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Abstract: Automatic chest anatomy segmentation plays a key role in computer-aided disease
diagnosis, such as for cardiomegaly, pleural effusion, emphysema, and pneumothorax. Among these
diseases, cardiomegaly is considered a perilous disease, involving a high risk of sudden cardiac
death. It can be diagnosed early by an expert medical practitioner using a chest X-Ray (CXR) analysis.
The cardiothoracic ratio (CTR) and transverse cardiac diameter (TCD) are the clinical criteria used to
estimate the heart size for diagnosing cardiomegaly. Manual estimation of CTR and other diseases is
a time-consuming process and requires significant work by the medical expert. Cardiomegaly and
related diseases can be automatically estimated by accurate anatomical semantic segmentation of
CXRs using artificial intelligence. Automatic segmentation of the lungs and heart from the CXRs
is considered an intensive task owing to inferior quality images and intensity variations using
nonideal imaging conditions. Although there are a few deep learning-based techniques for chest
anatomy segmentation, most of them only consider single class lung segmentation with deep complex
architectures that require a lot of trainable parameters. To address these issues, this study presents
two multiclass residual mesh-based CXR segmentation networks, X-RayNet-1 and X-RayNet-2,
which are specifically designed to provide fine segmentation performance with a few trainable
parameters compared to conventional deep learning schemes. The proposed methods utilize semantic
segmentation to support the diagnostic procedure of related diseases. To evaluate X-RayNet-1 and
X-RayNet-2, experiments were performed with a publicly available Japanese Society of Radiological
Technology (JSRT) dataset for multiclass segmentation of the lungs, heart, and clavicle bones; two other
publicly available datasets, Montgomery County (MC) and Shenzhen X-Ray sets (SC), were evaluated
for lung segmentation. The experimental results showed that X-RayNet-1 achieved fine performance
for all datasets and X-RayNet-2 achieved competitive performance with a 75% parameter reduction.
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1. Introduction

The automatic segmentation of the chest anatomy is important for diagnosing pulmonary diseases,
where the radiologist evaluates pulmonary discrepancies, such as nodules, lung deformation, and tissue
mass disorders [1]. The chest X-Ray (CXR) is used world-wide for the chest analysis of several diseases,
including pulmonary cancer, which is the leading cause of death [2]. The CXR is a common diagnostic
tool used by doctors to detect various radiological signs. The lung shape features from the CXR can
be used to diagnose pleural effusion, which is directly related to tuberculosis and congestive heart
failure [3]. Considering the importance of chest anatomy, emphysema, which causes hyperinflation
of alveoli, can be observed by the lung shape because a silhouette appearance of the lung field is
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created. Several studies have performed emphysema predictions using CXRs [4–6]. Cardiomegaly is a
medical condition caused by hypertension, and it leads to an abnormal increase in the size of the heart.
Cardiomegaly can be the result of artery disease, and it is the leading cause of sudden cardiac death [7].
Cardiomegaly can be assessed by the cardiothoracic ratio (CTR), which is measured manually by
medical experts using the boundaries of the lungs and heart in CXRs [8]. Several studies have evaluated
segmentation of the chest anatomy to estimate the CTR for cardiomegaly and related diseases [9–13].
To obtain advancement in diagnosis, automated systems are required to aid the medical specialist
and overcome the diagnostic burden [2,3]. Most of the described diseases are related to the shape
and size of the anatomical structures, which require accurate segmentation of the lung and heart
boundaries. Lung segmentation benefits the diagnosis of diseases, such as cardiomegaly, emphysema,
pleural effusion, etc., where heart segmentation can be used to determine the cardiothoracic ratio [1].
Automatic pulmonary disease detection using computer-aided diagnosis (CAD) is based on the correct
segmentation of anatomical structures, such as the lungs, heart, and clavicle bones [2]. With the success
of deep learning, artificially intelligent algorithms can help medical experts and ophthalmologists to
detect and diagnose the disease and increase diagnostic throughput [14–20]. Semantic segmentation
is a special branch of deep learning that involves pixel-wise classification of the image, which is
important to accurately locate the infected areas for disease analysis [21,22]. Considering semantic
segmentation of the CXRs, segmentation of the lungs, heart, and clavicle bones is challenging because
of the low-quality images and low pixel variation. Previous studies evaluated these issues with
preprocessing or deep networks that involve a lot of trainable parameters, creating a computationally
expensive CAD solution [23,24]. This study focuses on the accuracy and computational cost for chest
anatomy segmentation (lungs, heart, and clavicle bones) for diagnostic purposes. The accuracy of
anatomical structure segmentation is enhanced by edge information empowerment by adding the
spatial information from the preceding layers. The number of trainable parameters is reduced by
reducing the trainable filters at the convolutional level in the encoder and decoder. The proposed
solution is a learning-based method that is considered superior to conventional image processing
methods that use specific thresholds and gray-levels in the image. This study is based on two separate
semantic segmentation architectures, referred to as X-RayNet-1 and X-RayNet-2. X-RayNet-1 uses the
residual mesh for better edge information flow to evenly segment the required anatomical structure
with a small number of pixels (clavicle bones). X-RayNet-2 is visually the same as X-RayNet-1; however,
the number of trainable parameters is substantially reduced on the layer level. X-RayNet-1 is based on
9.5 million trainable parameters, where X-RayNet-2 is based on 2.39 million parameters, exhibiting
approximately a 75% parameter reduction. X-RayNet provides binary masks for the desired class,
and the masks are used to compute the number of the pixel and the position to aid the medical
diagnosis of various diseases.

