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Abstract: Noninvasive ventilation (NIV) during exercise has been suggested to sustain higher
training intensity but the type of NIV interface, patient-ventilator asynchronies (PVA) or technological
limitation of the ventilator may interfere with exercise. We assessed whether these parameters
affect endurance exercise capacity in severe COPD patients. In total, 21 patients with severe COPD
not eligible to home NIV performed three constant workload tests. The first test was carried out
on spontaneous breathing (SB) and the following ones with NIV and a nasal or oronasal mask
in a randomized order. PVA and indicators of ventilator performance were assessed through a
comprehensive analysis of the flow pressure tracing raw data from the ventilator. The time limit was
significantly reduced with both masks (406 s (197–666), 240 s (131–385) and 189 s (115–545), p < 0.01 for
tests in SB, with oronasal and nasal mask, respectively). There were few PVA with an oronasal mask
(median: 3.4% (1.7–5.2)) but the ventilator reached its maximal generating capacity (median flowmax:
208.0 L/s (189.5–224.8) while inspiratory pressure dropped throughout exercise (from 10.1 (9.4–11.4) to
8.8 cmH2O (8.6–10.8), p < 0.01). PVA were more frequent with nasal mask (median: 12.8% (3.2–31.6),
p < 0.01). Particularly, the proportion of patients with ineffective efforts > 10% was significantly
higher with nasal interface (0% versus 33.3%, p < 0.01). NIV did not effectively improve endurance
capacity in COPD patients not acclimated to home NIV. This was due to a technological limitation of
the ventilator for the oronasal mask and the consequence either of an insufficient pressure support or
a technological limitation for the nasal mask.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is a major cause of disability and mortality
worldwide [1]. Pulmonary rehabilitation (PR) has been proposed to manage its systemic effects and
effectively increases functional capacity and quality of life (QoL) [2]. On the other hand, home-based
noninvasive ventilation (NIV) effectively improves outcomes for those who experience diurnal
hypercapnia (>55 mmHg) treated with high inspiratory pressure and rather high backup rate [3,4].
Nighttime NIV accompanying daytime PR has been suggested for these patients to improve general
fatigue, gas exchanges and the benefits of PR [5,6]. In the context of a training session during PR, NIV
has initially been studied during exercise, whether hypercapnia is present or not, as suggested by a
recent systematic review [7] and an expert review [8]. The rationale for using NIV during exercise is
based on physiologic studies supporting high intensity training [8,9]. As this might not be tolerable for
most not hypercapnic patients [9], NIV is thought to relieve the work of breathing [10] and dyspnea [11].
NIV may also contribute to the redistribution of cardiac output from the respiratory muscles toward the
exercising lower limb muscles, decreasing their fatigue [11], helping patients to sustain higher training
stimuli, further improving the benefits of PR [7,12]. However, this notion has recently been questioned
by Anekwe et al. who found that both patient-ventilator asynchrony and ventilator technological
limitation may occur when patients reach high intensity during an incremental cardiopulmonary
exercise testing [13]. As this test does not represent the usual training modality used during PR [14,15],
their occurrence during a constant high intensity endurance exercise testing deserves to be studied.
Moreover, the influence of the interface used remain unknown. Nasal or oronasal masks (NM and
ONM, respectively) are used inconsistently across studies [16,17] and many patients stop training
due to interface discomfort [16,18]. The choice of the interface is of real concern because the high
level of ventilation during exercise necessitates breathing through the mouth, which in turn may
elicit important leaks and patient-ventilatory asynchrony that would compromise exercise capacity,
therefore requiring an ONM. On the other hand, ONM is usually perceived as less comfortable than
NM and could reduce the compliance [8].

The aim of this study was to assess whether the type of NIV interface affects endurance capacity
in COPD patients who were not eligible for home NIV and to describe the incidence, the type and
the influence of patient-ventilator asynchronies on endurance capacity according to the interface.
The secondary objectives were to evaluate the effects of interface type on perceived exertion, comfort,
cardiopulmonary parameters and to assess the ventilator capacity to deliver sufficient support using
breathing pattern, flow and pressure tracing analysis as an indirect surrogate for ventilator performance.
It was hypothesized that, due to the mode of breathing during exercise (i.e., predominantly oral),
high levels of leaks and patient-ventilator asynchrony would occur with nasal masks and would
compromise exercise endurance.

