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Abstract: Cancer cachexia is a debilitating condition characterized by an extreme loss of skeletal
muscle mass, which negatively impacts patients’ quality of life, reduces their ability to sustain
anti-cancer therapies, and increases the risk of mortality. Recent discoveries have identified the
myostatin/activin A/ActRIIB pathway as critical to muscle wasting by inducing satellite cell
quiescence and increasing muscle-specific ubiquitin ligases responsible for atrophy. Remarkably,
pharmacological blockade of the ActRIIB pathway has been shown to reverse muscle wasting and
prolong the survival time of tumor-bearing animals. To explore the implications of this signaling
pathway and potential therapeutic targets in cachexia, we construct a novel mathematical model
of muscle tissue subjected to tumor-derived cachectic factors. The model formulation tracks the
intercellular interactions between cancer cell, satellite cell, and muscle cell populations. The model
is parameterized by fitting to colon-26 mouse model data, and the analysis provides insight into
tissue growth in healthy, cancerous, and post-cachexia treatment conditions. Model predictions
suggest that cachexia fundamentally alters muscle tissue health, as measured by the stem cell ratio,
and this is only partially recovered by anti-cachexia treatment. Our mathematical findings suggest
that after blocking the myostatin/activin A pathway, partial recovery of cancer-induced muscle
loss requires the activation and proliferation of the satellite cell compartment with a functional
differentiation program.

Keywords: cancer cachexia; muscle wasting; mathematical oncology; mathematical modeling;
dynamical systems

1. Introduction

Cancer cachexia is a condition identified by an ongoing and irreversible loss of skeletal muscle
and adipose tissue [1–4]. Depending on the tumor type, cachexia affects 30 to 85% of cancer patients [5],
and it leads to increased morbidity and mortality [6–8]. The highest incidence of cachexia is seen in
patients with pancreatic, gastric, or lung cancers [9,10]. In pancreatic cancer, over 85% of patients suffer
from cachexia, contributing to its very poor survival statistics [11]. Historically, the cause of cancer
cachexia was thought to be metabolic dysregulation [9,12], which led to nutritional- and fitness-based
therapeutic approaches. None of these approaches were successful, however, leaving cachexia as an
untreatable condition that severely impacts patient quality of life [13–15]. Extreme weight loss is the
primary clinical feature by which cachexia is defined. Generally, an unintended body weight loss of
more than 5% in a year is considered cachexia [1,5]. The dramatic weight loss causes increased disease
symptoms such as pain, weakness, and fatigue [16] and leads to limited treatment options [17,18].

Cancer cachexia is now known to be strongly associated with systemic inflammation [19].
Pro-inflammatory cytokines including tumor necrosis factor α (TNFα) and interleukins 1, 6,
and 10 (IL-1, IL-6 and IL-10) have been associated with the cachectic phenotype in several cancer
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models [20–23]. These cytokines activate the STAT3 and NF-κB signaling pathways, leading to protein
degradation [11,24,25]. Immune infiltrates such as tumor-associated macrophages are believed to
be key reservoirs of these cytokines. Indeed, conditioned media from macrophages and pancreatic
cancer cells have been shown to promote muscle atrophy synergistically through STAT3 signaling [24].
Furthermore, it was observed that macrophage depletion attenuated systemic inflammation and
muscle wasting in pancreatic tumor-bearing mice. Another study showed that brain inflammation in a
mouse model of pancreatic cancer may drive pancreatic ductal adenocarcinoma-associated anorexia,
which contributes to the cachectic phenotype [26].

Recently, a new paradigm in cancer cachexia treatment has arisen, proposing that tumor-derived
factors may alter tissue behavior through molecular signaling. Various tumor-derived factors such
as the cytokines mentioned above, hormones, and glucocorticoids can influence muscle protein
balance through signaling transduction pathways [27]. Several treatments have been proposed to
target upstream mediators of inflammation or downstream factors in catabolic/anabolic muscle
pathways [28]. In particular, the myostatin/activin A signaling pathway plays a significant role in
cancer-induced muscle atrophy [29–33]. Indeed, blocking the activin type-2 receptor (ActRIIB) with a
soluble decoy receptor (sActRIIB) or a myostatin antibody in several mouse models of cachexia has
been shown to prevent muscle wasting and also to reverse the prior loss of skeletal muscle [31,34–37].
Consequently, the survival time of the tumor-bearing animals was increased, even though the tumor
itself was not therapeutically targeted.

Myostatin and activin A are members of the transforming growth factor-β (TGF-β) superfamily of
proteins. They both bind to ActRIIB, a high affinity receptor [38–41], resulting in the phosphorylation
of SMAD2 and dephosphorylation of FOXO3a, which consequently induces satellite cell quiescence.
The dephosphorylated FOXO3a then moves into the nucleus and induces two muscle-specific
ubiquitination ligases that facilitate the degradation of myofibrillar proteins, leading to muscle loss
and cachexia [10,31,42–45].

Recent work by Zhou et al. [31] demonstrated that blocking the activation of ActRIIB and the
subsequent downstream signaling events could stop muscle loss in cancerous mice. They assessed the
effects of an ActRIIB decoy receptor in several mouse models of cancer cachexia, including a murine
colon-26 carcinoma and two xenograft models: human G361 melanoma and human TOV-21G ovarian
carcinoma. The decoy receptor sActRIIB potentially prevents binding of myostatin and activin A to the
ActRIIB receptor and inhibits the downstream signaling. In each case, treatment with sActRIIB was
found to prevent or reverse skeletal muscle atrophy and heart muscle wasting, although it had no effect
on adipose tissue loss or the production of proinflammatory cytokines (for C26 tumor bearing mice).

Under normal conditions, adult skeletal muscle preserves its mass via feedback mechanisms that
balance the signals controlling muscle catabolism and anabolism. When signaling is dysregulated
by tumor-derived factors, the implications on tissue homeostasis are not clear due to the nonlinear
and complex dynamics involved in such feedback control mechanisms. Therefore, a quantitative tool
is needed to better understand the significant factors regulating muscle atrophy (increased muscle
protein degradation) and hypertrophy (increased muscle protein synthesis). Mathematical modeling is
one such tool, and the predictive nature of the model presented in this paper can be used to examine
the complex nature and potential treatments of cancer cachexia.

Mathematical oncology is a burgeoning field of research aimed at constructing predictive models
that provide new insights into the underlying mechanism of cancer initiation, progression, metastasis,
and treatment. Due to the complexity of this disease, it has been suggested that conceptual frameworks
are needed to interrogate the data provided by laboratory experiments and clinical trials [46–48].
Cancer modeling involves a wide range of mathematical formalisms, including ordinary differential
equations, partial differential equations, cellular automata, and hybrid approaches, which are used
to examine all aspects of the disease evolution and treatment [49–54]. Mathematical models of
muscle degradation and regeneration have been proposed to study muscular dystrophies [55]. In [56],
a new mathematical model was presented to explore the healing process of healthy skeletal muscle.
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In cancer cachexia, the modeling work is limited and focuses on metabolic alterations and energy
expenditures [57,58]. Recently, a model of tumor-promoting inflammation was proposed [59], which
may be a key driver of cancer cachexia. To the best of our knowledge, we are the first to present a
mathematical model of muscle degeneration in the context of cancer cachexia.

