidopsis pyd1-2 knockout (atpyd1-2) plants, lacking the AtPYD1 gene
(orthologous gene of the rice OsDHODH1), with Pseudomonas syringae pv. tomato (Pst) DC3000 vir,
and the phenotypic response was scored 9 dpi. Results show that OsDHODH1 was upregulated in
Tunnae, the most resistant rice cultivar but downregulated in IRAT112, the highly susceptible rice
cultivar. In addition, Tunnae, Sipi and NERICA-L14 exhibited a durable resistance phenotype towards
Xoo K3 isolate 21 dpi. Moreover, the expression of OsPR1a and OsPR10b (the rice pathogenesis
inducible genes) was significantly upregulated in Tunnae, while being suppressed in IRAT112.
Furthermore, the atpyd1-2 plants exhibited a high susceptibility towards Pst DC3000 vir. AtPR1 and
AtPR2 (the Arabidopsis pathogenesis inducible genes) transcripts decreased in the atpyd1-2 plants
compared to Col-0 (wild type) plants. Due to the above, OsDHODH1 and AtPYD1 are suggested to be
involved in the basal adaptive response mechanisms towards bacterial pathogen resistance in plants.

Keywords: bacterial leaf blight; Xanthomonas oryzae pv. oryzae; disease resistance; OsDHODH1; rice

1. Introduction

Rice is a staple food for more than half of the global population [1–3]. This important crop is
cultivated for its nutritive value and economic importance [4,5]. However, rice cultivation is subjected
to various abiotic [6,7] and biotic [8] stresses that reduce its productivity and quality. Among the
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bacterial diseases dwelling in various parts of rice, and causing detrimental effects, bacterial leaf blight
(BLB) caused by the bacterium Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastating
and destructive bacterial diseases of rice (Oryza sativa L.) [9–14], in both irrigated and rainfed rice
environments [15,16]. These environments provide favorable conditions for the development of BLB
Xoo interaction with rice in a gene-for-gene relationship, making rice, a model plant for monocots, ideal
for studies to depict the molecular mechanisms of disease responses in monocots [11–21]. BLB is spread
worldwide [22–24] and can cause as high as 60% reduction in rice yield in severe epidemics [16,23,25].
This vascular disease starts with the infection of rice leaves or roots by the Xoo bacterium through
hydathodes (specialized pores present at the leaf margin where vascular supply ends), natural plant
openings, such as stomata, and wounds [25–27]. Xoo multiplies and spreads within the xylem, causing
long, grey to white opaque necrotic lesions that typically spread from the tip of a rice leaf [26,28].
Xoo is characterized by the production of membrane-bound yellowish pigments, herein referred to
as xanthomonadins, which protect the pathogen from photodamage and host-induced peroxidation
damage [29,30]. Xanthomonadins are also necessary for epiphytic survival and successful infection
into host plants [30].

To date, a variety of BLB resistance (R) genes have been identified in rice and tagged with
molecular markers [31–33]. Among several identified BLB R genes, Xa2 [34], Xa4, xa5, xa13 and
Xa21 have been physically mapped and cloned [18,35–39]. The Xa21 gene was reported to confer a
broad-spectrum resistance against Xoo strains upon their infection into rice plants [3,11,40–42]. In Korea,
the Xoo populations have been identified, characterized, and categorized into five pathotypes [15,43,44],
of which K1, K2 and K3 races have been studied [15].

Upon pathogen infection, many of the pathways involved in the plant immune system are
activated, which include the induction of a variety of pathogenesis-related genes and signaling
cascades. During this event, positive or negative regulators of plants defense against pathogens
are either induced or suppressed, and their interplay determines the level of resistance required for
the plant triggered immunity system. [45,46]. The activation of the defense genes is mediated and
controlled by an array of signal transduction pathways that include plant hormones, functioning
as important signaling molecules [47,48]. These hormones give an alarm signal that results in the
activation of a range of attacker-specific immune responses [49]. The classic hormones mediating
activation of the plant immune system are salicylic acid (SA), jasmonic acid (JA), and ethylene (ET),
which antagonize each other while providing a balanced and appropriate response to the pathogen
infection [50–52].

The dihydroorotate dehydrogenase (DHODH), in both animals and plants, is physically associated
with the respiratory complex of the mitochondria, catalyzing the conversion of dihydroorotate (DHO) to
orotic acid (OA), which is the fourth step and step-limiting factor in the de novo pyrimidine biosynthesis
pathway [53–56]. Inhibition or depletion of DHODH has been shown to result in a disturbed function
of the respiratory chain, thereby inducing cell growth hindrance, a decrease in the mitochondrial
membrane potential, and an increase in the generation of reactive oxygen species (ROS). Additionally,
the mitochondrial dysfunction due to the inhibition of the human DHODH has been reported to
be responsible for a wide range of human diseases [57], accelerating aging [58,59], and inducing
programmed cell death (PCD or apoptosis) [60]. In planta, however, much less is known so far about
the role of the DHODH in the plant immune system, particularly the basal defense against bacterial
pathogen infection.

Therefore, this study aimed at investigating the transcriptional regulation of the OsDHODH1
gene compared to the one of the well-known pathogenesis-related (PR) genes in response to
Xanthomonas oryzae pv. oryzae infection in rice leaves at the maximum tillering stage. The expression
level of OsDHODH1 was monitored by qPCR in the most resistant and highly susceptible rice
cultivars, upon their exposure to K3 Xoo isolate. In addition, the transcriptional level of OsPR1a
and OsPR10b, the well-established pathogenesis inducible genes, was measured under the same
conditions. Additionally, rice (model plant for monocots) and Arabidopsis (model plant for dicots)
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share an important genetic homology, which includes conserved domains and orthologous genes.
The DHODH domain is shared by many proteins in different plant species, and in Arabidopsis,
this protein is encoded by the AtPYD1 gene. Moreover, the rice OsDHODH1 gene encodes a
membrane-bound protein, which is embedded in the inner mitochondrial membrane. Due to their
structure, membrane-bound proteins have proven difficult to study and to clone, despite their
interesting roles in diverse biological processes and metabolic pathways, including photosynthesis,
respiration, signal transduction, molecular transport, and catalysis. For these reasons, we conducted a
functional analysis study using the Arabidopsis pyd1-2 knockout (atpyd1-2) line, lacking AtPYD1 gene
(the orthologue of the rice OsDHODH1 gene), and we investigated its transcriptional regulation as
well as its phenotypic response to Pseudomonas syringae pv. tomato (Pst) virulent strain (Pst DC3000)
infection compared to the well-studied susceptible Arabidopsis knockout lines, atsid2 and atgsnor1-3,
as controls.

2. Materials and Methods

2.1. Rice Materials and Growth Conditions

Nine rice cultivars used in this study to perform the experiments included Jinbu, Odae, Tunnae
(japonica), Lioto, IRAT112, Sipi (indica), and the New Rice for Africa (NERICA 4, NERICA 7,
and NERICA-L14) interspecific generated from the cross between Oryza glaberrima and Oryza sativa [61],
were used as genetic materials to perform the experiments. Jinbu and Odae were recently scored
susceptible towards the Korean Xoo K1 isolate [62]. Seeds of Jinbu, Odae, and Tunnae were obtained
from the Laboratory of Plant Functional Genomics (Kyungpook National University, Daegu, Korea),
and those of Lioto, IRAT112 and Sipi, and NERICA4, NERICA 7 and NERICA-L14 were provided by the
National Seed Service (SENASEM, Ministry of Agriculture) and the National Institute for Agronomic
Study and Research (INERA, Kinshasa, Democratic Republic of Congo). Lioto and IRAT112 were both
previously reported resistant to other important rice diseases, such as blast (Pyricularia oryzae) and leaf
scald (Monographella albescens) [63], while Sipi was shown to be resistant to leaf scald [64]. NERICA
4 was reported for being resistant to BLB caused by Xoo UX00 (Ugandan) isolate [65], and NERICA
7 [66]. We further screened Tunnae, Lioto, IRAT112, Sipi and NERICA-L14 for BLB disease resistance.
Plants were grown in a greenhouse at Kyungpook National University, Daegu, Republic of Korea.

Prior to germination, the seeds were surface sterilized with prochloraz (25% v/v) for 2 h, followed
by rinsing three times for 1 h each to remove any traces of the prochloraz. The seeds were then
germinated in petri dishes for 7 days. Germinated seeds were transferred to 50-well trays containing
an enriched soil for two weeks in the greenhouse. Then, vigorous seedlings were transplanted to big
pots up to 45 days prior to inoculating with Xoo K3 isolate. In total, 27 pots containing three plants
each were used in triplicate.

2.2. Xa R Genes Tagged with DNA Markers

Bacterial leaf blight (BLB) R genes used in the current study included two recessive genes, xa5 and
xa13, and three dominant genes Xa2, Xa4 and Xa21, the latter was reported to confer a broad-spectrum
resistance to a variety of Xoo isolates. Primer sequences of simple sequence repeat (SSR) and sequence
tagged site (STS) Xa marker genes and their related amplicon band sizes are given in Table 1. The STS
and SSR markers were initially used to investigate the presence or absence of resistant and susceptible
alleles of the selected DNA markers linked to specific Xa R genes in different rice cultivars.
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Table 1. Simple sequence repeat (SSR) and sequence tagged site (STS) markers for Xa resistance genes
in rice.

Markers Primer Sequences (5′->3′) Linked
Gene

Distance
(cM) Chr Expected Band

Size (bp) References

Npb197 d,
RM-317

F-CATACTTACCAGTTCACCGCC
Xa2 18.5 4 154 Singh et al., 2015

R-CTGGAGAGTGTCAGCTAGTTGA

Npb181 a,
MP1

F-ATCGATCGATCTTCACGAGG
Xa4 1.7 11 150 Ma Bo-Jun et al.,

1999R-TCGTATAAAAGGCATTCGGG

RM122 b,
SSR

F-GAGTCGATGTAATGTCATCAGTGC
xa5 0.4 5 227 Blair et al., 2003

R-GAAGGAGGTATCGCTTTGTTGGAC

RG136 c- SSR
F-GGCCATGGCTCAGTGTTTAT

xa13 3.8 8 450 Zhang et al.,
1996R-GAGCTCCAGCTCTCCAAATG

pTA248 c,
STS

F-AGACGCGGAAGGGTGGTTCCCGGA
Xa21 0–1 11 950 Ronald et al.,

1992R-AGACGCGGTAATCGAAAGATGAAA

Chr = chromosome; source of primers sequences: a [14], b [67], c [68], d [69].