2. Experimental Section

2.1. Study Design and Participants

This prospective, randomized cross-over trial was approved by the French ethics committee
Nord-Ouest I (CPP-SC 010/2015). It was prospectively registered at https://clinicaltrials.gov
(NCT02796599) and is reported according to the CONSORT statement.

All consecutive patients with clinically stable (one month) severe to very severe COPD and
a ventilatory limitation during exercise referred for PR at Aide à Domicile pour les Insuffisants
Respiratoires (ADIR) Association, Rouen University Hospital, France, were screened for eligibility

https://clinicaltrials.gov
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between June 2016 and February 2018. They were not included if they were eligible for long-term
NIV [3]. Details about inclusion, non-inclusion and exclusion criteria are available in Appendix A.
Written informed consent was obtained from all patients.

2.2. Clinical and Functional Evaluation

As part of their baseline assessment which took place within the two weeks before attending the
PR program, all patients underwent a complete evaluation including pulmonary function tests and
evaluation of exercise capacity using the six-minute walk test and CPET on the same day. Subsequently,
patients were offered to participate in the study. Details about the procedures are available in
Appendix B.

2.3. Protocol

Those patients who accepted to participate in the study took part in three visits. These visits were
separated by a minimum of 48 h and took place within a maximum of two weeks. The experimental
procedure was successfully respected for each of the participants.

Visit 1: First, patients were allowed 15 to 20 min to become accustomed to the NIV (Trilogy,
Respironics Inc., Murrysville, PA, USA) at rest with both NM and ONM (Eson TM and Simplus TM,
Fisher & Paykel Healthcare, Auckland, New-Zealand) in a sitting position. NIV was delivered with a
single limb circuit and both masks were provided with intentional leaks port. NIV settings at rest were
positive expiratory pressure (PEP) 4 cmH2O, pressure support 5 cmH2O.

Secondly, patients performed a constant workload exercise testing (CWET) on spontaneous
breathing (SB) which was used as an anchor of perceived exertion for the subsequent titration of the
NIV parameters.

Third, after a 15-min resting period, another exercise session was carried out at the same workload
intensity as the CWET in SB in order to determine the appropriate NIV settings for visits two and three.
Patients were asked to breathe through the nose as long as possible when using NM. Based on previous
studies suggesting that higher pressure would provide more benefits in exercise capacity, dyspnea
and respiratory work of breathing [19–22], and that the addition of a PEP could further improve these
benefits (counterbalancing for the intrinsic PEP) [22,23], the aim of the titration was to reach both the
highest pressure support and PEP tolerated. Both interfaces were tested according to the randomization
and the following protocol was used: first, progressive rise in pressure support (2 cmH2O/minute) and
secondly PEP (1 cmH2O/min; using the pressure support level previously chosen) as long as the patient
felt more comfortable compared with the first CWET during SB or until it became uncomfortable.
The highest pressure support and PEP tolerated were used for the subsequent evaluations. Thirdly,
pressure rise time was also adjusted according to the patient’s tolerance. “Auto-Trak” mode was used
for the inspiratory and expiratory trigger.

Visits two and three: Patients performed a CWET under NIV with NM or ONM (randomized
order) using the settings determined during visit one.

CWET: CWET were performed according to current guidelines [24]. After a one-minute warm-up
period (unloaded), patients were asked to maintain a load corresponding to 75% of Wmax at 70
revolutions per minute (rpm) until exhaustion. No encouragement was given except the time every
minute. The test ended when patients stopped because of symptoms or when the cycling speed
dropped by 10 rpm for more than 10 s.

2.4. Randomization

The randomization was carried out using a computer-generated sequence (www.randomized.org).
After completion of the first CWET with SB, the order of the two subsequent tests (with NM or ONM)
was randomized by an individual unrelated to the study (concealed allocation).

www.randomized.org
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2.5. Outcomes

The primary outcome was maximal endurance time (Tlim) of the CWET between the three
conditions (SB, NM and ONM).

Secondary outcomes: a comprehensive analysis of the flow and pressure raw data from the
ventilator were used to assess patient-ventilator asynchrony, breathing pattern, and were used as a
surrogate for ventilator performance. Further methodological details are provided in Appendix C.

Interface comfort: mask comfort was assessed after both NIV tests using a visual analogue scale
(VAS), ranging from 0 (extremely uncomfortable) to 10 (extremely comfortable).

Perceived exertion: dyspnea and lower limb fatigue were both assessed at rest and every 30 s
using the Borg scale [25].