We present a novel mathematical framework to explore the effects of dysregulated signaling in
cancer cachexia. Inspired by a model for population growth with negative feedback [60], we construct
a model of feedback-regulated healthy muscle tissue by describing the growth rates of muscle and
satellite cells (muscle stem cell) compartments using ordinary differential equations. Negative feedback
from the muscle to stem compartments maintains tissue homeostasis. We then extend the model to
include a growing tumor that interferes with the intercellular signals and, thus, with the feedback
control. This dysregulation leads to muscle loss in the model. Finally, the model is extended to simulate
the effects of ActRIIB blockade treatment. Model parameters are found by fitting to experimental data
for healthy, diseased, and therapeutic states, and the model is validated by comparing to a second
experimental group [31]. Model simulations suggest that satellite cell reactivation is the primary target
for muscle recovery through the myostatin/activin A/ActRIIB signaling pathway.

2. A Model of Healthy Muscle Tissue

Skeletal muscle is a form of striated muscle tissue, accounting for about 40% of a healthy
person’s body weight [61]. Adult skeletal muscle, which is stable under normal circumstances, has an
extraordinary ability to regenerate post-injury by activating various precursor cells. Here, we focus on
the dynamics of satellite cells (the principal skeletal muscle stem cells [62]) and myofibers (the terminal
differentiated muscle cells). Satellite cells comprise approximately 3–7% [63–66] of all muscle nuclei in
skeletal muscle and are mitotically dormant unless activated by an external signal. Upon receiving an
activation signal, a satellite cell will enter the cell cycle to proliferate and differentiate into myogenic
precursor cells in an attempt to repair the damage and maintain tissue homeostasis [67–72].

To model the dynamics of skeletal muscle regeneration and repair, we begin with a classic model
of cell lineage [60,73]. Neglecting the intermediate precursor cells to avoid unnecessary complexity,
we consider only two cell compartments: the satellite cells (or stem cells) S(t) and the muscle cells
(or differentiated cells) M(t): 

dS
dt

= (2p(t)− 1)ν(t)S(t),

dM
dt

= 2(1− p(t))ν(t)S(t)− d0M(t).
(1)

Here, d0 is the natural death rate for differentiated muscle cells. The proliferation rate of satellite cells is
ν(t), and the probability of symmetric self-renewing division is p(t); that is, once activated, a satellite
cell will divide into two daughter satellite cells with probability p(t) and into two differentiated
muscle cells with probability 1− p(t). The probability of self-renewal, p(t), and the proliferation
rate, ν(t), are determined by intercellular interactions and thus provide the mechanism for negative
feedback control. The muscle compartment will decrease the proliferation rate and probability of
self-renewing division as it approaches its homeostatic level. Following muscle injury, satellite cells
undergo extensive proliferation to self-renew and differentiate into muscle cells [74]. After resolution
of the healing process, the division rate and probability return to their homeostatic maintenance levels.
To model feedback in the symmetric division probability, we propose:

p(t) = p0 +
p1

1 + 1
m M(t)

(2)

where p0 is the homeostatic probability, p1 is the perturbation probability activated in growth or in
response to injury, and m is the half-saturation constant. Since this is a probability, we must have
0 < p0 + p1 ≤ 1. Notice from (1) that if ν(t) > 0, then p(t) > 1

2 will result in unbounded growth in
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the stem compartment, whereas p(t) = 1
2 will result in no growth. We thus expect p(t) ≈ 1

2 in the
steady-state.

Similar to the above, we propose the same feedback form for the proliferation rate of satellite cells:

ν(t) = ν0 +
ν1

1 + 1
m M(t)

. (3)

Here, ν0 is the homeostatic division rate, ν1 is the perturbation division rate activated in growth or in
response to injury, and m is the half-saturation constant.

These negative feedback loops provide two mechanisms by which the satellite cell behavior
is controlled by the muscle compartment. Together, they act to regulate the tissue to
maintain homeostasis.

2.1. Model Parameterization

The experimental data that were available to us came in many forms: body or tissue mass in
grams (g), tumor volume in mm3, and cell numbers (from tumor implantation). We thus needed to
manipulate the data to match our mathematical model description, which was nominally a volume
measurement for each compartment. To parameterize our model, we deconstructed body weight
measurements into an estimate of lean muscle mass. We assumed that body weight (mass) consisted
of 40% skeletal lean mass and 60% other (including adipose tissue, bone, organ tissue, etc). From this
40%, we estimated that 95% was due to muscle cells and 5% due to satellite cells. Finally, to convert
mass in grams to tissue volume in mm3, we estimated a conversion factor of ξ = 0.002 g/mm3

(from an estimated tumor volume of 1000 mm3 weighing 2 g [31] (Figure 2C)). These breakdowns
were estimates that allowed us to fit our model to the experimental data. All numerical simulations
were conducted with default numeric integration methods using either NDSolve in Mathematica
(www.wolfram.com/mathematica/) or Dsolve in Maple (www.maplesoft.com), which are similar
numerical solvers for initial value problems. A sample Mathematica script to plot the numeric solution
of the model is provided in Appendix A.

2.2. Healthy Experimental Data

To parameterize the healthy feedback control mechanisms that exist in normal growth and
development, we fit our model (1)–(3) to average body weight measurements of the U.S.-bred male
CDF1 mouse. Growth data were available from the supplier for the first 3 to 15 weeks of life [75],
which did not fully characterize the adult mouse size. We thus extended these data to 300 days by
fitting a logistic growth curve to the average body weight W(t):

dW
dt

= αW(t)
(

1− W(t)
K

)
(4)

with a growth rate of α = 0.0756, a carrying capacity of K = 28.3 g, and an initial mass at 3 weeks,
Day t = 0, of W(0) = 11.26 g. The fit of this logistic curve to the body weight data was computed
in Mathematica using the NonlinearModelFit command. Actual experimental data points were
then extended beyond 15 weeks (84 days), by sampling from this logistic growth model every 10
days from Day 90 up to Day 300. Fitting to the extended dataset ensured the model parameters
captured the homeostatic adult muscle mass size, which was not fully realized in the actual dataset.
Experimental and extended body weight data converted to lean body mass (40% of body weight
divided into 95% muscle cells and 5% stem cells) are shown in Figure 1.

www.wolfram.com/mathematica/
www.maplesoft.com
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Figure 1. Lean body mass for a U.S.-bred CDF1 male mouse. Body weight measurements from
the suppliers’ published growth data [75] are deconstructed into estimated lean mass (40% of body
weight) and then further divided into muscle (95%, solid box) and stem (5%, solid circle) lean masses.
The lean mass data is extended by fitting a logistic growth model to average body weight which is then
deconstructed into estimated lean mass (40% of body weight) and then divided into muscle (95%, open
box) and stem (5%, open circle) lean masses. Finally, these extended muscle and stem mass datasets are
used to fit the mathematical model given by Equations (1)–(3) in Maple.

Simulated Annealing for Parameter Fitting

The full feedback model defined by Equations (1)–(3) is difficult to parameterize due to the
nonlinear structure and high sensitivity around p(t) = 1

2 . As discussed above, if p(t) > 1
2

then unbounded growth occurs in the stem compartment, which is not physical. In the steady-state,
we expected the stem compartment to be approximately constant, and this requires p(t) ≈ 1

2 .
The restrictions on p0 make it highly sensitive to change. This sensitivity arose from the decision
to consider only symmetric self-replication or symmetric differentiation of stem cells in the model.
Potentially, the model could be extended to allow satellite cell asymmetric division with a probability
that increases to 1 near the steady-state to remove this high sensitivity. The addition of a third
division probability of satellite cells would increase the complexity of our model and is left for
future exploration.

