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Abstract: Applications of remote sensing are important in improving potato production through
the broader adoption of precision agriculture. This technology could be useful in decreasing
the potential contamination of soil and water due to the over-fertilization of agriculture crops.
The objective of this study was to assess the utility of active sensors (Crop Circle™, Holland Scientific,
Inc., Lincoln, NE, USA and GreenSeeker™, Trimble Navigation Limited, Sunnyvale, CA, USA) and
passive sensors (multispectral imaging with Unmanned Arial Vehicles (UAVs)) to predict total potato
yield and phosphorus (P) uptake. The experimental design was a randomized complete block with
four replications and six P treatments, ranging from 0 to 280 kg P ha−1, as triple superphosphate
(46% P2O5). Vegetation indices (VIs) and plant pigment levels were calculated at various time points
during the potato growth cycle, correlated with total potato yields and P uptake by the stepwise
fitting of multiple linear regression models. Data generated by Crop Circle™ and GreenSeeker™ had
a low predictive value of potato yields, especially early in the season. Crop Circle™ performed better
than GreenSeeker™ in predicting plant P uptake. In contrast, the passive sensor data provided good
estimates of total yields early in the season but had a poor correlation with P uptake. The combined
use of active and passive sensors presents an opportunity for better P management in potatoes.

Keywords: Solanum tuberosum L.; crop circle sensor; GreenSeeker sensor; unmanned aerial vehicle;
total potato yield; phosphorus uptake

1. Introduction

Potato (Solanum tuberosum L.) is among the most important crops grown in the United States of
America (USA) [1]. Maine is ranked ninth among the states in area dedicated to potato production;
however, yields are much lower than in Western and Midwestern USA [2]. Phosphorus (P) management
is a crucial component of potato production because it impacts early root development and crop
yield [3–5]. P plays a vital role in the plant’s energy metabolism, such as the synthesis of adenosine
triphosphate (ATP) and adenosine diphosphate (ADP) [4,6]. P is also an essential component of
phospholipids, phosphoproteins, nucleotides, and coenzymes [7]. It regulates enzymatic metabolism
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and activates enzymes such as phosphatase [8]. Under P stress, plants show stunted growth and dark
green leaves [9].

The present methods for assessing the amount of P available to growing potato plants are based
on soil and plant tissue sampling. Both methods are expensive and labor-intensive. The use of remote
sensing techniques to estimate the nutrient status may reduce the labor and lab nutrient analysis
cost [10–12]. Remote sensing techniques could provide more intensive data to address the spatial and
temporal variations while estimating the crop’s nutrient status [13–15].

There are several ways to obtain remotely sensed data, including proximal handheld devices,
aircraft-mounted sensors, satellite images, and aerial photography [5,16].

Leaf pigments, including chlorophylls and anthocyanins, absorb and reflect light in specific bands
or wavelengths and could easily be estimated with spectral reflectance [14,17]. To date, the remote
sensing techniques for the assessment of pigment contents generally involve leaf reflectance (LR) near the
visual range (VR) and near-infrared (NIR) absorption maximum of chlorophyll at 675 nm [13,18]. This may
be useful for assessing P contents because it plays an essential role in carboxylation, increasing Tchlorophyll
levels in plant leaves [19]. The anthocyanin content also provides important information about leaf
physiological and structural characteristics [13,20]. It is a water-soluble pigment of higher plants
responsible for the red coloration of plant leaves, protecting them from excessive radiation [14].
In leaves, a significant accumulation of anthocyanins is induced due to P stress [21].

Active canopy sensors have adjusted light-emitting diodes that irradiate a plant canopy and
estimate the part of the irradiation reflected from the plant canopy that do not depend on the ambient
sunlight as utilized in passive sensors [22]. Even though active sensors are working with no solar
radiation required, the choice of a light source, the field of view angle, and measuring canopy area
could still have a strong effect [23,24]. The sensing area depends on the sensor’s structure due to
the light signal being typically collimated, sending light from different angles [24]. Therefore, for a
particular sensor with a specific viewing angle, the estimating area variation according to the measuring
distance is a potentially substantial factor that might influence the rendering of active canopy sensors.
However, it is not easy for handheld operating systems to preserve a constant reading distance,
even with a fixed sensor position [24].

Active canopy sensors have been utilized on farms by following the sensor companies’ guidelines,
which may require adjustments for specific crops [23]. The most advantageous wavelengths and
vegetation indices vary according to the various crop biophysical parameters and growth stages [25,26].
Several indices, particularly those having red-edge bands, might provide better results than the
normalized difference vegetation index (NDVI) for estimating the crop nutrient status [26–28]. The Crop
Circle™ ACS-430 (Holland Scientific, Inc., Lincoln, NE, USA) has a red-edge (730 nm) wavelength,
which allows this device to calculate various red edge-based vegetation indices [28,29]. Up to now,
several studies have compared GreenSeeker™ with Crop Circle™ ACS-210 or ACS-470 [27,30,31].
However, studies with the Crop Circle™ACS-430 active sensor are limited, especially with phosphorus
status. The Crop Circle™ ACS-430 sensor needs more extensive evaluation because it has the unique
characteristics of gathering the spectral reflectance measurements recommended by the manufacturer [31,32].

Passive sensors rely on measuring the natural sunlight’s reflectance and are often used to scan
larger areas than active sensors. They are usually mounted on unmanned aerial vehicles (UAVs),
an increasingly widespread tool in production agriculture [33]. Several studies have recently used
multispectral and hyperspectral sensors to assess which bands or combinations of bands indicate
individual nutrient stress [34,35].

Information obtained using remote sensors could be used to calculate vegetation indices (VIs),
which represent normalized differences or ratios of two or more bands; VIs include the normalized
difference vegetation index (NDVI), inverse infrared vegetative index (IRVI), normalized difference
red-edge (NDRE), leaf area index (LAI), chlorophyll red-edge (CHLRE), blue NDVI (BNDVI),
green NDVI (GNDVI), chlorophyll green (CHLGR), and anthocyanin (ANTHO). Of these, the NDVI is
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the most widely used vegetation index for determining plant health based on the red wavelength at
660 nm and NIR (700–1200 nm) [36].

Studiesontheapplicationof remotesensingtechniques todetectPdeficienciesarescarce. Leaf reflectance
(LR) in the blue band of the visible region (VR) of the electromagnetic spectrum is an excellent measure
to estimate the P content in plants [15]. Although P stress had a higher reflectance in the spectrum’s
yellow and green portions, the red edge did not show a regular shift in chlorophyll absorption at the
near-infrared (NIR) region [5,37].

It is crucial to consider the diversity of P spectral signatures of plants to perceive the variability
in the signature [38]. The red-edge band (680–760 nm) can be used to predict leaf phosphorus
concentration [39] accurately. The NIR region is more sensitive to the plant P status than the visible
region [10]. While P stress decreases the LAI, there is no consistent pattern among the different P
treatments [40]. The electromagnetic spectrum regions affected by phosphorus were in the range
of wavelengths between 400 and 1300 nm [15]. Reflectance at the blue band (445 nm) and NIR
(730–900 nm) regions were most suitable to predict P at the early growth stages [11].

The development of new technologies and an improved understanding of the cause-and-effect
relationships regarding spatial variability could lead to better management of the applied nutrients,
making such measures more economically and environmentally sound [15,35,41]. In this context,
the objectives of this study were to compare active and passive sensor performance in detecting P
deficiency, total yield, and P uptake in potato throughout the growing season.

2. Materials and Methods

2.1. Site Description

Twelve sites were set up on potato farms in Aroostook County, Maine, USA, in 2018 and
2019 (Tables 1 and 2). The potato cultivars, soil types, and preceding crops are shown in Table 1.
The average temperature was between 12 and 20 °C and the precipitation was between 50 and 80 mm.
The experimental design at all sites was a randomized complete block with four replications and six
P treatments: 0, 56, 112, 168, 224, and 280 kg P ha−1 applied as triple superphosphate (46% P2O5).
In 2018, each experimental unit (plot) was 9.1 m in length and 3.6 m in width, and the rows were
spaced at least 0.9 m apart. Nitrogen (N) and potassium (K) were applied equally for all P treatments,
with 202 kg N ha−1 as urea (46% N) and 224 kg K ha−1 as KCl (61% K2O). In 2019, the same P application
rates and resources were applied, and each experimental unit (plot) was 6.1 m in length and 1.8 m in
width; the rows were spaced at least 0.9 m apart. Nitrogen was applied equally for all P treatments,
with 224 kg N ha¯

1 as ammonium nitrate (34% N), K was applied equally for all P treatments as in 2018.
The fertilizers were mixed and applied by the replacement method at planting. Pesticides, such as
chlorothalonil, and herbicides, such as Weedar64 (Nufarm) 2,4-D, sourced from Alsip, Illinois, USA,
were applied by the farmers as recommended by the University of Maine, Orono, Maine, USA [42].
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Table 1. Field experiment information in 2018 and 2019.