Transcutaneous oxygen and carbon-dioxide measurement: transcutaneous oxygen saturation
(SpO2) and transcutaneous carbon-dioxide partial pressure (TcPCO2) were continuously recorded
using a capnograph (SenTec, ResMed, San Diego, CA, USA) at the earlobe. It was set up at least 20 min
before each CWET to allow calibration of the signal. In order to assess SpO2 and TcPCO2 signals at a
similar time point, TcPCO2 was analyzed with a 2 min lag-time [26].

2.6. Statistical Analysis

A sample size calculation was carried out to detect a clinical positive effect of NIV using an ONM
compared with NIV using a NM on endurance exercise capacity during a constant CWET (assessed as
Tlim (s)). Accordingly, 15 patients were required to detect a minimal clinical important difference of
101 s (SD 100 s) in Tlim [27] with a 95% power at the 0.05 significance level. We planned to recruit
21 patients to account for attrition due to intolerance of NIV in people not eligible to and to further
improve the power of the study (99% power in the situation where all patients would complete the
study).

Normality of the distribution of each variable was assessed using a Shapiro–Wilk test. Categorical
data were expressed as counts (%) and continuous data were expressed as means (SD or 95% CI) or
medians (25th–75th percentiles) depending on the distribution.

Cardiorespiratory outcomes were analyzed both at iso time and at Tlim. Iso time was defined
as the Tlim of the shortest CWET. Comparisons between interfaces were performed using a paired
t-test or a Wilcoxon Signed Rank test. Multiple comparisons were performed using paired repeated
measures of analysis of variance (ANOVA) or Friedman tests. In the case of a significant difference,
Wilcoxon tests were performed to explore pairwise comparisons and a Bonferroni correction was
applied. Relationships were assessed using Pearson or Spearman correlation tests. Patients with
an increase in Tlim for more than 101 s or 33% with any interface compared with the SB test were
deemed as improvers [27] and were considered for further analysis in order to assess whether baseline
characteristics might predict responsiveness to NIV using an independent t-test or a Mann-Whitney
test according to the data distribution.

In order to assess changes in respiratory parameters and ventilator performance, a comparison
was made between the cycle by cycle mean of the 60 first and the 60 last seconds of CWET. Patients
with less than two minutes of records were excluded for this analysis (four with ONM and six with
NM. Moreover, the variation of each indicator between the beginning and the end of exercise was
calculated as follows: Indicatorvar = Indicatorend − Indicatorbeg.

Comparison in the proportion patient with AI > 10% between interfaces was performed using the
Fisher test.

3. Results

3.1. Patients

One hundred fifty-four patients were screened for eligibility and twenty-one were included in the
study. There were no dropouts (Figure 1).
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Patients characteristics are shown in Table 1. Nine (43%) were female and five (24%) were long term
oxygen users. All had severe obstruction (mean FEV1%: 35.3% (±8.3)), were severely hyperinflated
(mean RV/TLC: 0.6 (±0.1) and had impaired exercise capacity (mean VO2peak: 12.1 mL/kg/min (±2.8).
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Table 1. Characteristics of the participants.

Variable, (Units) Participants (n = 21)

Female (n) 9 (43) a

Age (years) 58.9(10.7) b

Height (cm) 170 (8.9) b

Body mass (kg) 66.1 (11.9) b

BMI (kg/m2) 22.8 (3) b

FEV1 (L) 0.9 (0.8–1.3) c

FEV1 (%) 35.3 (8.3) b

FVC (L) 2.6 (0.8) b

FEV1/FVC (% ratio) 40.2 (8.8) b

RV (L) 4.5 (0.9) b

RV (%) 216 (43) b

TLC (L) 7.4 (1.3) b

RV/TLC 0.6 (0.1) b

IC (L) 1.7 (0.6) b

IC (%) 65 (17) b

VO2 peak (mL/kg/min) 12.1 (2.8) b

Arterial blood gas 50 (40–70) c

PaO2 (mmHg) 67.5 (12) b

PaCO2 (mmHg) 38.3 (4.5) b

pH 7.44 (0) b

HCO3- (mmol/L) 24.8 (23–25) c

Wmax (W) 50 (40–70) c

6MWT (m) 413.5 (99.1) b

LTO (n) 5 (24) a

BODE 4.3 (1.7) b

a Values expressed as numbers (%); b Values expressed as means (SD); c Values expressed as medians (25th–75th
percentile). FEV1/FVC is expressed as a percentage ratio. BMI: body mass index; FEV1: forced expiratory volume
in one second; FCV: forced vital capacity; RV: residual volume; TLC: total lung capacity; IC: inspiratory capacity;
VO2peak: maximal oxygen consumption; PaO2: oxygen arterial partial pressure; PaCO2: carbon dioxide arterial
partial pressure; HCO3-: bicarbonates; Wmax: maximal workload achieved during cardiopulmonary exercise
testing; 6MWT: six-minute walk test; LTO: long-term oxygen; BODE: Body mass index, airflow Obstructive, Dyspnea,
and Exercise capacity index.