Parameterization was thus performed hierarchically by fixing two model parameters (d and m)
and using a simulated annealing algorithm [76,77] to fit the remaining parameters (p0, p1, ν0, and ν1)
that control the feedback mechanisms. After a successful fit, parameters d and m were varied one at
a time, and simulated annealing was used to find the remaining parameters again. The final fit was
determined by the minimum of our objective function, the root-mean-squared-error (RMSE), which
considered differences from both estimated and extended muscle and satellite mass data and the model
predicted values. The parameter values determined in this manner are listed in Table 1. The model fit
to the data is shown in Figure 1.

Table 1. Parameter values for the healthy muscle model Equations (1)–(3) found by fitting the model
prediction to the estimated and extended muscle and satellite mass data of the CDF1 male mouse.
Simulated annealing was used to find p0, p1, ν0, and ν1, while d and m were iterated over manually.
The parameters listed correspond to the best fit (minimum RMSE = 0.168). Initial conditions were
estimated for a 3-week-old CDF1 male mouse.

Model Parameters

p0 = 0.479 v0 = 0.087 day−1 d0 = 0.05 day−1

p1 = 0.133 v1 = 5.591 day−1 m = 1000 mm3

Initial Conditions

S(0) = 0.536 g M(0) = 10.17784 g ξ = 0.002 g/mm3

S(0) = 268.01 mm3 M(0) = 5088.92 mm3
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3. Modeling Cancer Cachexia and Treatment

Myostatin and activin A are two promising molecular targets of muscle wasting in cancer
cachexia [27,78]. Myostatin and activin, from the TGF-β superfamily, have both been found to be
upregulated in patients with advanced stages of cancer and various chronic diseases such as kidney
disease, congestive heart failure, diabetes, sarcopenia, and obesity [5,27]. They can bind to the activin
type IIB receptor (ActRIIB), activating a cascade that leads to satellite cell quiescence and muscle
degradation; see Figure 2A.

Figure 2. Myostatin and activin signaling pathway in muscle. (A) Myostatin and activin A bind to the
activin type IIB receptor (ActRIIB) on muscle cell membranes, resulting in phosphorylation of Smad2.
The phosphorylated Smad2 induces satellite cell quiescence and the dephosphorylation of transcription
factor FOXO3a, which consequently moves into the nucleus and activates the transcription of E3
ubiquitin ligase, MuRF1, and Atrogin-1. These muscle-atrophy enzymes provide the specificity that
causes the degradation of muscles leading to cachexia. (B) Using a soluble form of the activin type IIB
receptor, sActRIIB, the effect of myostatin/activin A signaling is blocked, resulting in a decrease in
phosphorylated Smad2, an increase in satellite cell proliferation, and a decrease in ubiquitin enzymes.
Blocking this pathway can lead to muscle hypertrophy and reversal of cachexia [45].

Myostatin has also been shown to activate MAPK/ERK in muscle precursor cells, which has the
downstream effect of impairing the differentiation program [79]. The result is an accumulation of
activated progenitor cells with impaired differentiation capabilities. Further, NF-κB has been identified
as the target cachectic factors activate to deregulate Pax7 and inhibit differentiation [25]. Altogether,
these findings suggest that cancer cachexia is the result of both increased muscle degradation and an
impairment in satellite cell differentiation.

Pharmacological blockade of the ActRIIB pathway has been shown to partially reverse
cancer-induced muscle wasting while having no effect on tumor growth or fat loss [31]. The soluble
decoy receptor inhibits myostatin/activin A signaling, decreasing phosphorylated Smad2 which results
in enhanced proliferation of satellite cells. It also increases the amount of phosphorylated FOXO3a
and attenuates the expression of ubiquitin ligases responsible for muscle degradation; see Figure 2B.
Zhou et al. [31] showed that this treatment can recover skeletal and heart muscle loss and increase
survival times in several mouse models of cancer cachexia. Together with other work on myostatin [80],
ActRIIB has been proposed as a promising new treatment approach for cachexia in cancer and other
chronic diseases.
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3.1. Muscle Loss in Cancer Cachexia

In our mathematical model, we considered three molecular signaling events that may contribute
to muscle wasting in cancer cachexia that are downstream of myostatin and thus would be affected
by ActRIIB blockade treatment. Cancer cells release systemic signaling factors that travel to muscle
tissues through the circulation and activate the ActRIIB pathway. Through this and possibly other
pathway activations, the following may occur:

1. satellite cells become quiescent or have a reduced proliferation rate [10,45],
2. satellite cells undergo apoptosis, necrosis, or may become permanently quiescent [81–84], and
3. muscle cells atrophy [85].

Note that Item 2 above introduces the possibility of satellite cells dying. In our mathematical
model, this addition allowed for the possibility of a satellite cell differentiation attempt that did
not contribute to functional muscle fibers. Thus, it accounted for the possible impairment of the
differentiation program with the loss of precursor cells, which has been shown to contribute to cancer
cachexia [25,79].

We assumed the cachectic state was a perturbation away from the healthy state, tracing a disease
evolution path through the parameter landscape. To incorporate the cachectic mechanisms into our
mathematical model, we modified the healthy Equations (1)–(3) as follows. To begin, we modeled the
growing tumor volume, T, with an exponential-linear model [86]. This choice reflected the fact that
our experimental tumor growth data only demonstrated periods of exponential or linear growth [31].
Initially, there was a period of exponential growth with a growth rate µT. This was followed by a
period of linear growth, with growth rate µ1:

dT
dt

= µT(t), T 6 Tth

dT
dt

= µ1, T > Tth

The two growth periods are connected mathematically, as done in [86], by requiring µTth = µ1, so that
at the transition point Tth the growth rates equal. For computational simplicity, the above two growth
periods are combined into one ordinary differential equation, by introducing a transition parameter η:

dT
dt

= µT(t)
(

1 +
(

T(t)
Tth

)η)− 1
η

= µT(t)
(

1 +
(

µ

µ1
T(t)

)η)− 1
η

. (5)

Here, η controls the speed at which the model transitions from the exponential phase to the linear
phase of growth. As done in [86], we used η = 20, which was sufficiently fast to capture the transition
observed in the data.

Next, we incorporated tumor-induced satellite cell quiescence and interpreted this as a
suppression of the proliferation rate ν(t). Thus, cancer reduction of proliferation, which already
depends on muscle mass size, was modified by the multiplicative factor

(
1− ε

T(t)
m2+T(t)

)
. This form

allows the strength of the suppression to depend on tumor volume and can completely suppress
proliferation regardless of the muscle feedback. It also ensures that the modified proliferation rate
maintains positivity. In this suppression factor, ε is the maximum reduction possible (with 0 ≤ ε ≤ 1),
and m2 is a half-saturation constant for the tumor size dependent effect.

Finally, we incorporated tumor-induced satellite and muscle cell death by adding terms of
the form −dS

T(t)
m2+T(t)S(t) to the satellite cell growth equation and −dM

T(t)
m2+T(t) M(t) to the muscle

cell growth equation. Here, dS and dM are the tumor-induced satellite cell and muscle cell death
rates, respectively, and m2 is again a half-saturation constant. Modifying our healthy tissue model,
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Equations (1)–(3), gives the following mathematical description of the molecular mechanisms involved
in cancer cachexia-induced muscle wasting:

dS
dt

=
(
2p(t)− 1

)
ν(t)

(
1− ε

T(t)
m2 + T(t)

)
S(t)− dS

T(t)
m2 + T(t)

S(t), (6)

dM
dt

= 2
(
1− p(t)

)
ν(t)

(
1− ε

T(t)
m2 + T(t)

)
S(t)−

(
d0 + dM

T(t)
m2 + T(t)

)
M(t), (7)

with p(t) = p0 +
p1

1 + 1
m M(t)

and ν(t) = ν0 +
ν1

1 + 1
m M(t)

.