Site Year Latitude Longitude † Soil Type Planting Date Harvest Date Varieties Previous Crop

Frenchville (FV) 2018 47.2170080 −68.4112920 Coarse-loamy, isotic, frigid Oxyaquic Haplorthods 22 May 12 September RB Grain-potato
New Sweden-1 (NS1) 2018 46.9511590 −68.1479550 Fine-loamy, mixed, frigid Typic Haplorthods 29 May 15 October RB Clover cover crop
New Sweden-2 (NS2) 2018 46.9529336 −68.1454612 Fine-loamy, mixed, frigid Aquic Haplorthods 30 May 15 October RB Clover cover crop

WoodLand (WL) 2018 46.8850498 −68.1256605 Fine-loamy, mixed, frigid Typic Haplorthods 15 May 1 October RB Grain-potato
Caribou (CA1) 2018 46.8842966 −68.0292126 Fine-loamy, mixed, frigid Typic Haplorthods 17 May 13 September RB Grain-potato

Aroostook Farm-1 (AF1) 2018 46.6601582 −68.0216085 Fine-loamy, mixed, frigid Typic Haplorthods 24 May 14 September SH Grasses
Aroostook Farm-2 (AF2) 2018 46.6619155 −68.0209886 Fine-loamy, mixed, frigid Typic Haplorthods 24 May 14 September RB Grasses
Aroostook Farm-3 (AF3) 2019 46.66011944 −68.02125 Fine-loamy, mixed, frigid Typic Haplorthods 31 May 20 September SP Grasses
Aroostook Farm-4 (AF4) 2019 46.46.6601694 −68.01650278 Fine-loamy, mixed, frigid Typic Haplorthods 31 May 20 September RB Grasses

Caribou-1 (CA2) 2019 46.89628611 −68.07754722 Fine-loamy, mixed, frigid Typic Haplorthods 14 May 30 September RB Potato, mustard, radish, and potato
Caribou-2 (CA3) 2019 46.89180556 −68.04066667 Fine-loamy, mixed, frigid Typic Haplorthods 28 May 30 September RB Potato, white clover, ray, and potato
Limestone (LM) 2019 46.96186944 −67.83323056 Fine-loamy, mixed, frigid Typic Haplorthods 29 May 1 October RB Cover crops, clover, oats, and grass

† Information collected from Web Soil Survey (https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm), 2019. RB: ‘Russet Burbank’ variety; SH: ‘Shepody’ variety; SP: ‘Superior’ variety.

https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
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Table 2. Soil chemical properties from the experimental sites in 2018 and 2019.

Site FV NS1 NS2 WL CA1 AF1 AF2 AF3 AF4 CA2 CA3 LM

Growing Years 2018 2019

pH 5.9 4.9 5.6 5.8 6.5 6.1 6.4 6.0 6.1 5.4 6.3 5.9
OM g % 4.9 3.1 5.3 4.1 3.7 2.6 4 2.3 3.1 2.6 3.3 1.6

P-MME a

m
g

nu
tr

ie
nt

kg
so

il−
1 19.8 12.2 10.1 16.5 21.2 13.1 21.2 11.4 17.0 17.8 23.8 17.9

P-M3 b 379 469 257 356 421 440 421 341 423 586 537 558
N-NO3

− 5 62 2 15 6 4 12 5 6 8 7 3
N-NH4

+ 1 28 25 5 1 15 17 4 6 10 7 19
K-M3 c 237 221 151 256 376 300 225 234 160 348 292 230

Fe-MME d 10 5.3 9.5 6.8 5.0 2.7 3 4.5 4.8 8.2 4.1 4.7
Fe-M3 e 309 438 390 317 343 388 375 334 368 483 394 396
Al-M3 f 1735 1595 1395 1547 1595 1590 1444 1600 1594 1789 1796 1822

CEC −MME h

m
eq

10
0

g−
1

7.3 8.1 8.8 7.3 7.9 5.9 7.9 5.4 6.3 7.2 7.0 4.6

Modified Morgan Extraction (MME); a P extracted by MME (P-MME); b Mehlich 3 (M3); Mehlich 3 soil test P (P-M3);
c K extracted by M3 (K-M3); d Iron extracted by MME (Fe-MME); e Iron extracted by M3 (Fe-M3); f Aluminum
extracted by M3 (Al-M3); g Organic Matter (OM); h Cation exchangeable capacity extracted by MME (CEC −MME).

2.2. Soil Sampling and Analysis

Before planting, soil samples were collected from the twelve sites (Table 1) using a 2-cm diameter
stainless probe. There were five subsamples collected at a depth of 0 to 25 cm for pH, organic matter,
P, N-NO3

−, N-NH4
+, and K analysis (Table 2). The soil samples were air-dried and ground to pass

through 2-mm sieves. Soil pH was estimated using a 1:1 soil: deionized water solution and a pH meter
(pH robot is a labfit AS3000; company HQ located in Perth, Australia), with an appropriate electrode
(s) [43]; the organic matter was determined using loss of weight on ignition [44]. The phosphorus (P)
was analyzed by Mehlich 3 extraction, followed by analyzing the filtrate via the Inductively Coupled
Plasma (ICP) (Spectro Genesis, Kleve, Germany) method [45]. The P and K levels were determined by
Modified Morgan Extraction (MME) and estimated within the linear range on the ICP. The N-NO3

−

was measured by using an automated ion analyzer and the recommended ratio of 1:10 (5 g soil;
50 mL extractant (0.01 M CaSO4, 2 M KCl)) [46]. The N-NH4

+ was measured via KCl extraction [47].
The University of Maine Soil Laboratory, Orono, Maine, USA, analyzed the soil samples.

2.3. Plant Sampling and Analysis

One petiole and leaflet (whole leaves) was collected, at the tuber initiation stage (60 days after
the planting date), from each potato plant, thus, four plants were collected from each sub-plot for the
phosphorus analysis. The petioles and leaflets were taken from the fourth and fifth fully expanded
leaves from the plant top [48], dried in an oven with air circulation at 65 °C for 96 h, and ground.
Subsequently, the samples were turned into ash at 550 °C for 5 h in a muffle furnace. The obtained ash
was dissolved in 50% HCl on a hot plate and analyzed using ICP [49]. The University of Maine Soil
Laboratory analyzed the plant samples. Phosphorus uptake (kg ha−1) was calculated by multiplying
the dry matter of the petioles and leaflets by the percentage of phosphorus content (%) as follows:

Phosphorus uptake (kg ha−1) =
Dry matter of petioles and leaflets (kg ha−1)× Phosphorus content (%)

100

(1)

2.4. Potato Harvest

At the harvest time (after 130 to 140 days from planting; Table 1), the tubers were dug using a
two-row digger and then handpicked manually from a 5.5 m2 area within the central rows of each
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plot. Individual plots were harvested separately to remove possible border effects. Fresh tubers were
graded and weighed to determine the total potato tuber yield (Mg ha−1).

2.5. Sensor Description and Sensing Procedure

2.5.1. Active Sensors

We used the sensors GreenSeeker™ (GS; Trimble Navigation Limited, Sunnyvale, CA, USA) and
Holland Scientific Crop Circle™ ACS 430 (CC; Holland Scientific, Inc., Lincoln, NE, USA). The GS
sensor was used to measure incident light and reflected light from plants at 660 ± 15 nm (red) and
770 ± 15 nm (NIR) to obtain the NDVI and IRVI [50]. Sensor readings were downloaded by connecting
the sensor to a laptop computer. The GreenSeeker™ (GS) emits two wavelengths of reflectance light:
660 ± 15 nm (red band) and 770 ± 15 nm (NIR band). The GS active sensor light would be emitted from
diodes in alternate bursts, thus, the red and NIR bands pulse for 1 ms (1 millisecond) at 40,000 Hz.
Each burst from the diodes would obtain up to 40 pulses before pausing for the other diode to emit its
radiation (plus 40 pulses). The lighted area is 60 cm wide by 1 cm long, with the extending dimension
basically positioned vertically to the direction of the GS sensor in the field movement.

The CC sensor was simultaneously used to measure the crop/soil reflectance at 670 nm, 730 nm,
and 780 nm. The data were collected using a Holland Scientific GeoSCOUT GLS-400 (Holland Scientific,
Inc., Lincoln, NE, USA) datalogger and downloaded to a laptop computer. The CC yielded several
vegetation indices, such as NDRE (normalize differences red-edge), NDVI, and the leaf area index
(LAI), obtaining as the sensor output chlorophyll red edge (CHLRE) (Table 3). The CC-430 active
sensor incorporates three fixed wavebands. The field of view (FOV) was an oval of ~30◦ by ~14◦ range.
The readings would be collected at one measurement height (60 cm) above the potato canopy at 10 Hz
(10 readings/s) when moving at a constant speed in each experimental unit. The sensor path was
parallel to the potato rows with the beam of reflected light positioned vertically to the potato rows.

Each sensor recorded about 45–60 readings during one passing through the plot and collected
readings from the two middle rows. The reading values were averaged and organized using the
in-house Excel macro option for Visual Basic (Microsoft Excel 2020, Version 16.43, NC, USA). For June
to August, thirteen active sensing dates took place in each of the twelve experimental sites: 25 June,
1 July, 9 July, 12 July, 18 July, 22 July, 25 July, 1 August, 5 August, 13 August, 16 August, 20 August,
and 23 August. The sensing dates were excluded from the results when there was no significant model
fit to the data.

2.5.2. Passive Sensors

Unmanned Aerial Vehicle Image Acquisition and Processing

In 2018, two DJI Phantom 4 UAVs (Shenzhen, Guangdong, China) (Figure 1a) were used for
image acquisition. One had a NIR camera/sensor and was used to obtain the NIR images (Figure 1b).
The other had a regular camera/sensor used to collect the visible-color images of the red, green, and blue
bands (Figure 1c). The gimbal controlled the UAV movement (pitch and roll) throughout the flight [51].
In 2019, A DJI Inspire 2 UAV (Shenzhen, Guangdong, China) with a portable Altum multispectral
sensor (MicaSense, Seattle, WA, USA) was used to collect the multispectral data (Figure 1d). Figure 1e
shows how the Altum sensor integrates a radiometric thermal camera with five high-resolution narrow
bands and produces advanced thermal multispectral and high-resolution imagery in one flight for
the advanced analytic spectral bands: blue (475 nm center, 20 nm bandwidth), green (560 nm center,
20 nm bandwidth), red (668 nm center, 10 nm bandwidth), red-edge (717 nm center, 10 nm bandwidth),
NIR (840 nm center, 40 nm bandwidth), and thermal (LWIR thermal infrared 8000 to 14,000 nm,
radiometrically calibrated). The altitude for the UAV was 75–80 m; the flight duration was based on the
field size, which was between 8 and 12 min; the resolution was 3.2 cm pixels−1; the overlap was 90/90;
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the image count was 86 to 112 images, depending on the distance of the field; and maximum speed
was 2.7 m/s. The flight was performed between 10:00 a.m. and 2:30 p.m. local time in the study area.