NIV Parameters: See Table S1.

3.2. Primary Outcome

There were no order effects between tests (p = 0.84). There was a significant difference in
Tlim between SB, ONM and NM due to the significant reduction in this variable with both masks
(respectively 406 s (IQR 197–666), 240 s (IQR 131–385) and 189 s (IQR 115–545), p < 0.01). However,
there was no significant difference between interfaces (p = 0.34) (Figure 2).

Three patients (14%) were considered as improvers and eighteen (86%) as non-improvers. Only
inspiratory capacity (IC%) was significantly higher in improvers (81% (SD 1) versus 62% (SD 17),
p < 0.01). There was no significant difference in the proportion of improvers among patients whose
TcPCO2 increased for more than 4 mmHg during the SB test compared with those whose TcPCO2 did
not increase.
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3.3. Secondary Outcomes

3.3.1. Patient-Ventilator Asynchrony

Data from 42 exercise sessions with NIV (for a total of 13,415 s and 5136 respiratory cycles) were
analyzed. Total asynchrony index (AI) (%) according to the interface is shown in Table 2.

Table 2. Asynchrony index according to the interface.

Event (%)
Interface Between-Group Comparison

Oronasal Mask
(n = 21)

Nasal Mask
(n = 21) p

Normal cycles 95.5 (91.6–97.0) 82.5 (47.1–95.5) p < 0.01
Ineffective triggerings 0 (0–0.1) 2.1 (0–21.5) p < 0.01

Double-triggerings 0.2 (0–1.6) 2.7 (0.7–8.6) p < 0.01
Auto-triggerings 1.7 (0–3.6) 1.7 (0.4–2.5) NS

Premature cyclings 0.2 (0.0–1.9) 0.9 (0.0–6.9) NS
Delayed cyclings 0.0 (0.0–0.8) 0.0 (0.0–2.3) NS

NDP 96.6 (94.8–98.3) 87.2 (68.4–96.8) p < 0.01
Total major asynchrony events 3.4 (1.7–5.2) 12.8 (3.2–31.6) p < 0.01

Values are expressed as medians (25th–75th percentile). NDP: sum of normal cycle, premature and delayed
cycling. Total major asynchrony events are the sum of ineffective efforts, double-triggering and auto-triggering. NS,
not significant.

The proportion of patients with AI > 10% for ineffective efforts (IE) was significantly higher
with NM than with ONM (33.3 versus 0%, p < 0.01). The difference was not significant regarding
double-triggering (DT) (19 versus 0%, p > 0.1) or auto-triggering (AT) (5 versus 0%, p = 1). During tests
with NM, endurance time was significantly higher in subjects with more than 10% IE AI (592.9 s (SD
385.3)) compared with those with 10% or less (258.9 s (SD 134.3)), p < 0.05).

The median total major AI (%) significantly increased only for NM from the beginning (5% (IQR
0–13.6) to the end of exercise (15% (IQR 3.6–45), p = 0.04) mainly due to a significant increase in IE
(from 0% (IQR 0–4.6) to 2.9% (IQR 0–30), p < 0.05) (Figure S1).

There was no significant relation between NPD, total major asynchronies AI% and both endurance
time or interface comfort for the two interfaces.
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3.3.2. Flow and Pressure Tracing Analysis

Comparison in flow and pressure measurement between the beginning and the end of exercise
and between interfaces are shown in Table S2.

Comparison of flow and pressure between subjects with IE AI ≤ 10% or > 10% for NM are shown
in Table S3.

3.3.3. Cardiopulmonary Outcomes

Compared with SB, SpO2 increased with both ONM and NM (respectively 95.2% (SD 1.6), 97.1%
(SD 1.1) and 97% (SD 1.2), p < 0.05) at rest. Conversely, TcPCO2 was significantly reduced with the ONM
compared with SB (36 mmHg (SD 3) and 38 mmHg (SD 3.6) respectively, p < 0.05). Vt, unintentional
leaks and RR were not significantly different at rest between interfaces while they significantly differed
during exercise. Table 3.