The above modifications were chosen in order to describe the cachectic state as a perturbation
away from the healthy state. That is, the effect of the disease is to slowly push the system away from
health (and the healthy parameter values) into a diseased state (and corresponding diseased parameter
values). To do this, our model formulations involved functional forms that increased in efficacy as the
tumor grew large. These same formulations in effect modified most of the healthy parameters by a
scaling factor in the limit of a large tumor. For example, the natural death rate of muscle cells is d0 in
health, but d0 + dM when the tumor is very large. This choice to model disease as a perturbation from
the healthy state allowed the “difference” between health and cachexia to be represented by the value
of dM, for example. In contrast, refitting all model parameters for the cachectic groups would require
the difference dcachexia

0 − dhealthy
0 to represent the shift that occurs in the diseased state. An advantage

of this perturbation approach is that the transition path from health to disease can be tracked through
parameter space, which would not be possible when refitting parameters. Note that we assumed that
the probability of stem cell self-renewal, p(t), is unchanged by cancer, but that cancer can alter the
frequency of stem cell division, ν(t).

Parameterizing the Cachexia Model

The cachexia mouse model on which we based our parameters is the C26 murine carcinoma
model used in [31]. This is one of two commonly used animal models of cancer-induced cachexia [11].
The experimental setup involved subcutaneously injecting 0.5× 106 C26 cells into the rear flank of
10-week-old male CDF1 mice. We assigned the initial tumor volume to be T(0) = 0.5 mm3 to match
the implantation. To determine the exponential-linear growth rate parameters µ and µ1, we minimized
the RMSE and fit the numerical solution of (5) to the experimental tumor volume measurements of [31].
The minimum RMSE was found by grid search over generous parameter ranges. The result of this
fitting is shown in Figure 3A, with µ = 0.446 days−1 and µ1 = 116.0 mm3 days−1. These rates gave a
transition threshold of Tth = 260 mm3, putting the transition from exponential to linear growth around
Day 14. Exponential-linear tumor growth parameters are listed in Table 2 (Row 1).

In [31], two experimental groups were presented, one where anti-cachexia treatment started in
“early cachexia” on Day 5 (Group A) and another where treatment started in “late cachexia” on Day 14
(Group B). To parameterize the cachectic state, we used the control from Group A and validated with
the control from Group B. To determine the cachexia-inducing model parameters, ε, dS, dM, and m2,
we fit model predicted lean mass, ξ(M + S), from Equations (5)–(7) to Group A control data [31] by
grid search to minimize the RMSE; see Figure 3B. The resulting cachexia parameter values are listed
in Table 2 (Row 2). As done with the healthy body weight data, we decomposed the cachexia body
weight measurements by assuming lean mass corresponded to 40% of the body mass after subtracting
predicted tumor mass (based on Equation (5)) and the conversion factor ξ = 0.002 g/mm3.

The system of Equations (5)–(7) was solved with initial conditions T(0) = 0.5 mm3,
S(0) = 252.75 mm3, and M(0) = 4799.25 mm3, and with the base model parameters from Table 1.
The stem and muscle initial conditions correspond to the extrapolated M(t) and S(t) values from the
body weight on injection day, using the predicted stem ratio from the healthy model, Equations (1)–(3),
solved on Day 49, representing a 10-week-old male CDF1 mouse (ψ49 = S(49)

M(49) = 0.05266544).
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For example, the average body weight of the 10 mice in Experimental Group A was about 25.26 g.
Thus, we started the numerical simulation with:

M(0) =
0.4(25.26)
(1 + ψ49)ξ

≈ 4799.25 mm3 and S(0) = ψ49M(0) ≈ 252.75 mm3. (8)

This ensured that the model prediction was fit to experimental data, while keeping the developmental
stem ratio, and resulting feedback mechanisms, age-appropriate.

Table 2. Model parameter values and initial conditions. Row 1: Parameter values for the
exponential-linear model of tumor growth, (5), RMSE = 34.11. Row 2: Parameter values for the
cachexia model, (6) and (7), RMSE = 0.157. Rows 3–4: Initial conditions for Experimental Groups A
and B, respectively, according to (8). Row 5: Parameter values for cachexia treatment by fitting to
Experimental Group A, (9) and (10), RMSE = 0.176. Row 6: Parameter values for cachexia treatment by
fitting to Group B, RMSE = 0.317. Parameter values determined by curve fitting the model solution to
experimental data from [31] for C26 tumor-bearing mice with or without sActRIIB treatment. Best fit
determined by minimizing the RMSE between predicted muscle and satellite mass and experimental
lean mass data.

Model Equations Fitted Parameter Values

1. Exp-linear model (5) µ = 0.446 days−1 µ1 = 116.0 mm3days−1 η = 20 T(0) = 0.5 mm3

2. Cancer-Cachexia (6)
and (7)

ε = 0.004 dS = 0.030 days−1 dM = 0.104 days−1 m2 = 338 mm3

3. Group A ICs MA(0) = 4799.25 mm3 SA(0) = 252.75 mm3

4. Group B ICs MB(0) = 4768.85 mm3 SB(0) = 251.15 mm3

5. sActRIIB Treatment
(9) and (10) Group A

A1 = 0 A2 = 0 A3 = 0.51 A4 = 0.54

6. Group B A1 = 0 A2 = 0 A3 = 0.62 A4 = 1
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Figure 3. Tumor growth and cachexia model fits to experimental data [31]. (A) Exponential-linear
tumor growth model (Equation (5), blue curve) fit to C26 experimental tumor volume data from [31]
(red points). The initial condition for the numerical simulation was chosen to match the experimental
conditions, with T(0) = 0.5 mm3 (or 0.5× 106 cells) representing the initial tumor implant on Day 0.
Model parameter values are listed in Table 2 (Row 1). (B) Cachexia model prediction (Equations (5)–(7),
blue curve) fit to lean mass experimental data from Control Group A (red points). In (C), the model
prediction was validated by comparing to lean mass experimental data from Control Group B (red
points). Cachexia model parameter values are listed in Table 2 (Row 2), with initial conditions in Row 3
(Group A) and Row 4 (Group B). Numerical computations performed in Mathematica.

Fitting the model to Group A control data from [31] resulted in parameter values ε = 0.004,
m2 = 338 mm3, dS = 0.030 day−1, and dM = 0.104 days−1 and the fit shown in Figure 3B. Comparison
of our model prediction to Group B control data, with the same experimental setup, is shown in
Figure 3C. All parameter values were the same between the two figures, with the exception of initial
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conditions for M and S. These were set according to (8) with the group’s average lean mass on Day 0,
25.10 g for Group B. Good agreement was observed between the model prediction and experimental
control data in both groups.