2.3. Genomic DNA Extraction and Genotyping of Rice Plants

The genomic DNA was extracted following the cetyltrimethylammonium bromide (CTAB)
method [70]. Briefly, frozen leaf samples were crushed in 1.5 mL Eppendorf tubes (e-tubes) containing
liquid nitrogen (N2). Then, 300 µL of 2X CTAB buffer was added, followed by vortexing and incubation
in a water bath at 65 ◦C for 20 min. The samples were immediately cooled down at room temperature for
about 10 min. Then, 300 µL of chloroform was added, followed by gentle mixing by inversion for 5 min.
All tubes were centrifuged for 3 min at 13,000 rpm to allow separation of phases. The supernatant
was carefully removed and transferred to fresh micro tubes. Next, 300 µL of isopropanol was added,
followed by mixing by inversion. Samples were incubated in a −20 ◦C freezer for 1 h to allow the
DNA to precipitate, followed by centrifugation at 13,000 rpm for 7 min. The supernatant was removed,
and the pellets were washed with 70% ethanol (1 mL), and the DNA pellets were completely dried at
room temperature and resuspended into 100 µL nuclease-free water. Finally, the DNA concentrations
of samples (ng µL−1) and quality (A260/A280) were measured using NanoDrop, and samples were
kept in a −20 ◦C freezer for further analysis.

To investigate the presence or absence of the resistant or susceptible alleles of the target Xa R genes
in different rice cultivars, we amplified SSR and STS markers linked to xa5, xa13, Xa2, X4, and Xa21
BLB R genes from the genomic DNA of samples by polymerase chain reaction (PCR). A 20 µL reaction
mixture comprising 7 µL 2X F-Star Taq PCR Master Mix (BioFACT, Korea), 10 nM of each forward and
reverse primers was used. A 3-step cycling reaction was performed including polymerase activation
at 95 ◦C for 2 min, 95 ◦C strands separation for 20 sec, annealing at 56–58 ◦C for 40 sec for 25 cycles,
extension at 72 ◦C for 1 min/kb, and the final extension at 72 ◦C for 5 min, and then visualized by the
gel documentation system.

2.4. Cloning and Sequencing of Xa21

The genotyping results (Figure 1) revealed the presence or absence of resistant alleles of five Xa R
genes in different rice cultivars. Further investigations were required to confirm the polymorphism
and the band sizes of the Xa21 in indica and japonica rice cultivars, which is widely known to confer
a broad-spectrum resistance against Xoo. Therefore, we amplified Xa21 using pTA248 STS DNA
marker-specific primers, from the genomic DNA of Sipi (indica) and Jinbu (japonica) by polymerase
chain reaction (PCR) using F-Star 2X Taq Polymerase Master Mix (Biofact, Korea); Sipi showed moderate
resistance towards Xoo K3, while Jinbu was moderately susceptible. The PCR product was ligated
into pGEM-T Easy Vector overnight under ±4 ◦C. The ligation reaction mixture had a total volume of
6 µL containing 2.5 µL ligation buffer, 0.5 µL vector, 2 µL PCR product, and 1 µL DNase free water.
Then, ligation of the target gene was confirmed through PCR, and the construct was transformed into
Escherichia coli (E. coli) DH5-α competent cells using the heat shock method [71]. After 3 h incubation
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of the liquid culture at 37 ◦C in a sharking incubator, the culture (about 1 mL) was centrifuged at
8000 rpm for 3 min, and the cells were resuspended in 100 µL Luria–Bertani (LB) broth, and plated in
duplicate on LB agar containing ampicillin as the selective agent followed by incubation overnight at
37 ◦C. The growing single colonies were screened using colony PCR (using the colonies as template) for
confirmation of the insert. The selected positive colonies were grown in LB broth containing ampicillin,
followed by extraction of plasmids using the Mini Prep Kit for plasmid purification according to the
manufacturer’s instructions (Qiagen, Korea). For further confirmation, we amplified the plasmid
by PCR (plasmid PCR using the purified plasmid as template) using M13 forward and pTA248 STS
marker reverse primers and Taq polymerase. Then, a final confirmation of the construct with the insert
was achieved through sequencing (Figure S3).

Figure 1. Amplification profile of polymorphic DNA markers tagged with Xa R genes resolved in
agarose gel electrophoresis showing polymorphic bands. Five well-known molecular markers linked to
dominant Xanthomonas oryzae pv. oryzae (Xoo) resistance genes in rice. (a) Xa2, (b) Xa4, (c) xa5, (d) xa13,
and (e) Xa21 were amplified by PCR from the genomic DNA of rice cultivars and separated on gel
electrophoresis and visualized under UV-light in a gel documentation system. Expected banding sizes
for resistant alleles are as follows: Xa2 (154 bp), Xa4 (150 bp), xa5 (227 bp), xa13 (450 bp), Xa21 (950 bp).
M: ladder marker, lane 1: Jinbu, lane 2: Odae, lane 3: Tunnae, lane 4: Lioto, lane 5: IRAT112; lane 6:
Sipi, lane 7: Nerica 4, lane 8: Nerica 7, lane 9: Nerica-L14.
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2.5. Xanthomonas Oryzae pv. Oryzae Growth and Inoculation into Rice Plants

The bacterial cells (Xoo, K3) were cultured and maintained as described earlier [72]. Briefly,
bacterial cells were grown on potato sucrose agar (PSA) petri dishes (5 g L−1 Bacto-peptone (Becton,
Franklin Lakes, NJ, USA), 0.5 g L−1 sodium L-glutamate monohydrate, 5 g L−1 sucrose, and 8 g L−1

Bacto-agar) supplemented with cyclohexamide and incubated at 28 ◦C for 72 h. The typical Xoo single
colonies were selected, and the cells were scraped off from the plates and resuspended in potato sucrose
broth and incubated for about 48 h in a shaking incubator, until the bacterial culture reached an optical
density (OD600) above 1.0, which is equivalent to 8 × 108 colony forming units (CFU mL−1) per mL.
The actual concentration of the bacterial suspension culture had an OD600 equal to 1.573, equivalent
to 1.3 × 109 CFU mL−1, and was recorded using a spectrophotometer (AA6300C, Shimadzu, Tokyo,
Japan). For inoculation to rice plants, this concentration was adjusted through serial dilutions (ratio
1:9) to the absorbance (OD600) of 0.002, which corresponds to about 1.6 × 106 CFU mL−1.

The leaf clip method [73] was used to inoculate plants with Xoo K3 at the maximum tillering
stage [17]. Three topmost youngest fully expanded leaves of 60 day-old plants were clipped 5 cm from
the tip (Figure S5) [74] with a sterilized scissor dipped into Xoo suspension culture immediately prior to
each cutting; therefore, depositing the inoculum in the exposed veins across the whole cut edge near the
tip. Negative controls were mock inoculated using only sterile distilled water. The inoculated leaves
were closely monitored for eventual symptoms’ development and progression of BLB typical lesions.

2.6. Lesion Length (LL) Measurement and Disease Scoring

Prior to conducting downstream analysis, nine rice cultivars were screened for their phenotypic
response towards BLB caused by Xoo K3 isolate. The topmost resistant and the highly susceptible
rice cultivars were selected to investigate the transcriptional response of OsDHODH1 as well as
other well-established pathogenesis inducible genes under bacterial infection. The lesion length
was considered as the distance from the tip cutting edge to the leading edge of grayish to chlorotic
symptoms, and was measured following the progression of the blight disease for each inoculated
leaf up to 21 days post inoculation (dpi) [75,76]. The scoring for BLB resistance followed the method
in Table 2.

Table 2. Standard evaluation system (SES) for bacterial leaf blight (BLB) severity.

Lesion Length (cm) Disease Leaf Area (%) Disease Score Host Response

0 No disease observed 1 Highly Resistant (HR)

>0–5 Less than 1% 2 Resistant (R)
1–3 3 Resistant (R)

4–10 4 Resistant (R)

>5–10 11–15 5 Moderately Resistant
(MR)

16–25 6 Moderately Resistant
(MR)

>10–15 26–50 7 Susceptible (MS)

>15 51–75 8 Susceptible (S)

76–100 9 Highly Susceptible
(HS)

Source: [77–79].

2.7. Arabidopsis Materials, Growth Conditions, and Genotyping

Arabidopsis Col-0 (wild type), atpyd1-2 (AT3G17810: SALK_083897C), atgsnor1-3, and atsid2 loss
of function mutant lines were obtained from the Arabidopsis Biological Resource Center (ABRC)
(https://abrc.osu.edu/). The atgsnor1-3 knockout lacks the S-nitrosoglutathione reductase 1 (GSNOR1),

https://abrc.osu.edu/
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which regulates the cellular S-nitrosothiols (SNO) levels, and atsid2, a salicylic acid (SA) deficient
mutant, were used as the susceptible controls [80,81]. Plants were grown on a peat moss soil mixture at
22 ◦C with 16 h light and 8 h dark cycles. The atpyd1-2 plants were genotyped to identify homozygous
transfer DNA (T-DNA) insertion lines by polymerase chain reaction (PCR) for further experiments
(Figure S4). The T-DNA insertion lines were identified through genotyping, using left border (LB) and
gene specific reverse primers, and the DNA samples were extracted from the atpyd1-2 plants, following
the DNA extract method and PCR conditions described earlier in Section 2.3. Primers for genotyping
were designed using the SALK_083897C (the Arabidopsis identification number of the target mutant
line) in the iSect primer tool found in the following link: http://signal.salk.edu/tdnaprimers.2.html
(SIGnAL: Salk Institute Genomic Analysis Laboratory). The list of primers is given in Table 3.