Figure 1. (a) The two DJI Phantom 4 UAVs used in 2018. (b) Drone flight with a NIR camera. (c) Drone flight
with an RGB camera. (d) DJI Inspire 2 drone and the Altum sensor. (e) The Altum sensor.

A certification of authorization was obtained from the United States Federal Aviation Administration
(US-FAA) in Lincoln, Nebraska, USA, for the DJI Phantom 4 and DJI Inspire 2 flights. In 2018,
images were taken by a Sony 4K camera (Shenzhen, Guangdong, China) with a 12 megapixel 1/2.3”
complementary metal-oxide-semiconductor (CMOS) sensor (4000 × 3000 pixels). Both camera settings
were maximum wide-angle identical to a 28 focal length (35 mm format equivalent), with auto exposure
bracketing, auto speed, autofocus, auto white balance, f/2.8 aperture, and focus at infinity∞.

In 2019, the Inspire 2 was equipped with an Altum sensor with a spatial resolution of 5.2 cm per
pixel (per earth observing (EO) band) at 120 m (400 ft) AGL (above ground level), 81 cm per pixel
(thermal) at 120 m, 1 capture per second (all bands), 12-bit RAW, and FOV (field of view) of 48◦ × 37◦

(multispectral) and 57◦ × 44◦ (thermal): FL (focal length) 8 mm (multispectral) and 1.77 mm (thermal).
Acquisition points were generated in the field and used as a waypoint for the flight path. In each

flight operation, a steady ambient lighting condition was attempted (sunny days). In all flight campaigns,
Map Pilot for DJI (Man Made Easy, Shenzhen, Guangdong, China) was used. Maps and waypoints
were generated and saved for the next flights. For the Altum sensor, a calibrated reflectance panel was
used to calibrate images.

Image calibration was implemented before each flight using an automatic panel detection mode
that automatically recognizes and obtains the calibration panel image. The live view tab of the passive
sensor configuration page displays a live image and detects the reflectance panel and quick response
(QR) mode after selecting the QR button using the sensor camera. The drone-sensor was held at least
1 m above the calibrated reflectance panel to obtain the image from centering the panel and QR code
in the field of view. Once the sensor detected the panel, it sent a unique sound and flashed the blue
LED light, indicating that the image was captured. To ensure that the calibrated image was taken,
the calibrated panel should be placed flat on the ground and far from any objects that could impact the
light and illuminate the captured image. The operator (drone pilot) stands in front of the calibrated
panel, and the sunshade is directed at the operator’s back. Shadows should be eliminated when the
panel is on the ground to prevent invalidated reflectance compensation readings.

The experiment’s images were uploaded via Agisoft Metashape software (Agisoft LLC,
St. Petersburg, Russia) once for all bands. Photos were uploaded, including the reflectance calibration
images. The calibrated images were selected and prompted to upload the calibration from the comma
separated values (CSV) file provided by MicaSense (MicaSense, Seattle, WA, USA); this CSV file
has all the calibration values corresponding to the MicaSence radiometric panel, obtained from the
MicaSense website on https://micasense.com/prv/. Therefore, in the Agisoft Metashape processing software,

https://micasense.com/prv/
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the reflectance option and the sun sensor in the calibrated reflectance dialog were selected to perform
the calibration based on panel data and image meta information.

Drones had the Downwelling Light Sensor (DLS), which provides reliable and accurate radiometric
data. In this study, the drones’ DLS provided a sun sensor that measures the solar irradiance at the
drone’s top. It is an important element to minimize the change in the environmental light conditions.
The DLS normalized the data to the standard conditions.

An orthomosaic was created from images in 2018 using the Pix4DMapper software (Pix4D mapper,
Lausanne, Switzerland) [52]. The Agisoft Metashape professional software 1.6.3 [53] was used to process
the images from 2019. Rectifications to the camera’s view distortions were performed, and the images
were stitched together to create a geo-referenced orthomosaic (GeoTIFF). The GeoTIFF image for each
flight was uploaded in ArcGIS (Version 10.3; Esri Headquarters, Redlands, CA, USA) [54]. In ArcGIS,
polygons were generated to represent each experimental plot (Figure 2). All processing was performed
with an HP laptop (Spring, TX, USA), with a 4-core Intel 10TH Gen i7-1065G7 CPU @ 1.30 GHz
(max 1.5 GHz), 16 GB memory, 1TB SSD + 32GB Optane, and NVIDIA GeForce RTX 2070 GPU(Palo Alto,
CA, USA).

Figure 2. The experimental field at the early leaf stage: (a) black boxes indicate experimental plots,
and white boxes within the black boxes indicate the buffer area for each plot and for two middle
rows, manually; (b) boxes indicate NDVI for all pixels and plots; (c) manually, non-plant pixels were
removed from the image using reclassification; (d) non-plant pixels were excluded by multiplying
(c) by (b) to obtain the NDVI image just for plant pixels; (e) NDVI values for each plot (average of two
middle rows) in the field, in this photo, zonal statistics (spatial analyst) in Arc GIS is shown in this
photo to differentiate the experiment plots, automatically. In our study, we used zonal statistics as
a table to obtain the means values. The same procedure was done for all passive vegetation indices and
plant pigments.

For June to August, eight passive sensing dates took place in each of the twelve experimental
sites: 25 June, 1 July, 9 July, 16 July, 22 July, 29 July, 14 August, and 23 August. Some flight operation
dates were excluded from the results when no model provided a significant fit to the data.

Visible Bands and NIR Vegetation Indices

The digital numbers (DN) converted reflectance was calculated by converting the *.TIF files to
float files (*.FLT) (Figure 3). The VI equations in Table 3 were used as input to the raster calculator
to calculate the VIs. To acquire the average for each plot (two middle rows), we used the command
“Zonal statistics as a table”. These processes were repeated for all the VIs and each orthomosaic photo
(GeoTIFF) by employing an iterator.
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Figure 3. Data processing workflow for GeoTIFF from the RGB, NIR, and thermal Altum sensor images
captured by the Phantom DJI and Inspire 2.

Table 3. Summary of the spectral reflectance data used in this study.

Vegetation Indices Formula Vegetation Index Resource Citations

NDVI a (NIR − R)/(NIR + R) CC, GS, and UAVs [36]
NDRE b (NIR − Red edge)/(NIR + Red edge) CC [55]

CHLGR c (NIR/G) − 1 UAVs [14]
CHLRE d (NIR/Red edge) − 1 CC [14]
BNDVI e (NIR − B)/(NIR + B) UAVs [56]
GNDVI f (NIR − G)/(NIR + G) UAVs [56]

ANTHO g R/G UAVs [13]
IRVI h R/NIR GS [50,57]

a NDVI: Normalized difference vegetation index; b NDRE: Normalized difference red-edge; c CHLGR: Chlorophyll green;
d CHLRE: Chlorophyll red-edge; e BNDVI: Blue normalized difference vegetation index; f GNDVI: Green normalized
difference vegetation index; g ANTHO: Anthocyanin; R: red band; G: green band; B: blue band; NIR: near-infrared;
CC: Crop Circle™ sensor; GS: GreenSeeker™; h IRVI: Inverse infrared vegetative index; UAVs: Unmanned aerial vehicles.

2.6. Statistical Analysis

Because the sensing dates were the same for both years, the data were pooled for each date.
As interpreted from the handheld sensors and the drones, both the active and passive sensors showed
some skewing degree, indicating the potential benefits of data diagnostics and transformation, such as
a log transformation. These analyses were performed on both transformed and untransformed data.
All the data were analyzed using RStudio software (Version 1.3.1073; Boston, MA, USA).

2.7. Multiple Linear Regression Model Diagnostics

2.7.1. Criteria for Evaluation of a Subset of Predictor Variables

Both untransformed and transformed models were evaluated by adjusted R2 (R2
adj), Akaike’s

Information Criterion (AIC), Corrected Akaike’s Information Criterion (AICc), Bayesian Information
Criterion (BIC), and Prediction Sum of Squares (PRESS), as follows:

Adjusted R2 = R2
adj

R2
adj = 1−

SSE
( n − p − 1 )

SST
( n − 1 )

(2)

SSE =
∑n

i=1
( yi− y)2 (3)

SST =
∑n

i=1
( yi− y)2 (4)
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where R2
adj represents the adjusted R2; SSE is the error sum of squares; yi is the ith observation; n is

the number of observations; y is the mean of the n observations; SST the total sum of squares; y is
the predicted value of y; and p is the number of predictors. R2

adj was implemented in R using the
Rsq.adj package.

Akaike’s Information Criterion AIC

AIC = (n log (SSE/n) + 2p + other terms (5)

where n is the number of observations; SSE is the error sum of squares; and p is the number of
predictors. Other terms are independent of the error sum of squares and p. The smaller AIC values
indicate the better model fit.

The AIC package was implemented in R software as AIC < - sapply (1:m, function (x) round
(extractAIC (om [[x]], k = 2) [2], 2)). The other terms were independent of SEE and P and the same for
every model.

Corrected Akaike’s Information Criterion AICc

AICc is developed to overcome the model complexity when the AIC is not strong enough. In the
multiple linear regression model, AICc is obtained as shown in Equation (6):

AICc = AIC +
2 (p + 2)(p + 3)

n− p− 1
(6)

where n is the number of observations and p is the number of predictors. The R package sapply (1:m,
function (x) round (extractAIC (om [[x]], k = 2) [2] + 2 *npar[x] *(npar [x] + 1)/(n-npar [x] + 1), 2)) was
used for the analysis.

Bayesian Information Criterion BIC

The BIC is often used to select variables in multiple regression problems. In this study, BIC was
used to determine the best model (where regression models were a variable subset). The following
equation can obtain the BIC:

BIC = −2 log L (β0, . . . ., βp, ó2
MLE|Y) + K log n (7)

where K = p + 2, the number of parameters estimated in the regression model; and MLE is the
maximum likelihood estimation used to estimate the probability distribution parameters by maximizing
a likelihood function.