The model fitting suggest that cachexia requires increased death rates to both muscle and satellite
cells. The mechanism of satellite cell quiescence, however, is not required by the model to match
experimental observations, as setting ε = 0 results in approximately the same fit with the same RMSE;
see Section 4.4. Alternatively, since the mass of the satellite compartment is quite small, the mechanism
of quiescence may be appearing in our model as a death rate (permanent quiescence) rather than as
a decrease in proliferation frequency. It is also possible that this loss from the stem compartment,
without a corresponding gain to the muscle compartment, represents impaired differentiation, as
found experimentally in [25,79].

3.2. Reversing Muscle Loss through Anti-Cachexia Treatment

Treatment with the soluble activin type IIB-receptor (sActRIIB) inhibits myostatin/activin A
signaling and leads to dramatic muscle growth in vivo [31]. From Figure 2, we see that two downstream
effects of blocking the ActRIIB pathway are satellite cell proliferation and enhanced muscle protein
synthesis. Note that while the treatment partially reversed muscle wasting, it did not affect tumor
growth in the C26 model.

To incorporate sActRIIB treatment into our mathematical model of cancer cachexia, we introduced
treatment factors Ai that limit the influence of the cachectic signals derived from the cancer. That is,
Equations (5)–(7) were modified by introducing treatment parameters A1, A2, and A3, which reduce
the tumor-induced effects of ε, dS, and dM, respectively. Additionally, we introduced treatment
parameter A4, which allows the treatment to reduce the natural muscle death rate d0. For each
treatment parameter, we require 0 ≤ Ai ≤ 1, for i = 1 . . . 4. The cachexia-treatment model is thus
Equation (5) (unmodified by sActRIIB treatment) and:

dS
dt

=
(
2p(t)− 1

)
ν(t)

(
1− A1ε

T(t)
m2 + T(t)

)
S(t)− A2dS

T(t)
m2 + T(t)

S(t), (9)

dM
dt

= 2
(
1− p(t)

)
ν(t)

(
1− A1ε

T(t)
m2 + T(t)

)
S(t)−

(
A4d0 + A3dM

T(t)
m2 + T(t)

)
M(t). (10)

Parameterizing the Anti-Cachexia Treatment Model

Treatment parameters Ai were determined by fitting this model to C26 + sActRIIB mouse data [31].
Two experimental groups were used: Group A where treatment started in early cachexia on Day 5
and Group B where treatment started in late cachexia on Day 14. To determine the model parameters,
we again minimized the RMSE using a grid search and found the values reported in Table 2 Rows 5
and 6 for fits to Groups A and B, respectively.

In both group fits, A1 = A2 = 0, suggesting that treatment completely blocked the cancer-imposed
stem death rate dS and the decrease in stem proliferation rate ε. Since ε ≈ 0 from our cachexia fit,
the treatment fit of A1 = 0 was not surprising. The finding that A2 = 0 suggested that treatment
reactivated the quiescent satellite cell population and/or repaired the dysfunctional differentiation
program. In Group A’s fit, we found A3 = 0.51 and A4 = 0.54, corresponding to a decrease in both the
cancer-imposed muscle death rate dM and the natural muscle death rate d0. Decreasing the natural
death rate allowed the model to predict the bump in lean mass observed around Day 13 in Group A;
see Figure 4A. However, fitting to Group B, which did not present such an obvious bump (Figure 4C),
we found A3 = 0.62 and A4 = 1, corresponding to a decrease in the cancer-imposed death rate dM and
no treatment alteration of the natural death rate d0.
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Figure 4. Model prediction of cachexia treatment in either early cachexia (Group A, treatment starting
on Day 5) or late cachexia (Group B, treatment starting on Day 14). (A) The result of parameter fitting to
Group A. (B) The prediction of Group B using Group A parameter values. (C) The result of parameter
fitting to Group B. (D) The prediction of Group A using Group B parameter values. Experimental data
(green dots) and model simulation (blue line). Numerical computations performed in Mathematica.

4. Results

We now present the results of the model analyses and the implications for satellite cell and muscle
cell behaviors in healthy, cachectic, and anti-cachectic treatment conditions.

4.1. The Healthy Muscle Stem Cell Ratio

During the adolescent growth stage, satellite cells proliferate to increase muscle mass. As the
muscle matures, satellite cells become inactive and are held in reserve until needed for muscle
repair. Skeletal muscle in adulthood is generally stable with the numbers of satellite and muscle
cells relatively unchanged. Under these normal adult conditions, our mathematical model gives the
following steady-state:

Sss =
2md0 p1

(
2(p0 + p1)− 1

)
(1− 2p0)

(
2p1ν0 + (1− 2p0)ν1

) , Mss =
m
(
2(p0 + p1)− 1

)
1− 2p0

. (11)

The stem cell ratio in the steady-state is thus

ψss =
Sss

Mss
=

2d0 p1

2p1ν0 + (1− 2p0)ν1
, (12)

which has a natural upper bound of d0
ν0

, the ratio of the natural muscle cell death rate to the satellite
cell homeostatic proliferation rate. Using our fitted parameter values in Table 1, the steady-state stem
ratio is about ψss = 0.0516. See Figure 5 for the model predicted stem cell ratio for muscle tissue in
mice three weeks and older.

Sensitivity analysis of the healthy model was performed by computing the relative sensitivity
of satellite and muscle compartments to small changes in input parameter values. The homeostatic
steady-state, (11), was used as the base condition. We then computed the relative change in Sss and
Mss given a 5% increase or decrease in the parameter values according to the formula:

φ =
y
(
ρ(1± 0.05)

)
− y(ρ)

y(ρ)
100%, (13)

where y is either Sss or Mss and ρ is any model parameter from Table 1. The sensitivity results
are summarized in Table 3. The most sensitive model parameter is the homeostatic probability of
self-renewing division p0. As discussed above, when p(t) > 1

2 , the stem compartment grows without
bound, so this result is to be expected.
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Figure 5. Model simulation of the stem cell ratio ψ(t) = S(t)
M(t) . The ratio started higher due

to our estimated initial conditions and the period of rapid growth in the first 3–15 weeks of life.
Once the adult lean mass was obtained, the stem ratio reached the steady-state homeostatic value.
Numerical computations performed in Mathematica.

Table 3. Sensitivity analysis for healthy muscle parameters. The relative change in satellite or muscle
compartments is reported given a 5% increase or decrease of the base model parameter value from
Table 1. Sensitivity is performed in the steady-state condition, (11).

Parameter Relative Change Satellite Cells S(t) Relative Change Muscle Cells M(t)
ρ 5% Decrease 5% Increase 5% Decrease 5% Increase

m = 1000 −5% 5% −5% 5%

p0 = 0.479 −82.0% 22,541.6% −63.3% −964.1%

p1 = 0.133 −10.2% 10.7% −5.9% 5.9%

ν0 = 0.087 0.45% −0.45% NA NA

ν1 = 5.591 4.8% −4.4% NA NA

d = 0.05 −5% 5% NA NA

4.2. Wound Healing in the Healthy State

After damage, even for severe and repeated injuries, skeletal muscle has a remarkable regenerative
capacity. Pro-inflammatory signals from the wound area activate satellite cells to proliferate,
providing myoblasts to repair muscle fibers.