2.8. Pseudomonas Syringae pv. Tomato (Pst) Growth and Inoculum Preparation

The biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) virulent strain (DC3000 vir)
was grown and maintained as described [82]. Briefly, the bacterial culture was grown on Luria–Bertani
(LB) agar plates containing rifampicin (50 µL/50 mL), and incubated at 28 ◦C for 48 h. Single colonies
were picked and cultured in 5 mL LB broth in 50 mL falcon tubes for 48 h at 28 ◦C with continuous
shaking. The overnight culture (1 mL) was centrifuged for 5 min at 8000 rpm to pellet down
the cells. The bacterial cells were resuspended in 1 mL of 10 mM magnesium chloride (MgCl2).
Then, the absorbance (OD600 nm wavelength) of the bacterial culture and the blank (MgCl2) [83] was
read using a spectrophotometer. Plants were infiltrated with Pst DC3000 using a 1 mL syringe (without
needle) into the abaxial side of leaf (the lower leaf surface), with a bacterial inoculum concentration of
5 × 105 CFU mL−1 [84] in triplicates. Mock plants were only infiltrated with 10 mM MgCl2. To avoid
physical damage (injury) to the leaves during infiltration, the syringe was positioned vertically to the
leaf surface and low pressure was applied, knowing that the wounding effect interferes with the plant
immune response, particularly through jasmonic acid-mediated signaling, which can suppress the
SA-mediated defense pathways [85].

To allow the optimal pathogen proliferation and development for the most pronounced disease
symptoms, particularly on susceptible genotypes, inoculation of Pst DC3000 vir was completed during
light cycle hours. In addition, we tried to keep the pathogen infiltration timing consistent in order to
reduce the effect of circadian rhythms and diurnal gene expression [86,87], which contribute to the
reduction in variation among experimental replications.

2.9. Symptoms Development in Arabidopsis Genotypes Challenged with Pst DC3000 vir

At least three leaves were inoculated per plant in triplicate with Pst DC3000 virulent strain,
and MgCl2 was used as control [83]. For gene expression, samples were collected at 0 dpi (immediately
after inoculation), 1 dpi and 2 dpi. Plants for phenotypic observations were scored 9 dpi.

http://signal.salk.edu/tdnaprimers.2.html
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Table 3. List of primers for genotyping and expression of target genes used in the study.

Gene Name/Genotype Locus/SALK Forward Primer (5′->3′) Reverse Primer (5′->3′) Gene Name

Genotyping primers of the T-DNA insertion atpyd1-2 (Left border and right border)

atpyd1-2 SALK_083897C TTGGGTGGCAGAACATAGAAC ATGAATTCAGCGGCATCATAG Arabidopsis pyd1-2 loss of function
mutant

Primers for gene expression in rice

OsDHODH1 LOC_Os02g50350 GAGGTCTGCGGTTGGATAAA CTATAGGGTGCACGGCTCTC Dehydroorotate dihydrogenase encoded
gene

OsPR1a LOC_Os07g03710 AGTTCGTCGAGCAGGTTATC AGATTGGCCGACGAAGTTG Rice Pathogenesis related gene 1a
OsPR10b LOC_Os12g36850 ATGGCTCCGGCCTTCGTCTC GGTTAAGCTTCATGATGTGGATGG Rice Pathogenesis related gene 10b
OsUBI LOC_Os03g03920 GCCATTAATGCTACCACTGC GTTCTCGGATAGCTGTTGTTGC Rice ubiquitin encoding gene

Primers for gene expression in Arabidopsis
AtPYD1 AT3G17810 AGTGAGGATCGCTCGCTTTC TCATCACACCGGTGCATACC PYRIMIDINE 1
AtPYRD AT5G23300 AAGACGAGTGAGGATGCTGC GCAGTCCTGCAGTATTGGGT PYRIMIDINE D
AtPR1 AT2G14610 GTGCAATGGAGTTTGTGGTC TCACATAATTCCCACGAGGA Arabidopsis pathogenesis-related gene 1
AtPR2 AT3G57260 CAGATTCCGGTACATCAACG AGTGGTGGTGTCAGTGGCTA Arabidopsis pathogenesis-related gene 2

AtACT2 AT3G18780 AGGTTCTGTTCCAGCCATC TTAGAAGCATTTCCTGTGAAC Arabidopsis Actin coding gene 2
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2.10. Total RNA Isolation, cDNA Synthesis and qPCR Analysis

Total RNA was isolated from samples of leaves using the TRI-SolutionTM Reagent (cat. no:
TS200-001, Virginia Tech Bio-Technology, lot: 337871401001) as described by the manufacturer.
Thereafter, the complementary DNA (cDNA) was synthesized as described earlier by Mun et al. [88].
Briefly, 1 µg of RNA was used to synthesize cDNA using BioFACTTM RT-Kit (BioFACTTM, Republic of
Korea) according to the manufacturer’s standard protocol. The cDNA was then used as a template
to study the transcripts accumulation of selected genes through qPCR analysis. Briefly, the reaction
mixture was composed of SYBR green (BioFACT, Korea) along with 100 ng of template DNA and 10 nM
of each forward and reverse primers in a final volume of 20 µL reaction. A no-template control [89] was
used as a control. A 2-step reaction including polymerase activation at 95 ◦C for 15 min, followed by
denaturation at 95 ◦C for 5 s and annealing and extension at 65 ◦C for 30 s was performed in a real-time
PCR machine (Eco™ Illumina, USA). The total reaction cycles were 40 and the relative expression
values of all genes were normalized with the one of the housekeeping genes (ubiquitin for rice; actin
for Arabidopsis) (see Table 3).

3. Results

3.1. Polymorphic Bands of Amplified DNA SSR and STS Markers Linked to Xa R Genes in Different
Rice Cultivars

We conducted a genotyping assay to evaluate the rice cultivars for the presence of well-known Xa
R genes. Therefore, Npb197/RM-317 (SSR), Npb191 and pTA248 (STS) linked to Xa2, Xa4 and Xa21
(the dominant Xa R genes), and xa5 and xa13 (the recessive xa R genes) tagged with molecular markers
RM122 (SSR) and RG136 (SSR), respectively, were used. These DNA markers amplified polymorphic
bands, indicating either the presence or the absence of resistance alleles of the specific Xa R genes.
pTA248 did not amplify the band size of 950 bp as reported earlier [90] or 1018 bp for the resistance
allele of Xa21 [91] in the resistant rice cultivars identified in the current study. Xa21 is known as a major
gene conferring a broad-spectrum resistance against Xoo strains. In the present study, unlike previous
reports, the same Xa21 R gene amplified a band of 733 bp in Sipi (indica) (Figure 1e, lane 6), which
exhibited a moderately resistant phenotypic response (Figures S1 and S2). Additionally, Sipi amplified
polymorphic bands of Xa2 and xa5 R genes (Figure 1a, lane 6; Figure 1b, lane 6). Similar band sizes of
Xa21 and xa5 were observed in NERICA-L14 (the moderately resistant interspecific rice line resulted
from crosses between Oryza glaberrima and Oryza sativa ssp. indica) (Figure 1e, lane 9). In addition,
Tunnae, a japonica rice cultivar scored moderately resistant 21 dpi (Figures S1 and S2, Table 4). However,
Tunnae amplified a low band of around 653 bp of Xa21 (Figure 1e, lane three) similar to Jinbu (Figure 1e,
lane 1). To further our investigations and confirm the size of the resistance allele of Xa21, we cloned the
Xa21 from Sipi, the resistant cultivar that amplified a high band size of Xa21 and Jinbu, the moderately
susceptible japonica cultivar that showed a small band size into pGEM-T Easy Vector. The sequencing
results revealed that the amplified band size of Xa21 in Sipi is 733 bp, while in Jinbu, the recorded
band size is 643 bp (Figure S3).

Moreover, the highly susceptible indica cultivar IRAT112 showed similar Xa21 banding pattern with
the highly susceptible japonica cultivar Odae. All other rice cultivars, which scored either moderately
susceptible, susceptible, or highly susceptible 21 dpi, amplified similar banding sizes of Xa21 dominant
and xa5 recessive R genes. A study analyzing the dynamics of Xoo populations in Korea and their
relationship to well-known BLB R genes supported that the pyramiding line carrying Xa4, xa5 and
Xa21 would be a promising genotype for improving rice cultivars for BLB resistance [15]. There is now
compelling experimental evidence that long-term cultivation of certain resistant rice cultivars could
be attributed to the shift in the race frequency of Xoo, and the eventual breakdown of single R genes
instability due to the evolution of new pathotypes [15].
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Table 4. Bacterial leaf blight disease scoring and host response at growth stage (5–8).

Cultivars Lesion length
(cm) 21 dpi SEM % DLA 1 Disease

Score (0–9) 2
Host Response to Xoo K3

Inoculation 3

Jinbu 8.3 ±4.92 29.2 7 Moderately Susceptible (MS)
Odae 14.2 ±1.49 78.8 9 Highly Susceptible (HS)

Tunnae 5.4 ±0.33 21.3 6 Moderately Resistant (MR)
Lioto 15.8 ±3.44 71.8 8 Susceptible (S)

IRAT112 17.6 ±1.04 90.1 9 Highly Susceptible (HS)
Sipi 4.6 ±1.25 23.3 6 Moderately Resistant (MR)

NERICA 4 9.2 ±1.92 36.2 7 Moderately Susceptible (MS)
NERICA 7 17.5 ±4.05 52.7 8 Susceptible (S)

NERICA-L14 4.7 ±2.11 21.5 6 Moderately Resistant (MR)

Source: 1 (our own data); 2 [78]; 3 [77]. % DLA: disease leaf area percentage. SEM: standard error of the mean. (5–8):
tillering to booting stage [78].

3.2. Differential Phenotypic Response of Nine Rice Cultivars Towards Xoo K3 Infection

Four days after rice plants were inoculated with Xanthomonas oryzae pv. oryzae (Xoo) K3 Korean
isolate, leaf drying symptoms were observed on the cut edge of inoculated topmost fully expanded
leaves in all rice cultivars. Rice plants were exposed to the inoculum (1.6 × 106 CFU mL−1). The disease
severity estimated by measuring the lesion length (LL) and the diseased leaf area in percentage (DLA)
revealed that of all cultivars, the interspecific (generated from crosses of Oryza. glaberrima and Oryza.
sativa) cultivar NERICA-L14 had the shortest lesion length (4.7cm LL; DLA: 21.5%), but IRAT112 had the
lowest DLA (21.3%); therefore, being the rice cultivar with the highest level of resistance to K3 followed
by Sipi of which the recorded DLA was 23.3% and the LL was 4.6cm. In contrast, Oade (japonica) and
IRAT112 (indica) were identified as being highly susceptible (HS) to Xoo K3 race. Additionally, Lioto
(indica) was found to be susceptible (S) to K3 upon its phenotypic response (Table 4). The recorded DLA
percentage ranged between 22 (lowest = moderately resistant) and 90.1 (highest = highly susceptible)
(Table 4).