Prediction Sum of Squares (PRESS)

The PRESS summarizes the multiple linear regression model’s fit to a sample of observations
using the fitted regression function to obtain the predicted value. PRESS is shown in Equation (8):

PRESS =
∑n

i=1
(yi− yi(i)) 2 (8)

where yi is the predicted value for the ith subject; and yi − yi is the prediction error for the ith subject.

2.7.2. Generalized Linear Model (GLM)

For the GLM, we first tested the overall correlation between the total potato yield and the vegetation
indices for active and passive sensors. In the untransformed model, we selected the best predictors
(p < 0.05) and excluded the non-significant predictors to increase the adjusted R2 and minimize the
subsection variables; the multiple linear regression approach was used with the transformed model.
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Backward and forward stepwise regression was used with all vegetation indices for the active and
passive sensors to guide which model might have the minimum AIC and BIC in predicting total potato
yield and phosphorus uptake. Finally, models were established based on the maximized adjusted R2

to minimize all possible selections. These vegetation indices were used to predict the total potato yield
and phosphorus uptake based on the GLM, as shown in Equation (9):

Yi = β0 + β1Xi1 +.. . . . . . . . + βnXin + εi (9)

where Yi indicates the response variable; Xin represents the predictor variables; β0, β1, and βn are the
parameters of the model; and εi is the error term.

Active Sensor Transformation Models Based on the Generalized Linear Model (GLM)

The active sensors’ vegetation indices were correlated linearly amongst the predictors and the
dependent variables, as shown in Equations (10) and (11) for the Crop Circle™ sensor outputs:

Total potato yield = β0 + β1 NDRE + β2 NDVI + β3 CHLRE + β4 LAI + εi (10)

Phosphorus uptake = β0 + β1 NDRE + β2 NDVI + β3 CHLRE + β4 LAI + εi (11)

Calculations for the GreenSeeker™ active sensor are shown in Equations (12) and (13):

Total potato yield = β0 + β1 NDVI + β2 IRVI + εi (12)

Phosphorus uptake = β0 + β1 NDVI + β2 IRVI + εi (13)

The transformation model was used based on the Box-Cox transformation approach 1 for the
Crop Circle™ active sensor; we applied the response and explanatory log-transformed models in
Equations (14) and (15):

Log Total potato yield = β0 + β1 log NDRE + β2 log NDVI + β3 log
CHLRE + β4 log LAI + εi

(14)

Log Phosphorus uptake = β0 + β1 log NDRE + β2 log NDVI + β3 log
CHLRE + β4 log LAI + εi

(15)

For the GreenSeeker™ active sensor, the same approach was used, as shown in Equations (16)
and (17):

Log Total potato yield = β0 + β1 log NDVI + β2 log IRVI + εi (16)

Log Phosphorus uptake = β0 + β1 log NDVI + β2 log IRVI + εi (17)

Passive Sensor Transformation Models Based on the Generalized Linear Model (GLM)

For the passive sensor vegetation indices, a multiple linear regression was generated, as shown in
Equations (18) and (19):

Total potato yield = β0 + β1 NDVI + β2 GNDVI + β3 BNDVI + β4 CHLGR + β5 LAI + εi (18)

Phosphorus uptake = β0 + β1 NDVI + β2 GNDVI + β3 BNDVI + β4 CHLGR + β5 LAI + εi (19)

Due to the low vegetation indices values for the passive sensors compared to the active sensors,
we used only the response log, as shown in Equations (20) and (21):

Log Total potato yield = β0 + β1 NDVI + β2 GNDVI + β3 BNDVI + β4

CHLGR + β5 LAI + εi
(20)
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Log Phosphorus uptake = β0 + β1 NDVI + β2 GNDVI + β3 BNDVI + β4

CHLGR + β5 LAI + εi
(21)

3. Results

3.1. Active Sensors

3.1.1. Crop Circle™

Total Potato Yield and Phosphorus Uptake Models

Based on the adjusted R2, p value, AIC, AICc, BIC, and PRESS values (Table 4), the most affected
total potato yield variables were NDRE, NDVI, and CHLRE.

The models for the first sensing date, 25 June, and the last significant sensing date, 1 August,
showed the highest adjusted R2 values (0.36 and 0.31), respectively. The last sensing date (1 August)
model was improved after transforming (R2

adj = 0.32). The lowest R2
adj values (0.10) were obtained

for the fourth, sixth, and seventh sensing dates, 12 July, 22 July, and 25 July, respectively. At the first
sensing date (25 June), the multiple regression model applied to the test data set had the best R2

adj (0.36)
with the smallest AICc and BIC values. Several models were improved following the transformation.
All the final regression models were statistically significant (all p values < 0.0001), except for 22 July’s
untransformed model (Table 4).

The P uptake models had the best fit on the third sensing date, based on the highest R2
adj value

(0.60) and the lowest validation criteria (Table 5). The fourth and fifth sensing dates showed a weak
correlation between the response variable (P uptake) and predictors (NDVI, NDRE, LAI, and CHLRE).
The NDVI was the only vegetation index that impacted P uptake on the fourth sensing date (12 July),
with an R2

adj of 0.32. There were no significant responses for the last six sensing dates; therefore, the
equations were excluded from Table 5.

Relationships between the Actual and Predicted Variables

The strongest relationship between the actual and predicted total potato yields was observed for
both the transformed and untransformed models on 25 June (Figure 4a,b) and on 1 August (Figure 4e,f).
In contrast, the weakest relationship was found for the untransformed model on July 22 (Figure 4c).
However, transforming the data increased the variation explained by the model (Figure 4d).

The strongest relationship between the actual and the predicted P uptake was detected on 9 July
for both the transformed and untransformed data (Figure 5a,b). In contrast, the weakest relationship
was foreseen on 25 July (Figure 5d). The transformation had little effect on the model fit on any of the
sensing dates (Figure 5).

3.1.2. GreenSeeker™

Total Potato Yield and Phosphorus Uptake Models

There was little correlation between the observed and predicted values until August 5 (Table 6).
The transformations increased the coefficients of determination values on 5 August, 16 August,
and 20 August (Table 6).

On the contrary, the models best predicted phosphorous uptake early in the season (Table 7).
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Table 4. Total potato yield models with the adjusted coefficient of determination (R2
adj), p Value, AIC, AICc, BIC, and PRESS for Crop Circle™.

Active Sensing Model
Transformation Model R2

adj p Value AIC AICc BIC PRESS

25 June
Untransformed

Model
Yield = 43.47 − 13018.16 NDRE + 184.89

NDVI + 6254.57 LAI − 2353 CHLRE 0.36 <0.0001 462.60 463.14 476.34 5810.70

Transformed
Model

log Yield = 0.8171 − 2.2036 log (NDRE) +
0.0546 log (NDVI) + 1.3229 log (CHLRE) 0.29 <0.0001 −321.24 −320.51 −307.30 8.24

12 July
Untransformed

Model
Yield = 35.18 + 235.42 NDRE − 75.41
NDVI − 85.59 LAI + 69.72 CHLRE 0.10 <0.0001 1206.65 1206.95 1224.97 18,935.50

Transformed
Model

log Yield = 1.4055 − 1.0264 log (NDRE) −
1.1538 log (NDVI) + 1.2319 log (CHLRE) 0.15 <0.0001 −751.81 −751.51 −733.49 21.18

18 July
Untransformed

Model
Yield = 73.62 + 308.90NDRE − 49.16NDVI

− 390.37LAI + 282.02 CHLRE 0.05 0.001 613.81 614.10 632.12 10,212.22

Transformed
Model

log Yield = 2.9995 − 6.0205 log (LAI) +
5.0766 log (CHLRE) 0.10 <0.0001 −732.97 −732.76 721.98 22.46

22 July
Untransformed

Model
Yield = 30.785 + 22.326 NDRE − 85.739

NDVI 0.10 0.0040 8.16 848.45 856.61 3205.26

Transformed
Model

log Yield = −3.442 − 5.034 log (NDRE) −
4.416 log (LAI) + 8.481 log (CHLRE) 0.23 <0.0001 −313.20 −312.47 −301.33 8.88

25 July
Untransformed

Model
Yield = 15.363 + 118.08 NDRE − 24.02

NDVI 0.10 <0.0001 1205.52 1205.66 1216.51 18,852.67

Transformed
Model

log Yield = 3.8273 + 0.6015 log (NDRE) −
0.8466 log (NDVI) + 0.3850 log (LAI) 0.11 <0.0001 −739.30 −739.09 −724.65 22.01

1 August
Untransformed

Model
Yield = 50.38 − 449.03 NDRE + 41.97

NDVI + 53.31 CHLRE 0.31 <0.0001 1132.39 1132.60 1147.04 14,534.85

Transformed
Model

log Yield = −5.1378 − 6.4729 log (NDRE) +
1.7950 log (NDVI) + 3.7054 log (LAI) 0.32 <0.0001 −818.74 −818.52 −804.08 16.74

NDVI: Normalized difference vegetation index; NDRE: Normalized difference red-edge; LAI: Leaf area index; CHLRE: Chlorophyll red-edge; Akaike’s Information Criterion (AIC);
Akaike’s Information Corrected Criterion (AICc); Bayesian Information Criterion (BIC). PRESS: Prediction sum of squares. Significantly different at p < 0.05.
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Table 5. Phosphorus uptake (kg ha −1) models with adjusted coefficients of determination (R2
adj), p Value, AIC, AICc, BIC, and PRESS for Crop Circle™.