To test the wound healing ability of our model, we considered three injuries of increasing severity:
a loss of 10, 20, or 30% in both satellite and muscle cell compartments. Figure 6A shows the satellite
cell dynamic, which increases to regenerate the muscle and then slowly returns to its homeostatic
(pre-injury) level. As a result of satellite cell proliferation, the number of muscle cells increases until
reaching the homeostatic level; see Figure 6B. The number of satellite cells depends on the severity
of the lesion; see Figure 6C. The time required to heal the wound depends on the severity of the
injury, as shown in Figure 6D. Larger injuries require longer healing times, according to a sub-linear
relationship. The more serious the injury, the longer it takes to re-achieve homeostasis.
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Figure 6. Model prediction of the skeletal muscle response to an injury of 10, 20, or 30% loss in
each model compartment; that is, the initial conditions were set to S(0) = χSss and M(0) = χMss,
where χ = 0.9 for a 10% loss, 0.8 for a 20% loss, and 0.7 for a 30% loss of mass. Pre-injury, the
muscle cells are at the homeostatic level. Post-injury, the satellite cells are dividing to renew
themselves (A) and differentiate into new muscle cells (B), and both compartments slowly return
to their homeostatic (pre-injury) levels. (C) The stem ratio increases transiently in response to
the injury. (D) Healing time for skeletal muscle after an injury to both muscle and satellite model
compartments. Healing time is defined by the time required to re-obtain the pre-injury homeostatic
mass computationally as |M(t)−MSS| < 0.1. Numerical computations performed in Mathematica.

4.3. Sensitivity Analysis for Cachexia and Treatment

Sensitivity analyses for the cachexia (5)–(7) and treatment models (5), (9) and (10) are now
presented. The relative change in muscle or satellite cell compartments is reported on Day 20
post-implant to determine the sensitivity during the dynamic period of muscle loss (rather than
the steady-state, which is likely not obtained by the cachectic animal). Similar to the above, we
iteratively considered a 5% increase or decrease to the cachexia or treatment base parameter values,
using (13) to compute the relative change.

Under cachexia, the top of Table 4, the model is most sensitive to the tumor-induced death rates
for satellite cells (dS) and muscle cells (dM). The satellite cell population is most sensitive to dS, as
this parameter directly affects S(t), while the death rate for muscle cells affects the stem population
indirectly through the feedback mechanisms. The muscle mass is most sensitive to parameter dM,
with m2 the second most sensitive, as this parameter shifts the half-saturation point of the tumor’s
influence. Note that since parameter ε (tumor-induced quiescence) was very close to zero, its sensitivity
was also essentially zero. If the base value of ε were larger, we may see a more significant sensitivity
here (see Figure 7).

Under treatment, bottom of Table 4, we left out parameters A1 and A2 since they were estimated
to have values of zero. We report only sensitivity for parameter A3, the treatment reduction of
tumor-induced muscle death rate, and parameter A4, the treatment reduction of the natural death
rate. We used parameter estimates obtained from fitting to Experimental Group A, when treatment
was given early in cachexia on Day 5. Again, sensitivity was performed on Day 20 post-implant to
capture the dynamical region of muscle loss and recovery. Both compartments are more sensitive to
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A4 (reduction to the natural death rate) than to parameter A3 (reduction to the tumor-induced death
rate), but this difference is likely not significant as their mechanisms of action in the model are similar.

(A) (B)

(C) (D)

Figure 7. Model simulations of lean mass showing the effect of cachexia parameters ε (A), m2

(B), dM (C), and dS (D). Parameter value estimates ε̂, m̂2, d̂M, and d̂S are as listed in Table 2
(Row 2), unless otherwise specified. All simulations used initial conditions for Group A. Numerical
computations performed in Maple.

Table 4. Sensitivity analysis for cachexia and treatment model parameters. The relative change in
satellite or muscle compartments is reported given a 5% increase or decrease to the estimated value
from Table 2 (Rows 2 and 5). Sensitivity was performed on Day 20 post-tumor implantation to capture
sensitivity during the dynamical range of interest (during muscle loss).

Cachexia Parameters

Parameter Relative Change Satellite Cells S(20) Relative Change Muscle Cells M(20)
ρ 5% decrease 5% increase 5% decrease 5% increase

m2 = 338 −0.074% 0.074% −0.71% 0.69%

ε = 0.004 0.00 0.00 0.00 0.00

dS = 0.030 0.72% −0.72% 0.16% −0.16%

dM = 0.104 −0.46% 0.46% 1.55% −1.51%

Treatment Parameters (Fit to Group A)

parameter 5% decrease 5% increase 5% decrease 5% increase

A3 = 0.51 −0.15% 0.15% 0.95% −0.94%

A4 = 0.54 −0.35% 0.36% 1.11% −1.09%

4.4. Mechanisms of Cachexia Target Muscle or Satellite Cells With Different Effects

Simulations of the cachexia model, Equations (5)–(7), demonstrate that the various mechanisms
of cachexia (represented by model parameters ε, m2, dM, and dS) have differing biological implications,
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as shown in Figure 7. Briefly, targeting muscle cells directly through an increased death rate leads to
rapid mass loss which is recovered in time; whereas targeting satellite cells by inducing quiescence or
death leads to a permanent loss of lean mass.

Increasing parameter ε in the satellite cell proliferation suppression factor
(

1− ε
T(t)

m2+T(t)

)
increases the total loss of lean mass; see Figure 7A. Note that our estimated value of ε gives the
same prediction as ε = 0, suggesting that this mechanism is not being used to induce cachexia.
According to the assumed negative feedback mechanism that directly affects the proliferation

probability and division rate of satellite cells through the function
(

1
1+ 1

m M(t)

)
in Equations (2) and (3),

the muscle cell reduction triggers the release of signals that stimulate satellite cell proliferation and
differentiation; see Figure 8(AI,AII). The greater the amount of muscle loss in the body, the stronger
the activated feedback signaling; see Figure 8(AIII). The feedback proliferation is simultaneously
suppressed by the tumor-host interaction factor

(
1− ε

T(t)
m2+T(t)

)
, which scales the division rate ν(t)

in Equations (6) and (7), and turns satellite cells quiescent. As ε increases, the inhibitory effect on
satellite cell proliferation is larger; see Figure 8(AIV). Therefore, the satellite compartment is not able
to maintain the healthy steady-state, and as a result, mass is lost.

(A): Parameter (ε)

(I)

0 20 40 60 80

0.5

0.6

0.7

0.8

0.9

1.0

Time (days)

M
as
s
(g
)

Satellite Cells

Fit

ε=0

ε=50ε

ε=100ε

ε=150ε

(II)

0 20 40 60 80

4

6

8

10

12

Time (days)

M
as
s
(g
)

Muscle Cells

(III)

0 20 40 60 80

0.20

0.25

0.30

0.35

Time (days)

M
u
sc
le
fe
ed
b
ac
k

(IV)

0 20 40 60 80
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Time (days)

T
u
m
or
fe
ed
b
ac
k

(B): Parameter (dM)
(I)

0 20 40 60 80

0.5

1.0

1.5

2.0

2.5

Time (days)

M
as
s
(g
)

Satellite Cells

Fit

dM=
1
4
dM



dM=
1
2
dM



dM=2dM


dM=4dM


(II)

0 20 40 60 80

4

6

8

10

12

Time (days)

M
as
s
(g
)

Muscle Cells

(III)

0 20 40 60 80

0.20

0.25

0.30

0.35

Time (days)

M
u
sc
le
fe
ed
b
ac
k

(IV)

0 20 40 60 80

0.1

0.2

0.3

0.4

Time (days)

T
u
m
or
fe
ed
b
ac
k

(C): Parameter (dS)
(I)

0 20 40 60 80

0.2

0.4

0.6

0.8

1.0

1.2

Time (days)