The pathogenicity test of Xoo Korean isolates and the response of selected indica and japonica
genotypes on a daily basis revealed that Jinbu, Odae and Lioto exhibited a resistance phenotype
14 dpi. Interestingly, after a prolonged period after bacterial inoculation, up to 21 days, Jinbu and Odae
resulted in an increase in BLB symptoms to susceptibility (Figure S2). In general, clear symptoms were
observed after 4 dpi in the majority of tested rice genotypes. The aggressiveness of Xoo K3 isolate was
evaluated based on symptoms development and lesion length (4.6–17.6 cm), which differ between
rice cultivars and time of exposure to the inoculum (Table 1). Rice cultivars Sipi and NERICA-L14
showed shorter lesions’ length, 4.6cm and 4.7cm, respectively. In BLB-related studies, the evaluation
period of virulence of Xoo strains and cultivars’ resistance against BLB, and disease scoring are
routinely completed early (10–15 dpi [92]), and late (21 [65,93,94] to 28 dpi [95]), which was deposited
on the target leaves by cutting their tips (http://www.knowledgebank.irri.org/ricebreedingcourse/

Breeding_for_disease_resistance_Blight.htm). In the current study, scoring of inoculated plants was
completed 21 dpi, when the susceptibility check showed maximum symptoms of bacterial blight
(Figures S1 and S2, Table 4).

The daily observation of the progress of symptoms revealed a differential aggressiveness of K3
isolate in different rice cultivars. We could distinguish here three different residual effects depending
on the duration of the exposure to Xoo inoculum. Initially, we exposed rice cultivars to Xoo infection
for 10 dpi, which corresponds to the initial stage of symptom development on inoculated leaves,
we observed leaves drying from the tip, and the early evaluation time point showing distinctive
BLB symptoms was suggested by the International Rice Research Institute (IRRI). At this time point,
all tested rice cultivars scored either resistant or moderately resistant based on their phenotypic
response, except IRAT112, which had the highest DLA percentage, and scored highly susceptible 7 dpi.
We furthered our investigations by exposing infected plants up to 21 dpi. From 11 dpi, we observed

http://www.knowledgebank.irri.org/ricebreedingcourse/Breeding_for_disease_resistance_Blight.htm
http://www.knowledgebank.irri.org/ricebreedingcourse/Breeding_for_disease_resistance_Blight.htm
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that the cultivars that initially scored as resistant developed symptoms and scored as susceptible
over time. During this period, BLB symptoms in Odae and Lioto exponentially increased in length,
resulting in an altered host response, which led to a moderately susceptible phenotype. Similarly,
rice cultivars Jinbu, Lioto, NERICA 4 and NERICA 7 (earlier scored resistant cultivars at 10 dpi) scored
as susceptible over time. However, Tunnae (japonica), Sipi (indica) and NERICA-L14 (interspecific line)
remained resistant, and exhibited durable resistance against the Xoo K3 isolate, with the lowest DLA
percentage and a shorter lesion length.

3.3. Xoo K3 Induced OsDHODH1 Expression in Tunnae, the Topmost Resistant, while Being Downregulated in
IRAT112, the Highly Susceptible Cultivar Early after Inoculation

In the Materials and Methods section, we provided the basis for the selection of different cultivars
with regard to their phenotypic response towards Xoo inoculation. Here, we briefly mention that based
on the screening results, we selected Tunnae as resistant whereas IRAT112 was selected as a susceptible
cultivar (Figure 2a). We measured the expression of OsDHODH1 1 h after Xoo K3 infection in order
to investigate its transcriptional response soon after bacterial infection in the resistant (Tunnae) and
highly susceptible (IRAT112) rice cultivars. The results in Figure 2b indicate that OsDHODH1 was
significantly upregulated in Tunnae, which we found to be resistant towards BLB at 21 dpi. Moreover,
IRAT112, the highly susceptible cultivar, significantly downregulated OsDHODH1 expression.

Figure 2. Phenotype at 21 days post inoculation (dpi) and transcriptional response of OsDHODH1 1 h
after Xoo K3 inoculation in different rice cultivars. (a) Transcriptional level of OsDHODH1 gene relative
to the expression of the pathogen-related genes (OsPR1a and OsPR10b) under Xoo K3 infection in rice,
and (b) phenotypes of the most tolerant cultivar Tunnae (japonica) and the highly susceptible cultivar
IRAT112 (indica) at 21 dpi. Bars are means ±SD. *** p < 0.001, ** p < 0.01. Empty is non-significant.

3.4. The Expression of the Arabidopsis PR1 and PR2 was Differentially Regulated in atpyd1-2 Knockout Line

The expression of the Arabidopsis PR2 significantly increased over time upon Pst DC3000 inoculation
in Col-0, and significantly decreased in atpyd1-2 loss of function mutant (Figure 3a,b). However, AtPR1
showed a similar expression pattern in both Col-0 and atpyd1-2 plants. Under the same conditions,
AtPYD1 was slightly upregulated over time in Col-0 (wild type, WT). Furthermore, AtPYRD expression
is shown to be differentially regulated in atpyd1-2 loss of function mutant, suggesting a negative
regulation by AtPYD1. The phenotypes, after challenging the atpyd1-2 with Pst DC3000, showed a
susceptible phenotype compared to Col-0 WT (Figure 3c), suggesting that AtPYD1 may positively
regulate basal defense in Arabidopsis.
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Figure 3. Transcriptional response of AtPYD1 under bacterial Pst DC3000 vir infection. (a) Transcriptional
response of the Arabidopsis PYD1, PYRD, PR1 and PR2 under Pst DC3000 vir infection over time,
(b) expression patterns of same genes listed in the loss of function mutant atpyd1-2 background,
and (c) phenotype of Arabidopsis atpyd1-2 loss of function mutant towards Pst DC3000 vir infection.
The phenotype was recorded at 9 dpi.

4. Discussion

4.1. Differential Phenotypic Response of Rice Cultivars towards Xoo K3 Inoculation

Two japonica genotypes, Jinbu and Odae, were recently scored susceptible to the Korean Xoo K1
race under greenhouse and field conditions [62]. So far, no available report has mentioned screening
Tunnae (japonica), Lioto, IRAT112, Sipi (indica) and Nerica-L14 (interspecific line derived from crosses
of Oryza glaberrima and Oryza sativa) for their resistance to BLB. However, Lioto and IRAT112 were
both previously reported as being resistant to blast (Pyricularia oryzae) and leaf scald (Monographella
albescens) [63], whereas Sipi was reported as showing resistance against leaf scald [64]. A recent study
has reported the upland indica rice cultivar New rice for Africa 4 (NERICA 4) to be resistant to BLB
when the Xoo UX00 (African) isolate was inoculated for 21 days [65]. Furthermore, NERICA 7 was also
identified as resistant genotype against a specific BLB isolate [66].

4.2. The Expression Patterns of OsDHODH1 and PR Genes in Resistant and Susceptible Rice Cultivars
Suggest a Positive Regulation of Plant Basal Defense

Upon pathogen infection, plants activate the defense mechanisms, which include induction
of a variety of pathogenesis-related genes and signaling cascades. During this event, positive or
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negative regulators of plant defense against pathogen attack are induced or suppressed, and their
interplay determines the level of resistance required for the plant triggered immunity system. Our data
show that OsPR1a and OsP10b were significantly upregulated, as expected, in the most resistant rice
cultivar Tunnae soon after Xoo K3 inoculation. A similar transcriptional pattern was observed when
OsDHODH1 was expressed in Tunnae. However, when OsPR1a and OsPR10b were expressed in
IRAT112 (the highly susceptible rice cultivar), their transcriptional levels were significantly reduced.
Similarly, the expression of the OsDHODH1 gene decreased under the same conditions. Due to the
recorded transcriptional response, this study suggests that OsDHODH1 could be involved in the
adaptive response mechanisms towards Xoo (causing BLB) resistance.

The dihydroorotate dehydrogenase (DHODH) in both animals and plants is physically and
intimately associated with the respiratory complex of the mitochondria, catalyzing the conversion of
dihydroorotate to orotic acid—the fourth step in the de novo pyrimidine biosynthesis pathway [53–56].
Inhibition or depletion of DHODH has been shown to result in disturbed function of the
respiratory chain, thereby inducing cell growth hindrance, decreasing mitochondrial membrane
potential, increasing generation of reactive oxygen species (ROS), depleting uridine and myeloid
differentiation [96], and creating potential targets for anti-malarial compounds [97]. Mitochondrial
dysfunction due to DHODH inhibition was reported to be responsible for a wide range of human
diseases [57], accelerated aging [58,59] and induced programmed cell death (apoptosis) [60].
Recent studies have suggested that the OsDHODH1 gene (in rice) [98,99] or AtPYD1 gene
(in Arabidopsis) [100,101] could play a key role in the adaptive response of plants towards drought and
salinity tolerance, and nitro-oxidative stress.

4.3. AtPYD1 Positively Regulates Plant Basal Defense against Pst DC3000

In the perspective of further investigating the role of the DHODH encoding gene in the adaptive
response mechanisms of plants towards bacterial pathogen resistance, we inoculated the Arabidopsis
loss of function mutant, atpyd1-2, which lacks the AtPYD1 gene (Figure 3a,b), orthologue of the rice
OsDHODH1, with Pseudomonas syringae pv. tomato (Pst) DC3000 vir strain. The phenotypic response
of atpyd1-2 after nine days revealed a highly susceptible response (Figure 3c). This would imply that
AtPYD1 could be involved in the positive regulation of plants’ basal defense mechanisms towards
bacterial pathogen resistance. Under Pst DC3000 vir infection, we were primarily expecting to see an
enhanced resistant phenotypic response of atpyd1-2, rather than a susceptible response. It was unusual
for us to have this situation regarding the fundamentals of the metabolism underlying plants’ adaptive
responses to abiotic and biotic stress conditions involving hormonal signaling such as abscisic acid
(ABA) and SA, which are known to be antagonistic.