Active Sensing Model
Transformation Model R2

adj p Value AIC AICc BIC PRESS

9 July
Untransformed

Model
PU = 2.36 − 283.44 NDRE + 38.84 NDVI +

122.80 LAI − 74.58 CHLRE 0.60 <0.0001 78.36 78.66 96.68 378.00

Transformed
Model

log PU = 4.8175 + 2.4835 log (NDRE) +
2.3266 log (NDVI) − 4.1608 log (LAI) 0.62 <0.0001 −428.96 −428.75 −414.31 66.01

12 July
Untransformed

Model
PU = 5.7030 +19.8137 NDRE − 13.6055

NDVI 0.32 <0.0001 232.61 232.75 243.60 643.97

Transformed
Model log PU = −0.1454 − 1.1422 log (NDVI) 0.28 <0.0001 −245.71 245.62 238.38 122.32

18 July
Untransformed

Model
PU = 4.915 − 118.070 NDRE + 73.902 LAI

− 43.421 CHLRE 0.26 <0.0001 264.89 265.10 279.54 702.90

Transformed
Model

log PU = −19.180 − 14.841 log (NDRE) −
10.736 log (CHLRE) + 22.227 log (LAI) 0.23 <0.0001 −224.50 −224.28 −209.84 131.69

25 July
Untransformed

Model
PU = 10.59 − 37.47 NDRE − 3.98 NDVI +

4.49 LAI 0.10 <0.0001 315.79 316.00 330.44 858.10

Transformed
Model

log PU = −1. 2754 − 1.6569 log (NDRE) +
0.5670 log (NDVI) 0.07 <0.0001 −161.71 −161.57 150.72 157.06

PU: Phosphorus uptake; NDVI: Normalized difference vegetation index; NDRE: Normalized difference red-edge; LAI: Leaf area index; CHLRE: Chlorophyll red-edge; Akaike’s Information
Criterion (AIC); Akaike’s Information Corrected Criterion (AICc); Bayesian Information Criterion (BIC). Significantly different at p < 0.05. PRESS: Prediction sum of squares.
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Figure 4. Relationship between the actual and predicted total potato yield for the sensing dates of (a) 25 June,
the untransformed model; (b) 25 June, the transformed model; (c) 22 July, the untransformed model; (d) 22 July,
the transformed model; (e) 1 August, the untransformed model; (f) 1 August, the transformed model.

Figure 5. Relationship between actual and predicted phosphorus for (a) 9 July, the untransformed model;
(b) 9 July, the transformed model; (c) 12 July, the untransformed model; (d) 12 July, the transformed
model; (e) 18 July, the untransformed model; (f) 18 July, the transformed model.

Relationships between the Actual and Predicted Variables

The most robust relationship between the actual and predicted total potato yield was obtained by
the model using the transformed data on August 5 (Figure 6b). The weakest relationship with total
potato yield was found for an untransformed model on 16 August (Figure 6c).
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Figure 6. Relationship between the actual and predicted total potato yield for both sensing dates in 2018
and 2019: (a) 5 August, the untransformed model; (b) 5 August, the transformed model; (c) 16 August,
the untransformed model; (d) 16 August, the transformed model.

For the P uptake, the coefficient of determination was comparable to those obtained for potato
yields. The most robust relationship was obtained for the untransformed model on 1 July (Figure 7a).
Transformations did not have a major input on model performance.

Figure 7. Relationship between the actual and predicted phosphorus uptake for (a) 1 July, the untransformed
model; (b) 1 July, the transformed model; (c) 12 July, the untransformed model; (d) 1 August,
the untransformed model.

3.2. Passive Sensors

3.2.1. Total Potato Yield and Phosphorus Uptake Models

Models constructed using the data from the passive sensors provided a relatively good prediction
of the total potato yield throughout the growing season, starting on the earliest sensing date of 25 June,
with coefficients of determination fluctuating around 0.50 (Table 8). The vegetation indices that most
frequently predicted total potato yield were NDVI, CHLGR, and ANTHO. Transforming the data did
not result in better-fitted models (Table 8). Total potato yield was negatively correlated with ANTHO
on the first drone flight date (June 25).

P uptake models explained very little variation observed in our experiments (Table 9). Once again,
transforming the data did not produce models with meaningfully higher coefficients of determination.
The outcomes were consistent across all sensing dates (Table 9).
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Table 6. Total potato yield models with an adjusted coefficient of determination (R2
adj), p Value, AIC, AICc, BIC, and PRESS for GreenSeeker™.

Active Sensing Model Transformation Model R2
adj p Value AIC AICc BIC PRESS

9 July Untransformed Model Yield = −110.84 + 164.58 NDVI + 158.86 IRVI 0.09 <0.0001 1218.50 1218.64 1225.82 19,116.69

Transformed Model log Yield = 3.5376 + 0.2236 log (NDVI) 0.06 <0.0001 −726.95 −726.86 −719.62 23.04

12 July Untransformed Model Yield = −23.14 IRVI + 42.91 0.04 0.0006 1223.27 1223.36 1230.60 20,105.90

Transformed Model log yield = 3.1826 − 0.1505 log (IRVI) 0.04 0.00025 −721.64 721.56 −714.32 23.48

18 July Untransformed Model Yield = 232.43 NDVI + 262.87IRVI − 185.52 0.09 <0.0001 8.11 2028.17 2042.68 19,132.28

Transformed Model log Yield = 4.7863 + 1.9445 log (NDVI) + 0.4395 log (IRVI) 0.05 0.009 −724.90 −724.67 −713.28 23.32

25 July Untransformed Model Yield = 144.31 NDVI+ 164.67 IRVI − 104.97 0.04 0.0018 8.34 2044.58 2059.09 20,203.57

Transformed Model log Yield = 3.717 + 0.7188 log (NDVI) + 0.0801 log (IRVI) 0.02 0.016 −714.36 −714.22 −703.38 24.04

5 August Untransformed Model Yield = −27.274 + 75.170 NDVI 0.54 <0.0001 421.08 421.28 426.66 4010.02

Transformed Model log Yield = 3.9112 + 1.9875 log (NDVI) 0.57 <0.0001 −384.15 −383.94 −378.57 4.88

16 August Untransformed Model Yield = −4.849 + 43.499 NDVI 0.30 <0.0001 470.08 470.28 475.65 6028.96

Transformed Model log Yield = 1.4134 − 1.1571 log (NDVI) − 0.7660 log (IRVI) 0.39 <0.0001 −340.05 −339.71 −331.69 7.03

20 August Untransformed Model Yield = −183.88 + 229.21NDVI + 250.35 IRVI 0.32 <0.0001 468.49 476.51 476.51 5884.35

Transformed Model log Yield = 1.2353 − 1.2632 log (NDVI) − 0.8222 log (IRVI) 0.44 <0.0001 −351.34 −351.00 −342.97 6.43

NDVI: Normalized difference vegetation index; IRVI: Inverse infrared vegetative index; Akaike’s Information Criterion (AIC); AICc: Akaike’s Information Corrected Criterion; BIC:
Bayesian Information Criterion. Significantly different at p < 0.05. PRESS: Prediction sum of squares. Significantly different at p < 0.05.

Table 7. Phosphorus uptake (kg ha−1) models with adjusted coefficients of determination (R2
adj), p Value, AICc, BIC, and PRESS for GreenSeeker™.

Active Sensing Model Transformation Model R2
adj p Value AIC AICc BIC PRESS

1 July Untransformed Model PU = −36.50 + 41.79 NDVI+ 47.68 IRVI 0.44 <0.0001 173.86 174.00 184.85 542.23
Transformed Model log PU = −2.4161 − 2.0707 log (NDVI) − 1.2295 log (IRVI) 0.38 <0.0001 −285.14 −285.00 −274.15 106.82

12 July Untransformed Model PU = −9.68 NDVI − 4.39 IRVI 0.27 <0.0001 252.38 252.52 263.37 688.01
Transformed Model log PU = −1.0494 − 1.7365 log (NDVI) − 0.4754 log (IRVI) 0.24 <0.0001 −227.39 −227.56 −216.40 129.91

18 July Untransformed Model PU = −50.48 + 55.22 NDVI + 73.44 IRVI 0.13 <0.0001 303.82 303.96 314.81 827.77
Transformed Model log PU = 0.3755 − 0.9971 log (NDVI) 0.01 0.0450 −156.04 −155.96 −148.72 167.53

1 August Untransformed Model PU = 0.3387 + 18.9722 IRVI 0.28 <0.0001 247.15 247.23 254.47 678.70
Transformed Model log PU = 2.8567 + 0.9853 log (IRVI) 0.24 <0.0001 −229.51 −229.42 −222.18 129.49

NDVI: Normalized difference vegetation index; IRVI: Inverse infrared vegetative index; Akaike’s Information Criterion (AIC); AICc: Akaike’s Information Corrected Criterion; BIC:
Bayesian Information Criterion. Significantly different at p < 0.05. PRESS: Prediction sum of squares.
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Table 8. Total potato yield models with adjusted coefficient of determination (R2
adj), p Value, AIC, AICc, BIC, and PRESS for flight operations.

Flights Model Transformation Model R2
adj p Value AIC AICc BIC PRESS

25 June Untransformed Model Yield = 45.89 − 45.18 NDVI + 15.36 CHLGR − 23.76 ANTHO 0.50 <0.0001 431.90 432.41 443.05 4407.10
Transformed Model Log Yield = 1.6472 − 0.6025 NDVI − 0.7942 GNDVI + 1.2772 CHLGR − 0.5067 0.63 <0.0001 −635.72 −635.21 −624.57 6.05

1 July Untransformed Model Yield = 23.7808+ 0.4786 GNDVI + 5.5628 CHLGR − 1.3306 ANTHO + 41.30 0.44 <0.0001 453.57 454.09 464.72 5230.18
Transformed Model log Yield = 1.3201 + 0.7931 GNDVI − 0.7896 BNDVI + 0.1904 CHLGR − 0.1534 ANTHO 0.44 <0.0001 −630.53 −629.80 −616.60 6.58

9 July Untransformed Model Yield = 25.13 + 78.91 NDVI − 166.03 GNDVI + 34.67 BNDVI + 13.10 CHLGR + 10.53 ANTHO 0.56 <0.0001 419.10 420.09 435.83 3977.76
Transformed Model Log Yield = 1.179 + 0.973 NDVI − 2.074 GNDVI + 0.405 BNDVI + 0.155 CHLGR + 0.137 ANTHO 0.55 <0.0001 −655.38 −654.39 −638.65 5.18