Table 3. Effects of non-invasive ventilation on cardiopulmonary outcome at iso-time and time limit.

Variables, (Units) Constant Workload Exercise Testing Between-Group
Comparison

Spontaneous Breathing
(n = 21)

Oronasal Mask
(n = 21)

Nasal Mask
(n = 21) p

Iso-time
Heart rate (bpm) 111.6 (17) 118.2 (13.4)* 116.5 (11.1) p < 0.05

SpO2 (%) 93.1 (3) 93.5 (2.4) 93.4 (2.4) NS
TcPCO2 (mmHg) 39.1 (4.4) 40.2 (3.2) 39.9 (3.9) NS

Respiratory rate (cpm) 27.6 (6.7) 24.7 (8.6) NS
Vt (mL) 1333.6 (486.2) 784.3 (486.2) p < 0.01

Unintentional leaks (L/min) 12.2 (9.6) 28.3 (29.8) p < 0.03
Time limit

Heart rate (bpm) 121.1 (15.3) 120.5 (13.7) 120 (13.7) NS
SpO2 (%) 92.8 (3.2) 93.1 (2.6) 93.1 (2.9) NS

TcPCO2 (mmHg) 38.5 (4.5) 39.5 (2.9) 40 (4) NS
Respiratory rate (cpm) 30.3 (5.4) 24.9 (9.6) p < 0.01

Vt (mL) 1225.6 (494.2) 828.3 (506.2) p < 0.01
Unintentional leaks (L/min) 11.7 (9.6) 28.9 (31.3) p < 0.04

Values expressed as means (SD). *: significantly higher than spontaneous breathing, p < 0.04. Respiratory rate, Vt
and unintentional leaks were recorded by the built-in software of the ventilator. bpm: beats per minute; SpO2:
transcutaneous oxygen saturation; TcPCO2: transcutaneous carbon-dioxide partial pressure; cpm: cycles per minute;
Vt: volume tidal; NS: not significant. NS, not significant.

Other respiratory parameters are shown in Table S4.

3.3.4. Interface Comfort

There was no significant difference in comfort between the ONM and NM (respectively, 4.95
(SD 2.5) and 4.86 (SD 2.6), p = 0.88).

3.3.5. Perceived Exertion

There were no significant differences between the three tests for dyspnea or lower limb fatigue at
iso time and for dyspnea at Tlim. Compared with SB, lower limb fatigue was significantly reduced
with both ONM and NM (respectively 6.3 (SD 2.9), 4.8 (SD 3.2) and 5.1 (SD 3.1), p < 0.05).

3.3.6. Relationship between Outcomes

There was no significant relation between NPD, total major AI% and both endurance time and
interface comfort for the two interfaces. Additionally, there was a positive significant relationship
between IE AI% and endurance time with NM (r = 0.47, p = 0.03).

4. Discussion

The results of this study show that NIV during exercise did not improve endurance exercise
capacity with any type of interfaces (an may even worsened exercise capacity), without any significant
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differences between them. Patient-ventilator asynchrony was relatively infrequent with ONM but
significantly increased with NM (median AI: 12.8%). Particularly, IE AI% was clinically relevant for
33% of the patients with NM and was positively correlated with endurance time (r = 0.47, p = 0.03).
The comprehensive flow and pressure tracing analysis revealed that the ventilator likely reached its
performance limits, particularly with NM.

Because of its complexity and the many parameters influencing its use, NIV during exercise is
a much-debated topic with divergent results, particularly when used over a course of PR. Indeed,
previous acute and physiological studies has mostly demonstrated a significant positive effect of
NIV on exercise capacity [11,12,28–30] or no positive effects [31,32], while long-term studies remain
inconclusive [7,18,33]. In this context, the detrimental effect of NIV on endurance exercise capacity
found in the present study was quite unexpected and it is therefore difficult to differentiate between a
real worsening in endurance exercise capacity or a lack of improvement (there is also a possibility of a
type 1 statistical error). Conservatively, other factors also contribute to explain the lack of improvement
observed with NIV.