M
as
s
(g
)

Satellite Cells

Fit

dS=
1
4
dS



dS=
1
2
dS



dS=2dS


dS=4dS


(II)

0 20 40 60 80

4

6

8

10

12

Time (days)

M
as
s
(g
)

Muscle Cells

(III)

0 20 40 60 80

0.20

0.25

0.30

0.35

0.40

Time (days)

M
u
sc
le
fe
ed
b
ac
k

(IV)

0 20 40 60 80

0.02

0.04

0.06

0.08

0.10

0.12

Time (days)

T
u
m
or
fe
ed
b
ac
k

Figure 8. Model simulations showing the effect of cachexia parameters ε (Row A), dM (Row B),
and dS (Row C) on satellite cells (Column I), muscle cells (Column II), the feedback function in
Equations (2) and (3) (Column III), and the tumor-induced muscle death function (Column IV).
Parameter value estimates ε̂, d̂M, and d̂S are as listed in Table 2 (Row 2), unless otherwise specified.
Muscle feedback is the function 1

1+ 1
m M(t)

, and tumor feedback is the function T(t)
m2+T(t) multiplied by ε

in (AIV), dM in (BIV), and dS in (CIV). All simulations used initial conditions for Group A. Numerical
computations performed in Mathematica.

Increasing the half saturation constant m2 delays the transition from health to cachexia (Figure 7B),
as larger tumors are required to induce the same level of signaling. Parameter m2 does not, however,
affect the equilibrium value of the cachectic state.

Increasing parameter dM, the tumor-induced muscle death rate, leads to a rapid loss of muscle
mass in the body; see Figure 8(BII). As a result, satellite cells are activated by the feedback mechanism,
to self-renew and create new healthy muscle fibers; see Figure 8(BI). The larger the tumor-induced
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death rate, the larger the feedback effect; see Figure 8(BIII). This response by the satellite cells partially
recovers the muscle mass loss, but requires a significant increase in satellite mass, resulting in a higher
steady-state mass, which is likely not realized by the host; see Figure 7C. Importantly, the model
predicts that while an increased muscle death rate could lead to rapid mass loss, the effect is not lasting,
and mass would be recovered by the stem cells given sufficient time.

Increasing parameter dS, the tumor-induced satellite cell death rate, decreases the stem cell
reserve (Figure 8(CI)) and results in a reduced muscle cell mass at steady-state; see Figure 8(CII).
As muscle mass drops, the feedback system attempts to activate satellite cells; see Figure 8(CIII).
The tumor-induced stem death rate is a significant mechanism of lean mass loss that can not be
overcome by feedback activation; see Figure 8(CIV). As a result, lean mass steady-state decreases with
increasing tumor-induced stem death rate; see Figure 7D.

4.5. Treatment Partially Restores Muscle Mass by Reactivating Satellite Cells

Using our model of cachexia treatment, we now examine the effects of treatment on lean mass.
Figure 9 shows the model prediction using treatment parameter values determined by fitting with either
Group A, where mice were treated in early cachexia on Day 5, or Group B, where mice were treated
in late cachexia on Day 14. The parameter values are as listed in Table 2. In both fits, the treatment
blocked cachexia mechanisms targeting satellite cells, resulting in their reactivation; see Figure 9A,D.
The mechanisms targeting muscle cells were reduced by about 50% in efficacy. The main difference
between the fits was that the natural muscle death rate was reduced in Group A (in order to capture
the lean mass bump observed post-treatment), whereas it was not affected at all in Group B; see
Figure 9B,E.
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Figure 9. Model predicted satellite cell mass (A,D), muscle mass (B,E), and stem ratio (C,F) under
cachexia treatment starting on Day 5, 14, 20, or 25 after tumor implantation. The top row (A–C) uses
treatment parameters from fitting to Group A. The bottom row (D–F) uses treatment parameters from
fitting to Group B. Numerical computations performed in Mathematica.

Removal of the inhibition of satellite cells by cachexia treatment resulted in their reactivation
and proliferation to replenish the lost muscle mass. With treatment only partially blocking muscle
cell death, the natural feedback pushed the system to obtain a new steady-state where lean mass was
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below the healthy level and the stem ratio was higher; see Figure 9C,F. Interestingly, when the natural
muscle death rate was reduced by treatment, Group A fit, the stem ratio converged to about 8%, while
it converged to the predicted cachexia stem ratio of 10% when the natural death rate was unaffected
by treatment, Group B fit. This is a result of the maximal muscle death rates (natural plus cachexia),
which were:

Group A fit: A4d0 + A3dM = 0.54(0.05) + 0.51(0.104) = 0.08

Group B fit: A4d0 + A3dM = 1(0.05) + 0.62(0.104) = 0.11.

Thus, the model predicts a higher muscle death rate when treatment occurs in late cachexia than when
treatment occurs earlier. Both of these rates are still higher than the natural death rate, which results in
a lean mass steady-state smaller than in the healthy state.

5. Discussion

In this study, we mathematically investigate cancer-associated muscle wasting through the
intracellular ActRIIB signaling pathway. Using a stem-hierarchy framework, we presented a new
model of cancer cachexia and treatment that was parameterized with C26 carcinoma experimental
data. We extended our cancer cachexia model to examine the consequences of anti-ActRIIB
treatment causing a partial reversal of muscle loss due to satellite cell activation and limited muscle
degradation. In cancer cachexia, signaling pathways other than the myostatin/activin A pathway
have been investigated [24,25,87,88]. However, the inhibition of the myostatin/activin A pathway
can also reverse muscle loss in other diseases such as Duchenne muscular dystrophy [89–92],
metabolic diseases (obesity and diabetes) [93,94], androgen deficiency [95], X-linked myotubular
myopathy [96], amyotrophic lateral sclerosis [97], and limb-girdle muscular dystrophy [98].

The mathematical model was parameterized in three stages: health, cachexia, and anti-cachexia
treatment. The feedback mechanisms of the healthy state were determined by simulated annealing
to minimize the RMSE. The disease and treatment parameters were determined by grid search over
generous parameter ranges to again minimize the RMSE. The choice of the RMSE as the optimization
function is standard, but did affect our parameterization results, and thus simulation results. Further,
while all attempts to find the global minima in the simulated annealing algorithm were taken, it is a
stochastic algorithm and thus may have found a local minimum instead. The values of the parameters
we used in this study would affect our sensitivity results in Tables 3 and 4. For all parameters except
p0, we believe the sensitivity was satisfactory. The high sensitivity to changes in p0 was due to our
choice to exclude asymmetric stem cell division in favor of reducing the complexity of our model. This
is an area of improvement that may be considered in future work.

Our model predictions were consistent with previously published and experimentally validated
work. In [99], the authors proposed that myostatin and activins are capable of binding to both ActRIIA
and ActRIIB (activin type II receptors) with different affinities and that to achieve a strong functional
benefit, the blockade of both receptors is needed. The experimental data used here assumed only the
effect of ActRIIB pathway blockade, and thus, so did our modeling work. Future work can extend the
model here to consider ActRIIA pathway blockade, which may lead to greater muscle regrowth and
full recovery of tumor-induced loss. Furthermore, images of muscle fiber cross-sections [31] suggest
that muscle atrophy also involves shrinkage of fiber diameters, which is another mechanism of mass
loss that was not considered in our cachexia model. This is potentially an important mechanism of
mass loss that should be included in the model and is the subject of future work. We speculate that
inclusion of this alternate mechanism may help to explain the bump observed in lean mass recovery
after early treatment of cachexia, which was not present in late treatment.