16 July Untransformed Model Yield = 45.037 + 91.383 GNDVI − 76.667 BNDVI 0.47 <0.0001 437.26 437.60 445.62 4543.39
Transformed Model Log Yield = 1.381 + 1.075 GNDVI − 0.896 BNDVI 0.50 <0.0001 −645.75 −645.41 −637.39 5.66

22 July Untransformed Model Yield = 45.792 − 38.086 NDVI − 89.254 GNDVI + 3.923 BNDVI + 46.422 CHLGR 0.40 <0.0001 454.06 454.79 468.00 5189.32
Transformed Model Log Yield = 1.379 − 0.416 NDVI − 0.787 GNDVI + 0.012 BNDVI + 0.446 CHLGR 0.42 <0.0001 −625.11 −624.38 −611.18 6.61

29 July Untransformed Model Yield = 46.12 − 14.56 BNDVI + 5.06 CHLGR − 24.14 ANTHO − 15.60 GNDVI 0.52 <0.0001 427.69 428.21 438.84 4204.66
Transformed Model Log Yield = 1.284 + 0.100 NDVI + 0.988 GNDVI − 0.767 BNDVI − 0.147 ANTHO 0.54 <0.0001 −654.51 −653.78 −640.57 5.27

14
August

Untransformed Model Yield = 9.814 + 42.583 NDVI + 109.470 GNDVI − 78.826 BNDVI − 4.019 CHLGR 0.37 <0.0001 459.88 460.61 473.81 5444.55
Transformed Model Log Yield = 0.896 + 0.582NDVI + 0.488 GNDVI − 0.531 BNDVI 0.34 <0.0001 −610.86 −610.34 –599.71 7.47

23
August

Untransformed Model Yield = 53.300 − 12.472 NDVI + 0.013 GNDVI − 17.562 BNDVI + 0.439 CHLGR − 20.053 ANTHO 0.47 0.0012 441.78 442.78 442.77 4970.32
Transformed Model Log Yield = 1.487 − 1.069 NDVI + 1.610 GNDVI − 2.421 BNDVI − 1.898 ANTHO 0.45 <0.0001 −631.00 −630.81 615.07 6.50

NDVI: Normalized difference vegetation index; BNDVI: Blue NDVI: GNDVI: Green NDVI; CHLGR: Chlorophyll green; ANTHO: Anthocyanin; Akaike’s Information Criterion (AIC);
AICc: Akaike’s Information Corrected Criterion; BIC: Bayesian Information Criterion. Significantly different at p < 0.05; PRESS: Prediction sum of squares.

Table 9. Phosphorus uptake (kg ha −1) models with the adjusted coefficient of determination (R2
adj), p Value, AIC, AICc, BIC, and PRESS for flight operations.

Flights Model Transformation Model R2
adj p Value AIC AICc BIC PRESS

9 July Untransformed Model PU = 5.695 − 1.0549 NDVI + 4.686 GNDVI − 4.0981 BNDVI 0.12 0.0003 3.55 4.07 14.70 125.13

Transformed Model Log PU = 0.594 − 0.143 NDVI + 0.894 GNDVI − 0.820 BNDVI 0.17 <0.0001 −428.41 −4.27 −417.26 6.54

16 July Untransformed Model PU = 3.123 + 1.738 NDVI 0.10 0.0002 4.25 4.45 9.83 124.03

Transformed Model Log PU = 1.122 + 0.444 NDVI 0.13 <0.0001 −348.79 −348.58 −343.21 6.54

22 July Untransformed Model PU = 3.094 + 2.033 NDVI − 0.619 BNDVI + 2.980 ANTHO 0.06 0.003 7.53 8.51 24.26 126.57

Transformed Model Log PU = 1.0377 + 0.4322 NDVI + 0.797 ANTHO 0.07 0.004 −346.07 −345.34 −332.13 6.65

29 July Untransformed Model PU = 2.808 + 1.228 NDVI + 0.615 BNDVI + 1.975 ANTHO 0.12 0.02 3.88 4.40 15.03 123.97

Transformed Model Log PU = 0.988 − 0.335 NDVI − 2.071 GNDVI + 1.511 BNDVI + 0.586 ANTHO 0.15 <0.0001 −348.91 −348.18 −334.97 6.48

14
August

Untransformed Model PU = 4.525 − 15.386 GNDVI + 8.289 BNDVI + 0.4802 CHLGR 0.15 <0.0001 2.36 3.34 11.37 123.12

Transformed Model Log PU = 1.497 − 3.579 GNDVI + 1.934 BNDVI + 0.0972 CHLGR 0.17 <0.0001 −352.56 −352.04 −341.41 6.48

NDVI: Normalized difference vegetation index; BNDVI: Blue NDVI: GNDVI: Green NDVI; CHLGR: Chlorophyll green; ANTHO: Anthocyanin; Akaike’s Information Criterion (AIC);
AICc: Akaike’s Information Corrected Criterion; BIC: Bayesian Information Criterion. Significantly different at p < 0.05; PRESS: Prediction sum of squares; PU: Phosphorus uptake.
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3.2.2. Relationships between Actual and Predicted Variables

Models built using the data obtained by the passive sensors showed stronger and more consistent
correlations between the actual and predicted total potato yields than the models based on the data
from active sensors. The strongest relationship between the actual and predicted total potato yield
was obtained by the transformed model for the first drone flight on 25 June, with an adjusted R2 of
0.63 (Figure 8b). For other models, the coefficients of determination fluctuated between 0.50 and 0.56.
On the other hand, the phosphorous uptake data showed little correlation between the actual and
predicted values (Figure 9).

Figure 8. Relationship between the actual and predicted total potato yield for (a) the first flight on
25 June, the untransformed model; (b) the first flight on 25 June, the transformed model; (c) the third
flight on 9 July, the untransformed model; (d) third flight on 9 July, the transformed model; (e) the sixth
flight on 29 July, the untransformed model; (f) the sixth flight on 29 July, the transformed model.

Figure 9. Relationship between the actual and predicted phosphorus uptake for (a) the third flight on
9 July, the untransformed model; (b) the third flight on 9 July, the transformed model; (c) the sixth flight
on 29 July, the untransformed model; (d) the sixth flight on 29 July, the transformed model.
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4. Discussion

Understanding the relationships and correlations between yield and phosphorous application
requires assessing different sites with different vegetation indices and plant pigments [11]. The NIR
region plays a vital role in predicting phosphorus stress due to the internal leaf structure; under P
stress, the number of small leaf cells is increased compared to non-stress conditions [11,58].

Indices obtained by the Crop Circle™ active sensor were weakly correlated with total potato yield,
most likely because the Crop Circle™ active sensor can be more sensitive to nitrogen stress than to P
stress [12,59]. The highest amount of variation explained by the model was only 36% (R2

adj = 0.36),
achieved at the first sensing date (25 June). After that, the fitted models’ explanatory capabilities
dropped (Table 6). In contrast, 60% of the variation in P uptake (R2

adj = 0.60) could be explained by the
model on the third sensing date (9 July). However, subsequently, sensor performance deteriorated
(Table 7). This could be attributed to potato tissue phosphorus that could be decreased at the end of
the season growth stages due to the P translocation from the shoot system to tubers regardless of the
soil P concentration, which could exhibit a vast P stress [15,60].

Correlations between the actual and predicted variables revealed the poor predictive abilities of
Crop Circle™ regarding the total potato yield, as well as being only a moderate predictive model for P
uptake. This could be attributed to the values of NDVI, which were lower than those at NDRE due to
the red band, which was not useful to predict phosphorus stress and the overlapping between plant
pigment reflectance [15].

For the GreenSeeker™ active sensor output, the adjusted R2 values were weak to moderate for
NDVI and IRVI at all dates. This might be because the GreenSeeker active sensor operates in two
wavelengths centered at the red and NIR with no red-edge. The red-edge band can predict P in
crops [61]. The GreenSeeker™ active sensor readings showed a weak relationship with potato yield
and P uptake when used individually. Similar to Crop Circle™, it was a useful sensor for nitrogen
rather than phosphorus [12,62].

In this study, the vegetation indices derived from passive sensors showed a better correlation
with total potato yield than the active sensors, which might be due to the extraction and analysis of the
images based on removing the soil and other non-plant pixels before calculating the vegetation indices
using the passive sensors [63,64]. At the first flight, the ANTHO and NDVI were negatively correlated
with total potato yield, with a moderate adjusted R2 (0.50), and positively correlated during the third
drone flight, with an adjusted R2 of 0.56. ANTHO was estimated from the red band and green band’s
reflectance ratio to reduce the overlap between the ANTHO and chlorophyll [17]. However, there are
two possible explanations for this result. Firstly, the leaf surface reflectance in the visible region is larger
than that in the infrared region. Secondly, the ANTHO content is high at the early vegetative stage,
characterized by low photosynthetic activity [13]. At the early and late leaf stages, the green band
might have a lower reflectance (higher absorption) than the middle stage of the growing season [14,21].

P uptake was not successfully determined by the models created based on the passive sensor data.
During the flights, the adjusted R2 values ranged from 0.06 to 0.17. Even though the transformed methods
reinforced the equations, the models were still considered poor predictive models. However, early potato
stages, such as vegetative growth (30 days after planting) and tuber initiation (50–60 days after planting),
are important stages for the plants to accumulate sufficient soil P, which can be reflected in potato
growth [6,60]. At the end of the potato growing season, the cell number, shape, size, and water content
decrease, leading to increased absorption at the green band and increased blue and red reflectance.
Furthermore, plant stress at the end of the potato growing season could be confounded with plant
senescence [18]. Additionally, there is no huge P stress at the late potato growth stage due to the high
soil P, thus, P stress would be rarely detected by the sensors [15].