First, we found that those patients with a lower IC% at rest were more likely to be not-improvers.
This is in line with (i) Oliveira et al., who found that NIV adversely affects “central” hemodynamics
adjustments to exercise and was associated with a lack of improvement in exercise capacity in patients
severely hyperinflated at rest and (ii) O’Donnell et al. who had previously shown that the inability
to further expand Vt during exercise was an important factor contributing to exercise limitation in
hyperinflated COPD patients [34]. Because our participants were further hyperinflated than those who
participated in the study of Oliveira et al. and much more than those involved in previous studies
which found positive effects of NIV [11,30], it is likely that they could not further expand their Vt even
with NIV due to their hyperinflation even though they experienced the central hemodynamics side
effects of NIV. On the other hand, subjects with a lower extent of hyperinflation who are still able to
expand their Vt may still benefit from NIV [12].

Additionally, other factors such as the low pressure support used [3,4], NIV-induced
hypercapnia [31,35] or the patient’s selection (i.e., without chronic hypercapnic respiratory failure
(CHRF)) may also explain the lack of improvement in Tlim. Indeed, higher inspiratory support may
have led to a positive effect of NIV as suggested by Gloeckl et al. who found a significant improvement
in endurance capacity with high-pressure NIV during exercise in patients already undergoing long-term
NIV for CHRF [36]. Although some other studies suggest the use of the highest tolerable inspiratory
support [37], the median support was only 8 cmH2O in the present study and higher levels were not
tolerated by these patients who were naive to NIV. However, it was within the ranges of those used
in studies that found that NIV improved endurance capacity [19,20] and matched with the level of
pressure support titrated to comfort used in Anekwe et al. [13]. Based on the available evidence, we
included patients with severe obstruction and ventilatory limitation [7,8,38] and did not include those
patients who were eligible to home NIV to prevent bias relating to experience. However, although
the NIV was initiated at rest and then titrated during exercise, in laboratory conditions and by a
physiotherapist experienced in NIV, it is possible that the patients were insufficiently acclimatized
to the NIV. Moreover, these negative results in patients not eligible for long-term NIV supports two
recent studies performed specifically in patients with CHRF patients [29,38]. Altogether, these results
suggest that, during exercise, NIV may be particularly effective in patients who are already under
home NIV and tolerate higher pressure support (i.e., CHRF).

Beyond the selection of the patients and the pressure support used, our results support other
mechanisms to explain the decreased endurance performance with NIV, which differ between interfaces.

4.1. Oronasal Interface

There were few patient-ventilator asynchronies with ONM (median total AI < 4%) and their
occurrence was not related with endurance time, so they were likely to be clinically irrelevant.
Conversely, flow measurements significantly increased throughout exercise and were superior to those
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with NM. Particularly, Fini progressively rose up with ONM (+24 L/min compared with +3 L/min with
NM, p < 0.01). Theoretically, it is not supposed to increase during exercise if the ventilator sufficiently
assists the patient, suggesting a lack of power of the ventilator. Moreover, Fmax, mean and Fmax,
end reached about 200 L/min (which is the maximal flow generating capacity of the ventilator used
according to the manufacturer), while Pinspi significantly decreased all along the exercise suggesting
that the ventilator was unable to maintain the set pressure despite the fact the maximal flow generating
capacity was reached. In addition, the pressure rise time (τ) was set to the fastest setting available
on the ventilator (i.e., “1”, corresponding to a duration of 100 ms to reach the set pressure from the
beginning of the inspiratory cycle according to the manufacturer data). However, τini and the mean τ

for both interfaces were largely superior this value (400 ms), suggesting that the ventilator was unable
to rise the pressure as quickly as set, again suggesting a technological limitation.

These observations extend those from a previous study which also found markers of technological
limitation during exercise in COPD patients, even though an intensive care unit ventilator was
used [13]. This supports the idea that the ventilator was not able to maintain even the low pressure
support used in the present study (although low, Pinspi decreased all along the exercise while the
maximal flow generating capacity of the ventilator was reached), therefore it is unlikely that a higher
pressure support could have been reached. Therefore, although potentially contributing, the low
inspiratory support used was not the primary explanation for the lack of improvement in the endurance
exercise capacity observed in the present study because higher pressure would have been limited by
technological limitations.

4.2. Nasal Interface

The reason for the altered performance with NM is more complex. IE was the most frequent,
clinically relevant patient-ventilator asynchrony (33% of the patients reached the clinical level of
significance of 10% [39]) and was significantly related with endurance performance. Although the
positive nature of this relation is primarily surprising, it can be explained by several factors. First,
those patients with more than 10% IE AI had significantly more leaks and a negative value of Fini, var.
This strongly suggests that these patients began to exercise breathing through the nose and then by the
mouth when exercise became more difficult (Figure S1) in such a way that these patients breathed
“over” the ventilator, eliciting IE and lower Vt and RR recorded by the ventilator at time limit (IE cycle
values not recorded (Table 3)).