Generally, upon infection by a virulent pathogen, pathogen, or microbe-associated molecular
patterns (PAMPs) activate the basal defense mechanisms [45]. Gram-negative bacterial pathogens,
such as Pseudomonas syringae, have the capacity to deliver effector proteins to plant cells, which will
interfere with PAMP-triggered resistance in order to promote the virulence of the pathogen. In many
cases, some of the effectors are particularly recognized by plant resistance proteins and activate strong
effector-triggered resistance [45]. Under the same conditions, both PAMP and effector-triggered
resistance are shown to be associated with a wide transcriptional reprogramming of plant host genes.
The molecular mechanisms underlying plants’ response to bacterial pathogen infection involve a
broad range of pathogenesis-related (PR) genes and well-organized signaling networks. Among them,
PR1 and PR2 are salicylic acid (SA)-dependent defense signals, also considered as important markers
for plants’ response to pathogens [102–104]. The expression of PR genes is induced in response to a
variety of pathogens [105].

Our data indicate that AtPYD1 expression was upregulated (by about a 2-fold change) over
time in Col-0 after Pst DC3000 inoculation (Figure 3a). Meanwhile, its counterpart OsDHODH1 was
upregulated by about a 17.3-fold change soon after Xoo K3 inoculation. Additionally, the transcriptional
level of the key PR genes (AtPR1 and AtPR2) was highly significantly induced in Col-0, with AtPR2



Agriculture 2020, 10, 573 14 of 19

showing the highest transcriptional response. Furthermore, when expressed in atpyd1-2 loss of function
mutant, the transcript level of AtPR2 significantly decreased compared the one recorded in Col-0,
while AtPR1 showed a similar expression pattern in Col-0 and atpyd1-2. Moreover, the exponential
upregulation of the AtPR1 gene (Figure 3a) indicated that the latter would prevail over the AtPR2
gene in the adaptive response mechanisms towards Pst DC3000 bacterial resistance in Arabidopsis.
In the same way, the significant downregulation of AtPR1 and AtPR2 in the atpyd1-2 knockout plants
exposed to the virulent Pst DC3000 compared to Col-0 WT suggest a possible existing transcriptional
interaction with the AtPYD1 gene.

5. Conclusions

The adaptive response mechanisms of plants towards a pathogen attack include the activation of
diverse signaling cascades and pathogenesis-related genes, as part of the plant-triggered immunity
system mechanism, and their interplay determines the level of resistance the plant will provide to the
pathogen. In the present study, nine rice cultivars were inoculated with Xoo K3 race at the tillering
stage. The initial bacterial leaf blight (BLB) disease symptoms appeared on the cut edge of inoculated
leaves 4 dpi. The phenotypic responses of rice cultivars showed that at 10 dpi almost all rice cultivars
showed a resistant response to Xoo K3 infection. However, a prolonged exposure to the Xoo inoculum
revealed that some of the resistant cultivars started showing susceptibility to the BLB disease, whereas
some showed a durable resistance 21 dpi, such as Tunnae, Sipi, and NERICA L14. Moreover, Tunnae
(the most resistant rice cultivar) and IRAT112 (highly susceptible rice cultivar) significantly upregulated
and downregulated the OsDHODH1 gene, respectively. Therefore, due to the recorded transcriptional
levels of OsDHODH1 or AtPYD1, the pathogenesis-related genes in rice and Arabidopsis, and the
enhanced susceptibility of the Arabidopsis pyd1-2 knockout line in response to Pst DC3000 virulent
infection, this study suggests that OsDHODH1 or AtPYD1 could be involved in the basal adaptive
response mechanisms towards bacterial infection resistance in plants.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0472/10/11/573/s1,
Figure S1: BLB disease phenotype on different rice cultivars 21 dpi, Figure S2: BLB daily lesion length on 9 rice
cultivars, Figure S3: Alignment of Xa21 sequences cloned from indica and japonica cultivars against the standard
cultivar Shuhui498, Figure S4: Genotyping of the Arabidopsis atpyd1-2 knockout to identify homozygous mutant
plants, Figure S5: Illustration of the inoculation method by leaf cutting.

Author Contributions: Conceptualization, methodology and validation, B.-W.Y., A.H. and K.-M.K.; formal
analysis, investigation and data curation, N.K.R., H.-H.K. and N.C.A.; writing—original draft preparation, N.K.R.;
writing—review and editing, Q.M.I.; visualization and supervision, B.-W.Y. and K.-M.K.; funding acquisition,
B.-W.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a grant from the Next-Generation BioGreen 21 Program (SSAC, grant no.
PJ01342501), Rural Development Administration, Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Khush, G.S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 2005, 59, 1–6. [CrossRef]
[PubMed]

2. Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.;
Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818.
[CrossRef] [PubMed]

3. Pradhan, S.K.; Nayak, D.K.; Mohanty, S.; Behera, L.; Barik, S.R.; Pandit, E.; Lenka, S.; Anandan, A. Pyramiding
of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna.
Rice 2015, 8, 19. [CrossRef] [PubMed]

4. Lebailly, P.; Michel, B.; M’Vubu, N.; Roger, A. Quel Développement Agricole pour la RDC? Conjonctures Congolaises
2014: Politiques, Territoires et Ressources Naturelles: Changements et Continuités; Éditions L’Harmattan: Paris,
France, 2015; pp. 45–64.

http://www.mdpi.com/2077-0472/10/11/573/s1
http://dx.doi.org/10.1007/s11103-005-2159-5
http://www.ncbi.nlm.nih.gov/pubmed/16217597
http://dx.doi.org/10.1126/science.1185383
http://www.ncbi.nlm.nih.gov/pubmed/20110467
http://dx.doi.org/10.1186/s12284-015-0051-8
http://www.ncbi.nlm.nih.gov/pubmed/26054243


Agriculture 2020, 10, 573 15 of 19

5. Seck, P.A.; Diagne, A.; Mohanty, S.; Wopereis, M.C. Crops that feed the world 7: Rice. Food Secur. 2012,
4, 7–24. [CrossRef]

6. Serraj, R.; McNally, K.L.; Slamet-Loedin, I.; Kohli, A.; Haefele, S.M.; Atlin, G.; Kumar, A. Drought resistance
improvement in rice: An integrated genetic and resource management strategy. Plant Prod. Sci. 2011, 14, 1–14.
[CrossRef]

7. Gregorio, G.; Senadhira, D.; Mendoza, R.; Manigbas, N.; Roxas, J.; Guerta, C. Progress in breeding for salinity
tolerance and associated abiotic stresses in rice. Field Crops Res. 2002, 76, 91–101. [CrossRef]

8. Ou, S.H. Rice Diseases; Commonwealth Mycology Institute: Kew, UK, 1985.
9. Zhang, H.T.; Wang, S.P. Rice versus Xanthomonas oryzae pv oryzae: A unique pathosystem. Curr. Opin.

Plant Biol. 2013, 16, 188–195. [CrossRef]
10. He, Y.W.; Wu, J.E.; Cha, J.S.; Zhang, L.H. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae

produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol. 2010, 10.
[CrossRef]

11. Niño-Liu, D.O.; Ronald, P.C.; Bogdanove, A.J. Xanthomonas oryzae pathovars: Model pathogens of a model
crop. Mol. Plant Pathol. 2006, 7, 303–324. [CrossRef]

12. Mubassir, M.; Nasiruddin, K.M.; Shahin, N.H.; Begum, S.N.; Sultana, A.; Rashid, A.B. Measurement of
Phenotypic Variation for Control and Bacterial Leaf Blight Inoculated Rice Lines and Varieties. Am. J.
Biosci. Bioeng. 2016, 4, 59–64. [CrossRef]

13. Djedatin, G.; Ndjiondjop, M.-N.; Sanni, A.; Lorieux, M.; Verdier, V.; Ghesquiere, A. Identification of novel
major and minor QTLs associated with Xanthomonas oryzae pv. oryzae (African strains) resistance in rice
(Oryza sativa L.). Rice 2016, 9, 18. [CrossRef] [PubMed]

14. Sabar, M.; Bibi, T.; Farooq, H.U.; Haider, Z.; Naseem, I.; Mahmood, A.; Akhter, M. Molecular screening of rice
(Oryza sativa L.) germplasm for Xa4, xa5 and Xa21 bacterial leaf blight (BLB) resistant genes using linked
marker approach. Afr. J. Biotechnol. 2016, 15, 2317–2324.

15. Jeung, J.; Heu, S.; Shin, M.; Vera Cruz, C.; Jena, K. Dynamics of Xanthomonas oryzae pv. oryzae populations
in Korea and their relationship to known bacterial blight resistance genes. Phytopathology 2006, 96, 867–875.
[CrossRef] [PubMed]

16. Mew, T.; Alvarez, A.; Leach, J.; Swings, J. Focus on bacterial blight of rice. Plant Dis. 1993, 77, 5–12. [CrossRef]
17. Yu, C.; Chen, H.; Tian, F.; Leach, J.E.; He, C. Differentially-expressed genes in rice infected by Xanthomonas

oryzae pv. oryzae relative to a flagellin-deficient mutant reveal potential functions of flagellin in host–pathogen
interactions. Rice 2014, 7, 20. [CrossRef] [PubMed]

18. Song, W.-Y.; Wang, G.-L.; Chen, L.-L.; Kim, H.-S. A receptor kinase-like protein encoded by the rice disease
resistance gene, Xa21. Science 1995, 270, 1804. [CrossRef]

19. Martin, G.B.; Bogdanove, A.J.; Sessa, G. Understanding the functions of plant disease resistance proteins.
Annu. Rev. Plant Biol. 2003, 54, 23–61. [CrossRef]

20. Wu, X.; Li, Y.; Zou, L.; Chen, G. Gene-for-gene relationships between rice and diverse avrBs3/pthA avirulence
genes in Xanthomonas oryzae pv. oryzae. Plant Pathol. 2007, 56, 26–34. [CrossRef]

21. Chen, G.; Zou, L.; Wang, X.; Xiang, Y.; Wang, J.-s. Molecular genetics of pathogenicity determinants of
Xanthomonas oryzae pv. oryzae. Sci. Agric. Sin. 2004, 9, 1301–1307.