5. Conclusions

This study assessed the employment of active sensing (Crop Circle™ and GreenSeeker™) and passive
sensing (multispectral imaging with UAVs) to predict total potato yield and P uptake. The vegetation
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indices were calculated from the data collected by the active and passive sensors to generate the
models. The vegetation indices developed using Crop Circle™ showed weak correlations with total
potato yield but were good in providing an early season estimate of P uptake. Similar results were
observed using GreenSeeker™. GreenSeeker™ is also moderately effective in predicting P uptake early
in the season. The passive sensor data extracted from visible and multispectral imagery provide good
estimates of total potato yield at the early potato season and can be used to predict P stress though
it predicted P uptake only late in the season. The remotely sensed imagery showed a significant
correlation between total potato yield and the NDVI, CHLGR, and ANTHO indices. However, it was
largely useless in predicting P uptake. Future investigations should assess these results on soils with
different P concentrations, under different environmental conditions, and using different active and
passive sensors.

Author Contributions: A.J., L.K.S., A.A., C.W. and S.K.B. designed, collected and analyzed data, and wrote the
manuscript. A.Z. and A.B. collected soil, and plant data; L.K.S. and A.A. acquired the funding. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Maine Department of Agriculture program of the USDA, Specialty Crop
Block Grant contract number: (RFP#201703055).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Greenway, G.A.; Guenthner, J.F.; Makus, L.D.; Pavek, M.J. An Analysis of Organic Potato Demand in the U.S.
Am. J. Potato Res. 2010, 88, 184–189. [CrossRef]

2. USDA. United States Department of Agriculture National Resources Conservation Service; The PLANTS Database,
National Plant Data Center: Baton Rouge, LA, USA, 2018.

3. Abbasian, A.; Ahmadi, A.; Abbasi, A.; Darvishi, B. Effect of various phosphorus and calcium concentrations
on potato seed tuber production. J. Plant Nutr. 2018, 41, 1765–1777. [CrossRef]

4. Fernandes, A.M.; Soratto, R.P.; Pilon, C. Soil Phosphorus Increases Dry Matter and Nutrient Accumulation
and Allocation in Potato Cultivars. Am. J. Potato Res. 2014, 92, 117–127. [CrossRef]

5. Osborne, S.L. Separating Spectral Signatures for Detecting Nitrogen, Phosphorus and Water Stress in Corn.
Ph.D. Thesis, University of Nebraska, Lincoln, NE, USA, 1999.

6. Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers; Pearson Education India, Inc.:
Upper Saddle River, NJ, USA, 2016.

7. Barker, A.V.; Pilbeam, D.J. Handbook of Plant Nutrition; CRC Press: Boca Raton, FL, USA, 2015.
8. Duff, S.M.; Sarath, G.; Plaxton, W.C. The role of acid phosphatases in plant phosphorus metabolism. Physiol. Plant.

1994, 90, 791–800. [CrossRef]
9. Wang, Z.Q.; Zhou, X.; Dong, L.; Guo, J.; Chen, Y.; Zhang, Y.; Wu, L.; Xu, M. iTRAQ-based analysis of

the Arabidopsis proteome reveals insights into the potential mechanisms of anthocyanin accumulation
regulation in response to phosphate deficiency. J. Proteom. 2018, 184, 39–53. [CrossRef] [PubMed]

10. Mahajan, G.; Sahoo, R.; Pandey, R.; Gupta, V.; Kumar, D. Using hyperspectral remote sensing techniques to
monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precis. Agric. 2014, 15,
499–522. [CrossRef]

11. Osborne, S.L.; Schepers, J.S.; Francis, D.D.; Schlemmer, M.R. Detection of Phosphorus and Nitrogen
Deficiencies in Corn Using Spectral Radiance Measurements. Agron. J. 2002, 94, 1215–1221. [CrossRef]

12. Sharma, L.; Bu, H.; Franzen, D.; Denton, A. Use of corn height measured with an acoustic sensor improves
yield estimation with ground based active optical sensors. Comput. Electron. Agric. 2016, 124, 254–262.
[CrossRef]

13. A Sims, D.; A Gamon, J. Relationships between leaf pigment content and spectral reflectance across a
wide range of species, leaf structures and developmental stages. Remote. Sens. Environ. 2002, 81, 337–354.
[CrossRef]

http://dx.doi.org/10.1007/s12230-010-9180-1
http://dx.doi.org/10.1080/01904167.2018.1454955
http://dx.doi.org/10.1007/s12230-014-9422-8
http://dx.doi.org/10.1111/j.1399-3054.1994.tb02539.x
http://dx.doi.org/10.1016/j.jprot.2018.06.006
http://www.ncbi.nlm.nih.gov/pubmed/29920325
http://dx.doi.org/10.1007/s11119-014-9348-7
http://dx.doi.org/10.2134/agronj2002.1215
http://dx.doi.org/10.1016/j.compag.2016.04.016
http://dx.doi.org/10.1016/S0034-4257(02)00010-X


Agriculture 2020, 10, 564 22 of 24

14. Gitelson, A.A.; Merzlyak, M.N. Non-destructive assessment of chlorophyll carotenoid and anthocyanin
content in higher plant leaves: Principles and algorithms. Remote. Sens. Agric. Environ. 2004, 78–94.
Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1265&context=natrespapers
(accessed on 10 February 2020).

15. Osborne, S.L.; Schepers, J.S.; Schlemmer, M.R. Detecting Nitrogen and Phosphorus Stress in Corn Using
Multi-spectral Imagery. Commun. Soil Sci. Plant Anal. 2004, 35, 505–516. [CrossRef]

16. Hunt, E.R.; Daughtry, C.S.T.; Mirsky, S.B.; Hively, W.D. Remote Sensing With Simulated Unmanned Aircraft
Imagery for Precision Agriculture Applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2014, 7, 4566–4571.
[CrossRef]

17. Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999,
143, 105–117. [CrossRef]

18. Carroll, M.W.; Glaser, J.A.; Hellmich, R.L.; Hunt, T.E.; Sappington, T.W.; Calvin, D.; Copenhaver, K.; Fridgen, J.
Use of spectral vegetation indices derived from airborne hyperspectral imagery for detection of European
corn borer infestation in Iowa corn plots. J. Econ. Entomol. 2008, 101, 1614–1623. [CrossRef] [PubMed]

19. Soundararajan, M. Relationship between leaf chlorophyll content and carbon isotope discrimination in
soybean. IPCBEE 2012, 31, 22–27.

20. Gitelson, A.A.; Gamon, J.A.; Solovchenko, A. Multiple drivers of seasonal change in PRI: Implications for
photosynthesis 1. Leaf level. Remote. Sens. Environ. 2017, 191, 110–116. [CrossRef]

21. Gitelson, A.A.; Keydan, G.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll,
carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, 11. [CrossRef]

22. Holland, K.H.; Lamb, D.; Schepers, J.S. Radiometry of Proximal Active Optical Sensors (AOS) for Agricultural
Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1793–1802. [CrossRef]

23. Barker, D.W.; Sawyer, J.E. Factors Affecting Active Canopy Sensor Performance and Reflectance Measurements.
Soil Sci. Soc. Am. J. 2013, 77, 1673–1683. [CrossRef]

24. Kipp, S.; Mistele, B.; Schmidhalter, U. The performance of active spectral reflectance sensors as influenced
by measuring distance, device temperature and light intensity. Comput. Electron. Agric. 2014, 100, 24–33.
[CrossRef]

25. Hatfield, J.L.; Prueger, J.H. Value of Using Different Vegetative Indices to Quantify Agricultural Crop
Characteristics at Different Growth Stages under Varying Management Practices. Remote Sens. 2010, 2,
562–578. [CrossRef]

26. Yu, K.; Li, F.; Gnyp, M.L.; Miao, Y.; Bareth, G.; Chen, X. Remotely detecting canopy nitrogen concentration
and uptake of paddy rice in the Northeast China Plain. ISPRS J. Photogramm. Remote Sens. 2013, 78, 102–115.
[CrossRef]

27. Cao, Q.; Miao, Y.; Feng, G.; Gao, X.; Li, F.; Liu, B.; Yue, S.; Cheng, S.; Ustin, S.L.; Khosla, R. Active canopy
sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Comput. Electron. Agric. 2015,
112, 54–67. [CrossRef]

28. Eitel, J.U.H.; Keefe, R.F.; Long, D.S.; Davis, A.S.; Vierling, L.A. Active Ground Optical Remote Sensing for
Improved Monitoring of Seedling Stress in Nurseries. Sensors 2010, 10, 2843–2850. [CrossRef] [PubMed]

29. Li, F.; Mistele, B.; Hu, Y.; Yue, X.; Yue, S.; Miao, Y.; Chen, X.; Cui, Z.; Meng, Q.; Schmidhalter, U. Remotely estimating
aerial N status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic
zones in China and Germany. Field Crop. Res. 2012, 138, 21–32. [CrossRef]

30. Shaver, T.M.; Khosla, R.; Westfall, D.G. Evaluation of Two Ground-Based Active Crop Canopy Sensors in
Maize: Growth Stage, Row Spacing, and Sensor Movement Speed. Soil Sci. Soc. Am. J. 2010, 74, 2101–2108.
[CrossRef]

31. Cao, Q.; Miao, Y.; Shen, J.; Yu, W.; Yuan, F.; Cheng, S.; Huang, S.; Wang, H.; Yang, W.; Liu, F. Improving in-season
estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle
active crop canopy sensor. Precis. Agric. 2015, 17, 136–154. [CrossRef]

32. Scientifc, H. 2020. Available online: https://hollandscientific.com/portfolio/crop-circle-acs-430/ (accessed on
11 September 2020).