Anatomical structure segmentation of the chest can be divided into two groups of conventional
handcrafted features and deep feature-based methods. Starting from the baseline of handcrafted
features-based methods that just consider the single class lung segmentation [2] using local features,
researchers have mainly focussed on the general image processing-based methods for the chest anatomy
segmentation, as presented in studies [25–39]. As this study is based on multiclass deep learning-based
semantic segmentation, we mainly focus on learned feature-based literature.

The learned feature-based methods have been evaluated as an alternative to conventional image
processing approaches. Dai et al. used the structural correcting adversarial network (SCAN) multiclass
chest anatomy with critical learning of higher-order structures in limited data [40]. Dong et al. presented
an adversarial network-based supervised learning method with domain adaption for estimation of a
domain-independent output mask [41]. Tang et al. presented crisis-cross attention-based segmentation
and X-Ray image synthesis, where the image-to-image translation module is responsible for data
augmentation using multimodal unsupervised image-to-image translation (MUNIT) [42]. Souza et al.
used a patch-based deep learning approach to lung region segmentation by using an AlexNet-similar
structure. The classified pixels are plotted and reconstructed to obtain the fine boundaries [43].
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Venkataramani et al. presented ContextNets with continuous domain adaption to train the network
with a small number of images [44]. Novikov et al. utilized the famous U-Net-similar architecture
and made a modification to specifically increase the segmentation performance for the heart and
clavicle bone classes [1]. Solovyev et al. presented a novel method for the estimation of the CTR.
They utilized the feature pyramid network (FPN) decoder with the change of batch normalization
for instance normalization and to incorporate dropout in the network [12]. Oliveira et al. proposed
transfer learning-based semantic segmentation for multiclass chest anatomy segmentation. They used
pre-trained networks, such as fully convolutional networks (FCN), U-Net, and SegNet with transfer
learning [45]. Islam et al. presented an efficient lung segmentation model. They also utilized the U-Net
model to extract the lung region from the background. Several techniques were used to artificially
increase the amount of data for training [46]. Wang et al. presented a multiclass CXR segmentation
method with promising segmentation performance. They considered instance segmentation using
mask-based region convolutional neural network (Mask-RCNN). They used ResNet50 and ResNet101
as the backbone network for Mask-RCNN [47]. Dong et al. presented deep learning for chest organ
segmentation. They used a generative adversarial approach, in which the optimal discriminator design
was proposed [48]. Jiang et al. presented deep convolution neural network-based segmentation using
a small amount of data. They used a VGG16 network using prior weight initialization [49].

Table 1 lists the strengths and weaknesses of the existing methods in comparison to X-RayNet for
chest anatomy segmentation.

Table 1. Comparison of previous methods and X-RayNet for chest anatomy segmentation.

Type Methods Strength Weakness

Using handcrafted local
features *

Lung segmentation
using Hull-CPLM [2]

Selects the ROI for
lung detection Preprocessing is required

Nongrid registration
lung segmentation [25]

Sift-flow modeling for
registration provides

an advantage

Boundary refinement
is required

Probabilistic lung shape
model [26,32,35]

Probabilistic shape
model mask helps in
shape segmentation

Single threshold creates
the segmentation error

Otsu thresholding [27]
Excludes the noise

area for lung
nodule segmentation

Gamma correction
is required

Fuzzy c-means
clustering [28,30,37]

Better performance
compared to K-means

The lower value of β
requires more iterations

Active contour and
morphology [29,39]

Active contour can
estimate the real
lung boundary

The iterative method
takes many iterations

Salient point-based lung
segmentation [31,33]

Interpolation of salient
points approximate lung

boundary well

Results are affected by
overlapped regions

Harris corner detector
[34,36]

Convolutional mask
refines the contour

Edge detection is affected
by noise

Region growing [38]
Region growing methods

are good towards the
real boundary

ROI is required
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Table 1. Cont.