22. John, V.; Dobson, R.; Alluri, K.; Zan, K.; Efron, Y.; Wasano, K.; Thottapilly, G.; Gibbons, J.; Rossel, H. Rice:
Pathology, virology. Annu. Report Int. Inst. Trop. Agric. 1983 1984, 1984, 19–22.

23. Xu, J.; Audenaert, K.; Hofte, M.; De Vleesschauwer, D. Abscisic acid promotes susceptibility to the rice leaf
blight pathogen Xanthomonas oryzae pv oryzae by suppressing salicylic acid-mediated defenses. PLoS ONE
2013, 8, e67413.

24. Subramoni, S.; Sonti, R.V. Growth deficiency of a Xanthomonas oryzae pv. oryzae fur mutant in rice leaves is
rescued by ascorbic acid supplementation. Mol. Plant-Microbe Interact. 2005, 18, 644–651. [CrossRef] [PubMed]

25. Khan, J.A.; Afroz, S.; Arshad, H.M.I.; Sarwar, N.; Anwar, H.S.; Saleem, K.; Babar, M.M.; Jamil, F.F. Biochemical
basis of resistance in rice against Bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae.
Adv. Life Sci. 2014, 1, 181–190.

26. Yang, B.; Bogdanove, A. Inoculation and virulence assay for bacterial blight and bacterial leaf streak of rice.
Rice Protoc. 2013, 249–255.

27. Kim, S.-I.; Kwak, J.S.; Song, J.T.; Seo, H.S. Long-term effect of niclosamide on inhibition of bacterial leaf blight
in rice. J. Plant Prot. Res. 2016, 56, 323–327. [CrossRef]

http://dx.doi.org/10.1007/s12571-012-0168-1
http://dx.doi.org/10.1626/pps.14.1
http://dx.doi.org/10.1016/S0378-4290(02)00031-X
http://dx.doi.org/10.1016/j.pbi.2013.02.008
http://dx.doi.org/10.1186/1471-2180-10-187
http://dx.doi.org/10.1111/j.1364-3703.2006.00344.x
http://dx.doi.org/10.11648/j.bio.20160406.11
http://dx.doi.org/10.1186/s12284-016-0090-9
http://www.ncbi.nlm.nih.gov/pubmed/27107993
http://dx.doi.org/10.1094/PHYTO-96-0867
http://www.ncbi.nlm.nih.gov/pubmed/18943752
http://dx.doi.org/10.1094/PD-77-0005
http://dx.doi.org/10.1186/s12284-014-0020-7
http://www.ncbi.nlm.nih.gov/pubmed/25187853
http://dx.doi.org/10.1126/science.270.5243.1804
http://dx.doi.org/10.1146/annurev.arplant.54.031902.135035
http://dx.doi.org/10.1111/j.1365-3059.2006.01495.x
http://dx.doi.org/10.1094/MPMI-18-0644
http://www.ncbi.nlm.nih.gov/pubmed/16042010
http://dx.doi.org/10.1515/jppr-2016-0051


Agriculture 2020, 10, 573 16 of 19

28. Mew, T.; Mew, I.-P.; Huang, J. Scanning electron microscopy of virulent and avirulent strains of Xanthomonas
campestris pv. oryzae on rice leaves. Phytopathology 1984, 74, 635–641. [CrossRef]

29. Zhou, L.; Huang, T.-W.; Wang, J.-Y.; Sun, S.; Chen, G.; Poplawsky, A.; He, Y.-W. The rice bacterial pathogen
Xanthomonas oryzae pv. oryzae produces 3-hydroxybenzoic acid and 4-hydroxybenzoic acid via XanB2 for use
in xanthomonadin, ubiquinone, and exopolysaccharide biosynthesis. Mol. Plant-Microbe Interact. 2013, 26,
1239–1248. [CrossRef]

30. Rajagopal, L.; Sundari, C.S.; Balasubramanian, D.; Sonti, R.V. The bacterial pigment xanthomonadin offers
protection against photodamage. FEBS Lett. 1997, 415, 125–128. [CrossRef]

31. Lee, K.; Rasabandith, S.; Angeles, E.; Khush, G. Inheritance of resistance to bacterial blight in 21 cultivars of
rice. Phytopathology 2003, 93, 147–152. [CrossRef]

32. Rao, K.K.; Lakshminarasu, M.; Jena, K. DNA markers and marker-assisted breeding for durable resistance to
bacterial blight disease in rice. Biotechnol. Adv. 2002, 20, 33–47.

33. Yang, Z.; Sun, X.; Wang, S.; Zhang, Q. Genetic and physical mapping of a new gene for bacterial blight
resistance in rice. Theor. Appl. Genet. 2003, 106, 1467–1472. [CrossRef] [PubMed]

34. He, Q.; Li, D.; Zhu, Y.; Tan, M.; Zhang, D.; Lin, X. Fine mapping of Xa2, a bacterial blight resistance gene in
rice. Mol. Breed. 2006, 17, 1–6. [CrossRef]

35. Gu, K.; Yang, B.; Tian, D.; Wu, L. R gene expression induced by a type-III effector triggers disease resistance
in rice. Nature 2005, 435, 1122. [CrossRef] [PubMed]

36. Iyer, A.S.; McCouch, S.R. The rice bacterial blight resistance gene xa5 encodes a novel form of disease
resistance. Mol. Plant-Microbe Interact. 2004, 17, 1348–1354. [CrossRef] [PubMed]

37. Porter, B.W.; Chittoor, J.; Yano, M.; Sasaki, T.; White, F. Development and mapping of markers linked to the
rice bacterial blight resistance gene. Crop Sci. 2003, 43, 1484–1492. [CrossRef]

38. Sanchez, A.; Ilag, L.; Yang, D.; Brar, D.; Ausubel, F.; Khush, G.; Yano, M.; Sasaki, T.; Li, Z.; Huang, N. Genetic
and physical mapping of xa13, a recessive bacterial blight resistance gene in rice. TAG Theor. Appl. Genet.
1999, 98, 1022–1028. [CrossRef]

39. Sun, X.; Yang, Z.; Wang, S.; Zhang, Q. Identification of a 47-kb DNA fragment containing Xa4, a locus for
bacterial blight resistance in rice. Theor. Appl. Genet. 2003, 106, 683–687. [CrossRef]

40. Lee, S.; Choi, S.; Han, S.; Lee, D.; Lee, B. Distribution of Xanthomonas oryzae pv. oryzae strains virulent to
Xa21 in Korea. Phytopathology 1999, 89, 928–933. [CrossRef]

41. Singh, S.; Sidhu, J.; Huang, N.; Vikal, Y.; Li, Z.; Brar, D.; Dhaliwal, H.; Khush, G. Pyramiding three bacterial
blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106.
Theor. Appl. Genet. 2001, 102, 1011–1015. [CrossRef]

42. Dilla-Ermita, C.J.; Tandayu, E.; Juanillas, V.M.; Detras, J.; Lozada, D.N.; Dwiyanti, M.S.; Cruz, C.V.;
Mbanjo, E.G.N.; Ardales, E.; Diaz, M.G. Genome-wide Association Analysis Tracks Bacterial Leaf Blight
Resistance Loci In Rice Diverse Germplasm. Rice 2017, 10, 8. [CrossRef]

43. Lee, D.; Seo, J.; Choi, J.; Park, K.; Bae, S. Pathotypes of Xanthomonas campestris pv. oryzae in Honam District,
Korea. Korean J. Plant Pathol. 1986, 2, 102–106.

44. Noh, T.; Lee, D.; Kang, M.; Shin, M.; Na, S. Identification of new race of Xanthomonas oryzae pv. oryzae
(Xoo) in Korea. Phytopathology 2003, 93, S66.

45. Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323. [CrossRef] [PubMed]
46. Dodds, P.N.; Rathjen, J.P. Plant immunity: Towards an integrated view of plant-pathogen interactions.

Nat. Rev. Genet. 2010, 11, 539. [CrossRef]
47. Bari, R.; Jones, J.D. Role of plant hormones in plant defence responses. Plant Mol. Biol. 2009, 69, 473–488.

[CrossRef]
48. Pieterse, C.M.; Van der Does, D.; Zamioudis, C.; Leon-Reyes, A.; Van Wees, S.C. Hormonal modulation of

plant immunity. Annu. Rev. Cell Dev. Biol. 2012, 28, 489–521. [CrossRef]
49. Xu, J.; Audenaert, K.; Hofte, M.; De Vleesschauwer, D. Correction: Abscisic Acid Promotes Susceptibility

to the Rice Leaf Blight Pathogen Xanthomonas oryzae pv oryzae by Suppressing Salicylic Acid-Mediated
Defenses. PLoS ONE 2013, 8. [CrossRef]

50. Robert-Seilaniantz, A.; Grant, M.; Jones, J.D. Hormone crosstalk in plant disease and defense: More than just
jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 2011, 49, 317–343. [CrossRef]

http://dx.doi.org/10.1094/Phyto-74-635
http://dx.doi.org/10.1094/MPMI-04-13-0112-R
http://dx.doi.org/10.1016/S0014-5793(97)01109-5
http://dx.doi.org/10.1094/PHYTO.2003.93.2.147
http://dx.doi.org/10.1007/s00122-003-1205-4
http://www.ncbi.nlm.nih.gov/pubmed/12750790
http://dx.doi.org/10.1007/s11032-005-8698-2
http://dx.doi.org/10.1038/nature03630
http://www.ncbi.nlm.nih.gov/pubmed/15973413
http://dx.doi.org/10.1094/MPMI.2004.17.12.1348
http://www.ncbi.nlm.nih.gov/pubmed/15597740
http://dx.doi.org/10.2135/cropsci2003.1484
http://dx.doi.org/10.1007/s001220051163
http://dx.doi.org/10.1007/s00122-002-1117-8
http://dx.doi.org/10.1094/PHYTO.1999.89.10.928
http://dx.doi.org/10.1007/s001220000495
http://dx.doi.org/10.1186/s12284-017-0147-4
http://dx.doi.org/10.1038/nature05286
http://www.ncbi.nlm.nih.gov/pubmed/17108957
http://dx.doi.org/10.1038/nrg2812
http://dx.doi.org/10.1007/s11103-008-9435-0
http://dx.doi.org/10.1146/annurev-cellbio-092910-154055
http://dx.doi.org/10.1371/annotation/659105c2-8364-4cc7-94e7-66620370637a
http://dx.doi.org/10.1146/annurev-phyto-073009-114447