33. Wang, T.; Thomasson, J.A.; Yang, C.; Isakeit, T.; Nichols, R.L. Automatic Classification of Cotton Root Rot
Disease Based on UAV Remote Sensing. Remote Sens. 2020, 12, 1310.

https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1265&context=natrespapers
http://dx.doi.org/10.1081/CSS-120029728
http://dx.doi.org/10.1109/JSTARS.2014.2317876
http://dx.doi.org/10.1046/j.1469-8137.1999.00424.x
http://dx.doi.org/10.1093/jee/101.5.1614
http://www.ncbi.nlm.nih.gov/pubmed/18950044
http://dx.doi.org/10.1016/j.rse.2016.12.014
http://dx.doi.org/10.1029/2006GL026457
http://dx.doi.org/10.1109/JSTARS.2012.2198049
http://dx.doi.org/10.2136/sssaj2013.01.0029
http://dx.doi.org/10.1016/j.compag.2013.10.007
http://dx.doi.org/10.3390/rs2020562
http://dx.doi.org/10.1016/j.isprsjprs.2013.01.008
http://dx.doi.org/10.1016/j.compag.2014.08.012
http://dx.doi.org/10.3390/s100402843
http://www.ncbi.nlm.nih.gov/pubmed/22319275
http://dx.doi.org/10.1016/j.fcr.2012.09.002
http://dx.doi.org/10.2136/sssaj2009.0421
http://dx.doi.org/10.1007/s11119-015-9412-y
https://hollandscientific.com/portfolio/crop-circle-acs-430/


Agriculture 2020, 10, 564 23 of 24

34. Li, S.; Ding, X.; Kuang, Q.; Ata-Ui-Karim, S.T.; Cheng, T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Potential of
UAV-Based Active Sensing for Monitoring Rice Leaf Nitrogen Status. Front. Plant Sci. 2018, 9, 1834.
[CrossRef]

35. Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index.
Remote Sens. Environ. 1997, 62, 241–252. [CrossRef]

36. Rouse, J.W., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with
ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Greenbelt, MD, USA,
1 January 1974; p. 371.

37. Milton, N.; Eiswerth, B.; Ager, C. Effect of phosphorus deficiency on spectral reflectance and morphology of
soybean plants. Remote Sens. Environ. 1991, 36, 121–127. [CrossRef]

38. Shi, J.; Zou, X.; Zhao, J.; Mao, H.; Wang, K.; Chen, Z.; Huang, X.; Holmes, M. Pre-Visual Diagnostics of
Phosphorus Deficiency in Mini-Cucumber Plants Using Near-Infrared Reflectance Spectroscopy. Appl. Spectrosc.
2012, 66, 1426–1432. [CrossRef] [PubMed]

39. Li, L.; Wang, S.; Ren, T.; Wei, Q.; Ming, J.; Li, J.; Li, X.; Cong, R.; Lu, J. Ability of models with effective
wavelengths to monitor nitrogen and phosphorus status of winter oilseed rape leaves using in situ canopy
spectroscopy. Field Crop. Res. 2018, 215, 173–186. [CrossRef]

40. Mahajan, G.R.; Pandey, R.N.; Sahoo, R.N.; Gupta, V.K.; Datta, S.C.; Kumar, D. Monitoring nitrogen,
phosphorus and sulphur in hybrid rice (Oryza sativa L.) using hyperspectral remote sensing. Precis. Agric.
2017, 18, 736–761. [CrossRef]

41. Zhu, W.; Huang, Y.; Sun, Z. Mapping Crop Leaf Area Index from Multi-Spectral Imagery Onboard an
Unmanned Aerial Vehicle. In Proceedings of the 2018 7th International Conference on Agro-Geoinformatics
(Agro-Geoinformatics), Hangzhou, China, 6–9 August 2018; pp. 1–5.

42. Extension, C. Maine Board of Pesticides Control—Cooperative Extension: Potatoes—University of Maine
Cooperative Extension. 2018. Available online: https://extension.umaine.edu/potatoes/recertification-credits/
maine-board-of-pesticides-control/ (accessed on 16 October 2018).

43. McLean, E. Soil pH and lime requirement. In Methods of Soil Analysis. Part 2. Chemical and Microbiological
Properties; American Society of Agronomy: Madison, WI, USA, 1982; pp. 199–224.

44. Storer, D.A. A simple high sample volume ashing procedure for determination of soil organic matter.
Commun. Soil Sci. Plant Anal. 1984, 15, 759–772. [CrossRef]

45. Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal.
1984, 15, 1409–1416. [CrossRef]

46. Keeney, D.R.; Nelson, D.W. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed.;
American Society of Agronomy: Madison, WI, USA, 1982; pp. 643–698.

47. Dahnke, W.C.; Whitney, D.A. Measurement of soil salinity. Recomm. Chem. Soil Test Proced. N. Cent. Reg.
1988, 221, 32–34.

48. Westermann, D.T.; Kleinkopf, G.E. Phosphorus Relationships in Potato Plants 1. Agron. J. 1985, 77, 490–494.
[CrossRef]

49. Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters. Soil Sci. 1962, 93, 68. [CrossRef]
50. Kalra, Y.P.; Maynard, D.G. Methods Manual for Forest Soil and Plant Analysis, Information Report NOR-X-319E;

Northern Forestry Center, Northwest Region: Edmonton, AB, Canada, 1991; Volume 319.
51. Xing, L.; Pittman, J.J.; Inostroza, L.; Butler, T.J.; Munoz, P. Improving Predictability of Multisensor Data with

Nonlinear Statistical Methodologies. Crop. Sci. 2018, 58, 972–981. [CrossRef]
52. Bendig, J.; Bolten, A.; Bareth, G. UAV-based Imaging for Multi-Temporal, very high Resolution Crop

Surface Models to monitor Crop Growth Variability Monitoring des Pflanzenwachstums mit Hilfe
multitemporaler und hoch auflösender Oberflächenmodelle von Getreidebeständen auf Basis von Bildern
aus UAV-Befliegungen. Photogramm. Fernerkund. Geoinf. 2013, 2013, 551–562.

53. Pix4D Mapper. 2019. Available online: https://www.pix4d.com/product/pix4dmapper-photogrammetry-
software (accessed on 15 January 2019).

54. Agisoft Metashape Professional. 2020. Available online: https://www.agisoft.com/downloads/installer/
(accessed on 10 January 2020).

55. ArcGIS 10.3. 2019. Available online: www.arcgis.com (accessed on 20 February 2019).

http://dx.doi.org/10.3389/fpls.2018.01834
http://dx.doi.org/10.1016/S0034-4257(97)00104-1
http://dx.doi.org/10.1016/0034-4257(91)90034-4
http://dx.doi.org/10.1366/11-06529
http://www.ncbi.nlm.nih.gov/pubmed/23231905
http://dx.doi.org/10.1016/j.fcr.2017.10.018
http://dx.doi.org/10.1007/s11119-016-9485-2
https://extension.umaine.edu/potatoes/recertification-credits/maine-board-of-pesticides-control/
https://extension.umaine.edu/potatoes/recertification-credits/maine-board-of-pesticides-control/
http://dx.doi.org/10.1080/00103628409367515
http://dx.doi.org/10.1080/00103628409367568
http://dx.doi.org/10.2134/agronj1985.00021962007700030029x
http://dx.doi.org/10.1097/00010694-196201000-00015
http://dx.doi.org/10.2135/cropsci2017.09.0537
https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
https://www.agisoft.com/downloads/installer/
www.arcgis.com


Agriculture 2020, 10, 564 24 of 24

56. A Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence
of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll
Estimation. J. Plant Physiol. 1994, 143, 286–292. [CrossRef]

57. Wang, F.-M.; Huang, J.H.; Tang, Y.-L.; Wang, X.-Z. New Vegetation Index and Its Application in Estimating
Leaf Area Index of Rice. Rice Sci. 2007, 14, 195–203. [CrossRef]

58. Junior, C.K.; Guimarães, A.M.; Caires, E.F. Use of active canopy sensors to discriminate wheat response to
nitrogen fertilization under no-tillage. Eng. Agríc. 2016, 36, 886–894. [CrossRef]

59. Jacob, J.; Lawlor, D.W. Stomatal and Mesophyll Limitations of Photosynthesis in Phosphate Deficient
Sunflower, Maize and Wheat Plants. J. Exp. Bot. 1991, 42, 1003–1011. [CrossRef]

60. Sharma, L.K.; Bali, S.K.; Dwyer, J.D.; Plant, A.B.; Bhowmik, A. A Case Study of Improving Yield Prediction
and Sulfur Deficiency Detection Using Optical Sensors and Relationship of Historical Potato Yield with
Weather Data in Maine. Sensors 2017, 17, 1095. [CrossRef]

61. Hopkins, B.G.; Hansen, N.C. Phosphorus Management in High-Yield Systems. J. Environ. Qual. 2019, 48,
1265–1280. [CrossRef]

62. Sembiring, H.; Raun, W.; Johnson, G.V.; Stone, M.L.; Solie, J.B.; Phillips, S.B. Detection of nitrogen and
phosphorus nutrient status in bermudagrass using spectral radiance. J. Plant Nutr. 1998, 21, 1189–1206.
[CrossRef]

63. Sharma, L.K.; Bali, S.; Zaeen, A.; Baldwin, P.; Franzen, D. Use of Rainfall Data to Improve Ground-Based
Active Optical Sensors Yield Estimates. Agron. J. 2018, 110, 1561–1571. [CrossRef]

64. Hunt, E.R.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote Sensing Leaf Chlorophyll Content Using a
Visible Band Index. Agron. J. 2011, 103, 1090–1099. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0176-1617(11)81633-0
http://dx.doi.org/10.1016/S1672-6308(07)60027-4
http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n5p886-894/2016
http://dx.doi.org/10.1093/jxb/42.8.1003
http://dx.doi.org/10.3390/s17051095
http://dx.doi.org/10.2134/jeq2019.03.0130
http://dx.doi.org/10.1080/01904169809365477
http://dx.doi.org/10.2134/agronj2017.12.0696
http://dx.doi.org/10.2134/agronj2010.0395
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Site Description 
	Soil Sampling and Analysis 
	Plant Sampling and Analysis 
	Potato Harvest 
	Sensor Description and Sensing Procedure 
	Active Sensors 
	Passive Sensors 

	Statistical Analysis 
	Multiple Linear Regression Model Diagnostics 
	Criteria for Evaluation of a Subset of Predictor Variables 
	Generalized Linear Model (GLM) 


	Results 
	Active Sensors 
	Crop Circle™ 
	GreenSeeker™ 

	Passive Sensors 
	Total Potato Yield and Phosphorus Uptake Models 
	Relationships between Actual and Predicted Variables 


	Discussion 
	Conclusions 
	References