This is strengthened by the fact that AI% significantly increased with NM from the beginning to
the end of exercise and that those patients with a high level of asynchrony had a significantly higher
Tlim, as in the spontaneous breathing test.

On the other hand, two thirds of the patients did not open the mouth and had a similar pattern to
ONM (i.e., less asynchronies but a decreased endurance capacity). Contrary to ONM, the Fmax, end
(about 180 L/min) was below the maximal generating capacity of the ventilator and the set pressure
support was reached, suggesting that it could have been further increased. This observation raises
concern about the possibility to adjust NIV parameters throughout the exercise. This difference with
ONM likely lies in the higher resistance of the upper airway which helped to reach the set pressure
with a lower flow. However, higher support was not tolerated by the patients and the relatively low
margin for the flow to increase (about 20/min) makes the possibility to further expand it difficult
to achieve without reaching the technological limitation of the ventilator. Moreover, some markers
of the technological limitations of the ventilator were already present (pressure rise time set not
reached). Altogether, these results suggest that the important amount of IE observed in a third of the
patients (who breathed through the mouth at the end of exercise) was a consequence either of a direct
technological limitation or an insufficient support that could not have been further expanded due to
technological limitation.
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4.3. Implication for Practice and Research

The main strength of this study is that it was conducted in a condition close to that which would
be used if NIV was used to sustain higher training intensity during PR (75% Wmax). Our negative
results do not exclude a positive effect of NIV at a lower relative intensity [29], where the inspiratory
flow is lower and may not exceed the ventilator generating capacity. Accordingly, NIV should be
used as a “starter” to initiate PR and more rapidly reach the prescribed length of training (generally
30–45 min [14,40,41]) rather than a “booster” to sustain higher training intensity as suggested by
physiological studies [9,42,43]. Moreover, this study supports the use of ventilator displaying Fmax
value on the monitoring screen to help clinicians to assesses whether the ventilator is powerful enough
to relieve respiratory effort for a given exercise. Finally, our results suggest that the respiratory support
needed by the patients, as well as patient-ventilator asynchronies, varies throughout the exercise.
Therefore, the effects of automated modes that could adapt more easily to the different exertions of
exercise (such as those using a volume-assured pressure support and automated PEP) deserve to
be studied.

4.4. Limits of the Study

First, neither the patients nor the assessor were blinded. However, it is unlikely to influence
patient-ventilator asynchronies or the technological capacity of the ventilator. Secondly, the SB condition
was carried out first, and was not randomized. This choice was made to allow a perceived exertion
anchor for the subsequent NIV parameters titration because most of the patients with COPD are not used
to exercise. Moreover, it helped to avoid any possible ordering effect relating to the procedure between
masks. Lastly, flow pressure tracing and respiratory parameters were derived from the raw data of
the built-in software of the ventilator respectively and not from an external pneumotachograph and
pressure transducer, which may have introduced some errors in the measurements due to leaks [44,45]
and precluded any comparison between the SB tests with both masks.

5. Conclusions

In patients with COPD not acclimated to long-term home mechanical ventilation, during-exercise
NIV delivered through either NM or ONM does not improve endurance capacity (and may even
worsen it). Patient-ventilator asynchrony was uncommon with ONM and endurance performance
was likely impaired due to technological limitation of the ventilator. Patient-ventilator asynchrony,
particularly IE, was more frequent with NM and reflects the fact that some patients shunted the
ventilator by breathing through the mouth. This likely occurred either because of an insufficient
pressure support (with few possibilities to increase it due to technological limitations) or directly due
to a technological limitation of the ventilator.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/4/1054/s1,
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respiratory rate and Ti/Ttot between interfaces.
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Appendix A

Inclusion: non-inclusion and exclusion criteria.
Inclusion criteria:

• Stable (on month) severe to very severe COPD referred for pulmonary rehabilitation. The clinical
diagnosis of COPD was based on a ratio between forced expiratory volume in one second (FEV1)
and forced vital capacity (FVC) < 0.70;

• Age ≥ 18 years;
• FEV1 < 50% predicted;
• Ventilatory limitation (breathing reserve < 30%) during the initial cardiopulmonary exercise

testing [7,38].