Agriculture 2020, 10, 573 17 of 19

51. De Vleesschauwer, D.; Van Buyten, E.; Satoh, K.; Balidion, J.; Mauleon, R.; Choi, I.-R.; Vera-Cruz, C.;
Kikuchi, S.; Höfte, M. Brassinosteroids antagonize gibberellin-and salicylate-mediated root immunity in rice.
Plant Physiol. 2012, 158, 1833–1846. [CrossRef] [PubMed]

52. Ding, X.; Cao, Y.; Huang, L.; Zhao, J.; Xu, C.; Li, X.; Wang, S. Activation of the indole-3-acetic acid–amido
synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal
immunity in rice. Plant Cell 2008, 20, 228–240. [CrossRef]

53. Fang, J.; Uchiumi, T.; Yagi, M.; Matsumoto, S.; Amamoto, R.; Takazaki, S.; Yamaza, H.; Nonaka, K.; Kang, D.
Dihydro-orotate dehydrogenase is physically associated with the respiratory complex and its loss leads to
mitochondrial dysfunction. Biosci. Rep. 2013, 33, e00021. [CrossRef]

54. Kafer, C.; Thornburg, R. Pyrimidine metabolism in plants. Paths Pyrimidines 1999, 15, 14–24.
55. Boldt, R.; Zrenner, R. Purine and pyrimidine biosynthesis in higher plants. Physiol. Plant. 2003, 117, 297–304.

[CrossRef] [PubMed]
56. Zrenner, R.; Stitt, M.; Sonnewald, U.; Boldt, R. Pyrimidine and purine biosynthesis and degradation in plants.

Annu. Rev. Plant Biol. 2006, 57, 805–836. [CrossRef] [PubMed]
57. DiMauro, S.; Schon, E.A. Mitochondrial disorders in the nervous system. Annu. Rev. Neurosci. 2008, 31,

91–123. [CrossRef]
58. Frenzel, M.; Rommelspacher, H.; Sugawa, M.D.; Dencher, N.A. Ageing alters the supramolecular architecture

of OxPhos complexes in rat brain cortex. Exp. Gerontol. 2010, 45, 563–572. [CrossRef]
59. Wallace, D.C. Mitochondrial DNA mutations in disease and aging. Environ. Mol. Mutagen. 2010, 51, 440–450.

[CrossRef]
60. Khutornenko, A.; Dalina, A.; Chernyak, B.; Chumakov, P.; Evstafieva, A. The role of dihydroorotate

dehydrogenase in apoptosis induction in response to inhibition of the mitochondrial respiratory chain
complex III. Acta Nat. 2014, 6, 69–75. [CrossRef]

61. Somado, E.; Guei, R.; Keya, S. NERICA: The New Rice for Africa—A Compendium; Africa Rice Center (WARDA):
Cotonou, Benin, 2008; pp. 10–14.

62. Fred, A.K.; Kiswara, G.; Yi, G.; Kim, K.-M. Screening rice cultivars for resistance to bacterial leaf blight.
J. Microbiol. Biotechnol. 2016, 26, 938–945. [CrossRef]

63. Mateso, B.; Kasongo, K.; Mbuya, K.; Anzolo, N.; Mbuluku, E. Lioto, a short-duration rice variety suitable for
Northern Zaire. Int. Rice Res. Notes 1993, 18, 19–20.

64. Turner, H.; Black, R. Rice leaf scald: Pathogen biology and diversity. In Major Fungal Diseases of Rice; Springer:
New York, NY, USA, 2001; pp. 307–319.

65. Habarurema, I.; Asea, G.; Lamo, J.; Gibson, P.; Edema, R.; Séré, Y.; Onasanya, R. Genetic analysis of resistance
to rice bacterial blight in Uganda. Afr. Crop Sci. J. 2012, 20, 105–112.

66. Lamo, J.; Tongoona, P.; Sie, M.; Semon, M.; Onaga, G.; Okori, P. Upland Rice Breeding in Uganda: Initiatives
and Progress. In Advances in International Rice Research; InTech: London, UK, 2017.

67. Ji, Z.-J.; Yang, S.-D.; Zeng, Y.-X.; Liang, Y.; Yang, C.-D.; Qian, Q. Pyramiding blast, bacterial blight and brown
planthopper resistance genes in rice restorer lines. J. Integr. Agric. 2016, 15, 1432–1440. [CrossRef]

68. Hajira, S.; Sundaram, R.; Laha, G.; Yugander, A.; Balachandran, S.; Viraktamath, B.; Sujatha, K.;
Balachiranjeevi, C.; Pranathi, K.; Anila, M. A Single-Tube, Functional Marker-Based Multiplex PCR Assay
for Simultaneous Detection of Major Bacterial Blight Resistance Genes Xa21, xa13 and xa5 in Rice. Rice Sci.
2016, 23, 144–151. [CrossRef]

69. Singh, A.K.; Dharmraj, E.; Nayak, R.; Singh, P.K.; Singh, N.K. Identification of bacterial leaf blight resistance
genes in wild rice of eastern India. Turk. J. Bot. 2015, 39, 1060–1066. [CrossRef]

70. Keb-Llanes, M.; González, G.; Chi-Manzanero, B.; Infante, D. A rapid and simple method for small-scale
DNA extraction in Agavaceae and other tropical plants. Plant Mol. Biol. Rep. 2002, 20, 299–300. [CrossRef]

71. Froger, A.; Hall, J.E. Transformation of plasmid DNA into E. coli using the heat shock method. JoVE J.
Vis. Exp. 2007, 6, e253. [CrossRef]

72. Wang, G.-L.; Song, W.-Y.; Ruan, D.-L.; Sideris, S.; Ronald, P.C. The cloned gene, Xa21, confers resistance to
multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol. Plant-Microbe Interact. MPMI
1996, 9, 850–855. [CrossRef]

73. Yin, Z.C.; Gu, K.Y.; Tian, D.S. Molecular Interaction between XA10 and AVRXA10. U.S. Patent 9,650,647,
16 May 2017.

http://dx.doi.org/10.1104/pp.112.193672
http://www.ncbi.nlm.nih.gov/pubmed/22353574
http://dx.doi.org/10.1105/tpc.107.055657
http://dx.doi.org/10.1042/BSR20120097
http://dx.doi.org/10.1034/j.1399-3054.2003.00030.x
http://www.ncbi.nlm.nih.gov/pubmed/12654029
http://dx.doi.org/10.1146/annurev.arplant.57.032905.105421
http://www.ncbi.nlm.nih.gov/pubmed/16669783
http://dx.doi.org/10.1146/annurev.neuro.30.051606.094302
http://dx.doi.org/10.1016/j.exger.2010.02.003
http://dx.doi.org/10.1002/em.20586
http://dx.doi.org/10.32607/20758251-2014-6-1-69-75
http://dx.doi.org/10.4014/jmb.1510.10016
http://dx.doi.org/10.1016/S2095-3119(15)61165-0
http://dx.doi.org/10.1016/j.rsci.2015.11.004
http://dx.doi.org/10.3906/bot-1504-8
http://dx.doi.org/10.1007/BF02782465
http://dx.doi.org/10.3791/253
http://dx.doi.org/10.1094/MPMI-9-0850


Agriculture 2020, 10, 573 18 of 19

74. Kauffman, H. An improved technique for evaluation of resistance of rice varieties to Xanthomonas oryzae.
Plant Dis. Rep. 1973, 57, 537–541.

75. Zeng, X.; Tian, D.; Gu, K.; Zhou, Z.; Yang, X.; Luo, Y.; White, F.F.; Yin, Z. Genetic engineering of the Xa10
promoter for broad-spectrum and durable resistance to Xanthomonas oryzae pv. oryzae. Plant Biotechnol. J.
2015, 13, 993–1001. [CrossRef]

76. Busungu, C.; Taura, S.; Sakagami, J.-I.; Ichitani, K. Identification and linkage analysis of a new rice bacterial
blight resistance gene from XM14, a mutant line from IR24. Breed. Sci. 2016, 66, 636–645. [CrossRef]

77. Chaudhary, R. Internationalization of elite germplasm for farmers: Collaborative mechanisms to enhance
evaluation of rice genetic resources. Charact. Eval. 1996, 26, 1–27.

78. International Rice Research Institute. Standard Evaluation System (SES) for Rice; IRRI: Manila, Philippines, 2013.
79. Khan, J.A.; Arshad, H.M.I.; Jamil, F.F.; Hasnain, S. Evaluation of rice genotypes against bacterial leaf blight

(BLB) disease. Pak. J. Phytopathol. 2009, 21, 26–30.
80. Feechan, A.; Kwon, E.; Yun, B.-W.; Wang, Y.; Pallas, J.A.; Loake, G.J. A central role for S-nitrosothiols in plant

disease resistance. Proc. Natl. Acad. Sci. USA 2005, 102, 8054–8059. [CrossRef] [PubMed]
81. Vandenabeele, S.; Vanderauwera, S.; Vuylsteke, M.; Rombauts, S.; Langebartels, C.; Seidlitz, H.K.; Zabeau, M.;

Van Montagu, M.; Inze, D.; Van Breusegem, F. Catalase deficiency drastically affects gene expression induced
by high light in Arabidopsis thaliana. Plant J. 2004, 39, 45–58. [CrossRef] [PubMed]

82. Whalen, M.C.; Innes, R.W.; Bent, A.F.; Staskawicz, B.J. Identification of Pseudomonas syringae pathogens of
Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 1991,
3, 49–59. [CrossRef]

83. Hockin, N.L.; Mock, T.; Mulholland, F.; Kopriva, S.; Malin, G. The response of diatom central carbon
metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol. 2012,
158, 299–312. [CrossRef]

84. Imran, Q.M.; Hussain, A.; Lee, S.-U.; Mun, B.-G.; Falak, N.; Loake, G.J.; Yun, B.-W. Transcriptome profile
of NO-induced Arabidopsis transcription factor genes suggests their putative regulatory role in multiple
biological processes. Sci. Rep. UK 2018, 8, 771. [CrossRef]

85. León, J.; Rojo, E.; Sánchez-Serrano, J.J. Wound signalling in plants. J. Exp. Bot. 2001, 52, 1–9.
86. Wang, W.; Barnaby, J.Y.; Tada, Y.; Li, H.; Tör, M.; Caldelari, D.; Lee, D.-u.; Fu, X.-D.; Dong, X. Timing of plant

immune responses by a central circadian regulator. Nature 2011, 470, 110. [CrossRef]
87. Hua, J. Modulation of plant immunity by light, circadian rhythm, and temperature. Curr. Opin. Plant Biol.