The modeling work presented here suggested that anti-cachexia treatment could partially recover
muscle mass loss by reactivating satellite cells, resulting in a higher than normal stem ratio. The fact
that satellite cell reactivation and differentiation were significant to muscle recovery under treatment
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was consistent with the experimental evidence reported in [31]. However, other studies have reported
that muscle hypertrophy after pharmacological inhibition of the myostatin pathway occurs without
significant activation of satellite cells and that therefore the satellite cells play little to no role in muscle
hypertrophy when induced by this pathway [100–103]. Since the satellite cells are primitive cells
that regulate muscle homeostasis, this suggests that myostatin and activin A may predominantly
signal directly to myofibers. Here, we focused on the stem cell hierarchy. The distinctive proliferative
behaviors of stem cells emerged as a result of the feedback dynamics, and hence, muscle regrowth
was a direct consequence of stem cell regenerative potential. If these signaling molecules directly
alter myofibers, possibly in altering fiber diameter, then as discussed above, this could be explored
in an extension of this work. Future work can also explore the effects of other factors or agents that
potentially act as intermediates in signal transmission within the stem cell hierarchy.

Our study examined cancer-induced muscle loss by considering the actions of cachectic factors on
muscle satellite cells and fully differentiated muscle fibers. The significance of muscle precursor cells
and the cancer-induced impairment of the differentiation program, as modulated by Pax7, comprise an
area of interest and are left to future work. Furthermore, our use of ordinary differential equations
enabled the thorough analysis we presented, but limited the biology that we could capture. For
example, tissue architecture may play a crucial role in a muscle’s response to cachexia. Cachectic factors
produced by cancer cells travel to muscles via blood. Thus, the amount of muscle vascularization and
the proximity of satellite cells to blood vessels may help differentiate how skeletal muscle responds
versus heart muscle, for example. To explore the role these spatial biological features may play in
cachexia, a partial differential equation-based model may be appropriate.

Indeed, this model was already difficult to parameterize due to the limited types of data (i.e.,
whole body weight, but no breakdown into satellite cell behavior). Future work can expand on
this model by incorporating new biological mechanisms that require more complex mathematical
techniques as the required data become available.

A deeper understanding of the mechanisms underlying cancer cachexia is needed to evaluate the
efficacy of potential therapies including novel immunomodulatory or metabolic targets. Aside from
being the direct effect of tumor growth, cancer cachexia is associated with a collection of systemic
dysfunctions including inflammation [19,20,104] and metabolic alterations such as increased insulin
resistance, increased energy expenditure, and increased heat generation via defective mitochondrial
metabolism and fat tissue browning [105,106]. Therefore, advancing our cachectic model to include
inflammation, metabolic alterations, and/or adipose tissue may provide new insights into the
significant mechanisms and systemic cross-talk underlying cancer cachexia.
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Abbreviations

The following abbreviations are used in this manuscript:

ActRIIB activin type-2B receptor
C26 colon-26 adenocarcinoma mouse model
CDF1 mouse a cross between female BALB/cAnNCrl and male DBA2NCrl mice
FOXO3a forkhead box 03A
IL-1, IL-6, IL-10 interleukin-1, interleukin-6, interleukin-10
MAPK/ERK mitogen-activated protein kinase/extracellular signal-regulated kinase
MuRF1 muscle RING-finger protein-1
NF-κB nuclear factor κB
Pax7 paired box 7
RMSE root-mean-squared-error
sActRIIB soluble decoy Activin type-2B receptor
SMAD2 mothers against decapentaplegic homolog 2
STAT3 signal transducer and activator of transcription 3
TGF-β transforming growth factor β

TNFα tumor necrosis factor α

Appendix A. Numerical Solution of Anti-Cachexia Treatment Model

Included here is a Mathematica (www.wolfram.com/mathematica/) script to perform the
numerical simulation of the anti-cachexia treatment model as shown in Figure 4. The simulation
uses parameter values from fitting with experimental treatment Group A with tumor injection on Day
0 and administration of sActRIIB treatment on Day 5.

(*Define the healthy model parameters:*)

p0 = 0.479; p1 = 0.133; nu0 = 0.087; nu1 = 5.591;

m = 1000; d0 = 0.05; phi = 0.002;

(*Define the tumor growth model parameters:*)

mu = 0.446; mu1 = 116.0; eta = 20;

(*Define the cachexia model parameters:*)

m2 = 338; epsilon = 0.004;

dS = 0.030; dM = 0.104;

(*Define the model differential equations:*)

Eqns = {T'[t] == mu * T[t] * (1 + (mu * T[t]/mu1)^eta )^(-1/eta),

S'[t] == (2 * (p0 + p1/(1 + M[t]/m)) - 1) * (nu0 + nu1/(1 + M[t]/m)) *
(1 - A1 * epsilon * T[t]/(m2 + T[t])) * S[t]

- A2 * dS * T[t]/(m2 + T[t]) * S[t],

M'[t] == 2 * (1 - p0 - p1/(1 + M[t]/m)) * (nu0 + nu1/(1 + M[t]/m)) *
(1 - A1 * epsilon * T[t]/(m2 + T[t])) * S[t]

- (A4 * d0 + A3 * dM * T[t]/(m2 + T[t])) * M[t] };

(*Define the model variables:*)

Var = {T, S, M};

(*Define initial conditions for tumor injection on day 0:*)

ICs1 = {T[0] == 0.5, S[0] == 252.75, M[0] == 4799.25};

(*Set A1=A2=A3=A4=1 since no treatment on days 0-5:*)

A1=1; A2=1; A3=1; A4=1;

(*Solve the initial value problem for cachexia no treatment over days 0-5:*)

sol1 = NDSolve[{Eqns, ICs1}, Var, {t, 0, 5}];

(*Define initial conditions for treatment start on day 5:*)

T5 = T[5] /. sol1[[1]]; S5 = S[5] /. sol1[[1]]; M5 = M[5] /. sol1[[1]];

ICs2 = {T[5] == T5, S[5] == S5, M[5] == M5};

(*Evaluate solution with A1, A2, A3, A4 Group A treatment values:*)

A1=0; A2=0; A3=0.51; A4=0.54;

(*Solve the initial value problem for anti-cachexia treatment over days 5-33:*)

www.wolfram.com/mathematica/
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sol2 = NDSolve[{Eqns, ICs2}, Var, {t, 5, 33}];

(*plot model simulations converted to lean body mass in [gram]*)

P1 = Plot[Evaluate[phi * (S[t] + M[t]) /. sol1 ],{t,0,5}, PlotRange -> {{0, 33}, {9, 12}},

PlotStyle -> {Blue, Thickness[0.02]}];

P2 = Plot[Evaluate[phi * (S[t] + M[t]) /. sol2 ],{t,5,33},PlotStyle -> {Blue, Thickness[0.02]}];

Show[P1, P2, Frame -> True, FrameTicksStyle -> Directive[Black, 20],

FrameLabel -> {Style[``Days after tumor implantation'', 22, Bold],

Style[``Lean Mass (g)'', 22, Bold]},

LabelStyle -> Directive[Black, 18, FontFamily -> ``Times New Roman''], ImageSize -> 400,

Epilog -> Text[Style[``Group A'', Black, Bold, Italic, 24,

FontFamily -> ``Times New Roman''], Scaled[{.8, .85}]]]
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