Non-inclusion criteria:

• Eligible to home noninvasive ventilation according to [3]:
• PaCO2 ≥ 51.9 mmHg and pH > 7.35 at rest;
• Potential pregnancy;
• Under guardianship;
• Refusal to consent.

Exclusion criteria:

• Acute exacerbation of COPD (according to the Anthonisen’s criteria [46]) before completion of
the study.

Appendix B

Clinical and functional evaluation.
Pulmonary function: Pulmonary function tests were performed according to the American

Thoracic Society (ATS) and the European Respiratory Society (ERS) guidelines with plethysmography
(Masterscreen, Jaeger, Wittsburg, Germany). Values were expressed as a percentage of established
theoretical values for European population [47].

Six-minute walk test: The six-minute walk test was carried-out according to the ATS and ERS
guidelines in a 30-m corridor [48,49]. The test was performed twice and the best distance was used
for analysis.

Cardiopulmonary exercise testing: Cardiopulmonary exercise testing was performed on an
electromagnetic braked cycloergometer (Ergoselect 200, Ergoline, Bitz, Germany). Following a
3-min warm-up period, incremental ramp exercise was applied up to exhaustion (5–20 W/min).
A pneumotachograph and gas analyzer (Ergocard, Medisoft, Louvain, Belgium) were used to measure
gases (oxygen consumption and carbon dioxide production breath by breath) through a face mask
(Hans Rudolph, Inc., Kansas City, MO, USA). The last ramp maintained before stopping the exercise
was used to determine the maximal workload (Wmax).

Appendix C

Secondary outcomes.
A comprehensive analysis of the flow and pressure raw data from the ventilator were used

to assess patient-ventilator asynchrony, breathing pattern, and were used as a surrogate for
ventilator performance.
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Patient-ventilator asynchrony: According to the framework proposed by the SomnoNIV group,
the following asynchrony events were assessed [50–53]:

Rate asynchronies: rate asynchronies are defined as a mismatch between ventilator and patients’
rates [53] and include:

• Ineffective effort (IE): IE is characterized by an inspiratory effort not assisted by the ventilator. It
can be identified as a drop of airway pressure associated with increase or decrease of airflow (if
occurring during expiratory or inspiratory phase respectively) [52];

• Double-triggering (DT): DT is characterized by two mechanical cycles triggered by the patient,
separated by a very short expiratory time (< 30% of mean inspiratory time) [52];

• Auto-triggering (AT): AT is characterized by the presence of mechanical cycle unrelated to patient’s
spontaneous breathing [52];

Intracycle asynchronies: intracycle asynchronies were defined as a distortion of the flow and
pressure curves during inspiration and/or expiration [53] and include:

• Premature cycling (PC): PC reflects a situation where the end of the mechanical insufflation
anticipates patient’s own inspiration termination [52];

• Delayed cycling (DC): Otherwise to PC, DC is a condition where the mechanical insufflation
exceeds the patient’s own neural expiration [52].

Quantification of asynchronies: Rate asynchronies (IE, DT and AT) were considered as major
asynchrony event [52]. PC and DC were considered as minor event. Cycles corresponding to none
of these categories were considered as normal. Normal cycles, PC and DC were pooled and termed
as NPD.

Each major asynchrony event and total major asynchronies were standardized using the previously
described asynchrony index (AI(%)) dividing the asynchronous breath by the sum of ventilator cycles
and IE, expressed as percentage [39,50,51]. An AI > 10% was considered as clinically relevant [39,50,51].

Breathing pattern, flow and pressure tracing analysis: Respiratory rate (RR), tidal volume (Vt) and
unintentional leaks were recorded by the built-in software of the ventilator. As the ventilator recorded
total leakage, unintentional leaks were estimated at each time point by subtracting the intentional leak
for each mask at a given pressure level (manufacturer’s data) from total leak. For every patient with
both interfaces and for every NPD cycle, the following data were collected: cycle time, instantaneous
respiratory rate (IRR; calculated as the inverse of cycle time), pressure rise time (τ), Ti/Ttot ratio, flow
at the beginning of the cycle (Fini), maximal flow (Fmax), minimal pressure (Pmin), maximal pressure
(Pmax) and mean inspiratory pressure (Pinspi; from the beginning of the cycle to the transition to
minimal pressure).

Moreover, several indicators were calculated from cycle by cycle analysis as follow:

• Mean differential flow (Fdiff) = Fmax, mean − Fini, mean;
• Mean differential pressure (Pdiff) = Pmax, mean − Pmin, mean.
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