2013, 16, 406–413. [CrossRef]
88. Mun, B.-G.; Lee, S.-U.; Hussain, A.; Kim, H.-H.; Rolly, N.K.; Jung, K.-H.; Yun, B.-W. S-nitrosocysteine-

responsive genes modulate diverse regulatory pathways in Oryza sativa: A transcriptome profiling study.
Funct. Plant Biol. 2018, 45, 630–644. [CrossRef] [PubMed]

89. Revalska, M.; Vassileva, V.; Zechirov, G.; Iantcheva, A. Is the auxin influx carrier LAX3 essential for plant
growth and development in the model plants Medicago truncatula, Lotus japonicus and Arabidopsis
thaliana? Biotechnol. Biotechnol. Equip. 2015, 29, 786–797. [CrossRef]

90. Pha, N.T.; Lang, N.T. Marker assisted selection in rice breeding for bacterial leaf blight. Omon Rice 2004, 12,
19–26.

91. Ramalingam, J.; Basharat, H.; Zhang, G. STS and microsatellite marker-assisted selection for bacterial blight
resistance and waxy genes in rice, Oryza sativa L. Euphytica 2002, 127, 255–260. [CrossRef]

92. Akhtar, M.A.; Abbasi, F.M.; Ahmad, H.; Shahzad, M.; Shah, M.A.; Shah, A.H. Evaluation of rice germplasm
against Xanthomonas oryzae causing bacterial leaf blight. Pak. J. Bot. 2011, 43, 3021–3023.

93. Khoshkdaman, M.; Ebadi, A.A.; Majidi-Shilsar, F.; Dariush, S. Preliminary evaluation of resistance genes in
rice against bacterial leaf blight in Guilan Province—Iran. Agric. Sci. 2014, 5, 94. [CrossRef]

94. Hasan Naqvi, S.A.; Perveen, R.; Chohan, S. Evaluation of Virulence of Xanthomonas oryzae pv. oryzae
against Rice Genotypes. Int. J. Agric. Biol. 2015, 17, 1186–1192. [CrossRef]

95. Singh, P.; Singh, R.P.; Singh, H.; Singh, O.; Samantray, S.; Singh, M.; Jaiswal, H. Inheritance of resistance
in indica rice cultivar HUR 4-3 against bacterial leaf blight (Xanthomonas oryzae pv. oryzae). Int. J. Agric.
Environ. Biotechnol. 2014, 7, 777. [CrossRef]

96. Sykes, D.B.; Kfoury, Y.S.; Mercier, F.E.; Wawer, M.J.; Law, J.M.; Haynes, M.K.; Lewis, T.A.; Schajnovitz, A.;
Jain, E.; Lee, D. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute
myeloid leukemia. Cell 2016, 167, 171–186.e115. [CrossRef]

http://dx.doi.org/10.1111/pbi.12342
http://dx.doi.org/10.1270/jsbbs.16062
http://dx.doi.org/10.1073/pnas.0501456102
http://www.ncbi.nlm.nih.gov/pubmed/15911759
http://dx.doi.org/10.1111/j.1365-313X.2004.02105.x
http://www.ncbi.nlm.nih.gov/pubmed/15200641
http://dx.doi.org/10.1105/tpc.3.1.49
http://dx.doi.org/10.1104/pp.111.184333
http://dx.doi.org/10.1038/s41598-017-18850-5
http://dx.doi.org/10.1038/nature09766
http://dx.doi.org/10.1016/j.pbi.2013.06.017
http://dx.doi.org/10.1071/FP17249
http://www.ncbi.nlm.nih.gov/pubmed/32290965
http://dx.doi.org/10.1080/13102818.2015.1031698
http://dx.doi.org/10.1023/A:1020267000418
http://dx.doi.org/10.4236/as.2014.52012
http://dx.doi.org/10.17957/IJAB/15.0054
http://dx.doi.org/10.5958/2230-732X.2014.01387.4
http://dx.doi.org/10.1016/j.cell.2016.08.057


Agriculture 2020, 10, 573 19 of 19

97. Baldwin, J.; Michnoff, C.H.; Malmquist, N.A.; White, J.; Roth, M.G.; Rathod, P.K.; Phillips, M.A.
High-throughput screening for potent and selective inhibitors of Plasmodium falciparum dihydroorotate
dehydrogenase. J. Biol. Chem. 2005, 280, 21847–21853. [CrossRef]

98. Liu, W.Y.; Wang, M.M.; Huang, J.; Tang, H.J.; Lan, H.X.; Zhang, H.S. The OsDHODH1 gene is involved in
salt and drought tolerance in rice. J. Integr. Plant Biol. 2009, 51, 825–833. [CrossRef] [PubMed]

99. Rolly, N.K.; Lee, S.-U.; Imran, Q.M.; Hussain, A.; Mun, B.-G.; Kim, K.-M.; Yun, B.-W. Nitrosative stress-mediated
inhibition of OsDHODH1 gene expression suggests roots growth reduction in rice (Oryza sativa L.). 3 Biotech
2019, 9, 273. [CrossRef] [PubMed]

100. Rolly, N.K.; Imran, Q.M.; Shahid, M.; Imran, M.; Khan, M.; Lee, S.-U.; Hussain, A.; Lee, I.-J.; Yun, B.-W.
Drought-induced AtbZIP62 transcription factor regulates drought stress response in Arabidopsis.
Plant Physiol. Biochem. 2020, 156, 384–395.

101. Rolly, N.K.; Imran, Q.M.; Lee, I.-J.; Yun, B.-W. Salinity Stress-Mediated Suppression of Expression of Salt
Overly Sensitive Signaling Pathway Genes Suggests Negative Regulation by AtbZIP62 Transcription Factor
in Arabidopsis thaliana. Int. J. Mol. Sci. 2020, 21, 1726. [CrossRef] [PubMed]

102. Rushton, P.J.; Torres, J.T.; Parniske, M.; Wernert, P.; Hahlbrock, K.; Somssich, I. Interaction of elicitor-induced
DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J. 1996,
15, 5690–5700. [CrossRef]

103. Willmott, R.L.; Rushton, P.J.; Hooley, R.; Lazarus, C.M. DNase1 footprints suggest the involvement of at least
three types of transcription factors in the regulation of α-Amy2/A by gibberellin. Plant Mol. Biol. 1998, 38,
817–825. [CrossRef]

104. Turck, F.; Zhou, A.; Somssich, I.E. Stimulus-dependent, promoter-specific binding of transcription factor
WRKY1 to its native promoter and the defense-related gene PcPR1-1 in parsley. Plant Cell 2004, 16, 2573–2585.
[CrossRef]

105. Xing, D.-H.; Lai, Z.-B.; Zheng, Z.-Y.; Vinod, K.; Fan, B.-F.; Chen, Z.-X. Stress-and pathogen-induced
Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol. Plant 2008, 1,
459–470. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1074/jbc.M501100200
http://dx.doi.org/10.1111/j.1744-7909.2009.00853.x
http://www.ncbi.nlm.nih.gov/pubmed/19723241
http://dx.doi.org/10.1007/s13205-019-1800-y
http://www.ncbi.nlm.nih.gov/pubmed/31245237
http://dx.doi.org/10.3390/ijms21051726
http://www.ncbi.nlm.nih.gov/pubmed/32138325
http://dx.doi.org/10.1002/j.1460-2075.1996.tb00953.x
http://dx.doi.org/10.1023/A:1006084104041
http://dx.doi.org/10.1105/tpc.104.024810
http://dx.doi.org/10.1093/mp/ssn020
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Rice Materials and Growth Conditions 
	Xa R Genes Tagged with DNA Markers 
	Genomic DNA Extraction and Genotyping of Rice Plants 
	Cloning and Sequencing of Xa21 
	Xanthomonas Oryzae pv. Oryzae Growth and Inoculation into Rice Plants 
	Lesion Length (LL) Measurement and Disease Scoring 
	Arabidopsis Materials, Growth Conditions, and Genotyping 
	Pseudomonas Syringae pv. Tomato (Pst) Growth and Inoculum Preparation 
	Symptoms Development in Arabidopsis Genotypes Challenged with Pst DC3000 vir 
	Total RNA Isolation, cDNA Synthesis and qPCR Analysis 

	Results 
	Polymorphic Bands of Amplified DNA SSR and STS Markers Linked to Xa R Genes in Different Rice Cultivars 
	Differential Phenotypic Response of Nine Rice Cultivars Towards Xoo K3 Infection 
	Xoo K3 Induced OsDHODH1 Expression in Tunnae, the Topmost Resistant, while Being Downregulated in IRAT112, the Highly Susceptible Cultivar Early after Inoculation 
	The Expression of the Arabidopsis PR1 and PR2 was Differentially Regulated in atpyd1-2 Knockout Line 

	Discussion 
	Differential Phenotypic Response of Rice Cultivars towards Xoo K3 Inoculation 
	The Expression Patterns of OsDHODH1 and PR Genes in Resistant and Susceptible Rice Cultivars Suggest a Positive Regulation of Plant Basal Defense 
	AtPYD1 Positively Regulates Plant Basal Defense against Pst DC3000 

	Conclusions 
	References