Type Methods Strength Weakness

Using features based on
machine learning or

deep learning

Structural correcting
adversarial network

[40,49]

Adversarial training is
good for a small number

of training images

Critic network requires
fully connected layer and

consumes a lot of
parameters

Domain adaptation
[41,44]

Domain adaption is good
to enhance segmentation

performance

FCN-based segmentation
consumes many

parameters

Lung segmentation by
criss-cross attention [42]

Image-to-image
translation is used for

augmentation

Three separate deep
models of ResNet101,

UNet, and MUNIT
are used

Similar structure as
AlexNet [43]

Semantic segmentation is
close to real boundary

Patch-based deep
learning scheme is

computationally expensive

FCN, U-Net, and SegNet
for CXR segmentation

[45]

Semantic segmentation
provides good results for
multiclass segmentation

FCN consumes many
trainable parameters

owing to fully
connected layer

U-Net [46]
U-Net is popular for

medical image
segmentation

Preprocessing is required

Mask-RCNN [47]
Multiclass efficient

segmentation is
performed

Region proposals are
also required with

pixel-wise annotation

ResNet [49]

Dropping 5th

convolutional block from
VGG-16 reduces the

number of parameters

Clavicle bone
segmentation is
not considered

X-RayNet
(proposed)

12 residual mesh streams
enhance features to

provide good
segmentation
performance

Data augmentation
is required to

artificially increase
the amount of data

* Handcrafted local featuresare with conventional image processing schemes.

This study evaluates two multiclass CXR segmentation networks (X-RayNet-1 and X-RayNet-2)
to segment lung, heart, and clavicle bones to aid medical specialists in the diagnosis of cardiomegaly
and other related diseases. Compared to existing works, this study is novel in the following four ways:

1. X-RayNet does not require preprocessing for multiclass semantic segmentation to detect the
lungs, heart, and clavicle bones at the same time. X-RayNet considers the importance of
computational cost; therefore, X-RayNet-2 reduces the trainable parameters by 75% with a
competitive performance.

2. This study presents two separate identical semantic segmentation networks with a simple fully
convolutional architecture.

3. X-RayNet utilizes a mesh of internal and external residual paths that transfers the enriched
features from the preceding layers and at the end of the network. X-RayNet uses identity and
nonidentity mappings for faster edge information transfer to ensure the residual mesh connects
all the convolutional layers, including the first convolutional layer.

4. For a fair comparison with other research results, the trained X-RayNet models and algorithms
are made publicly available in [50].
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2. Materials and Methods

2.1. Overview of Proposed Architecture

Figure 1 shows an overview of the proposed method for chest anatomical structure segmentation.
X-RayNet provides accurate multiclass segmentation of the lung, heart, and clavicle bones using
pixel-wise classification for diagnostic purposes. The proposed method considers the importance of
the enriched spatial edge information that resides in the initial layers of the network. The mesh-based
residual paths provide this edge information to the next layers and outside the encoder. To utilize the
benefits of identity and nonidentity mapping and to ensure the connectivity of each convolutional
layer of the encoder with the residual mesh, identity mapping is used in the encoder, and nonidentity
mapping is used in the decoder. The original image is directly provided to X-RayNet without
conventional preprocessing, and it provides four output masks for each class of the lungs, heart,
clavicle bones, and background.

Figure 1. Flowchart of the proposed method.

2.2. Chest Anatomy Segmentation Using X-RayNet

The classification by convolutional neural networks is the base of semantic segmentation, in which
continuous convolutions are applied until the image is represented by the tiny features, and after
classification, the image is upsampled again for the segmentation mask [51]. The continuous convolution
also eliminates useful class spatial information during its process [51]. To preserve the important spatial
information, the residual networks (ResNet) [52] have residual skip connections, which empower
the features owing to ResNet’s attribute of superior performance of visual geometry group networks
(VGG-Nets). The famous semantic segmentation network SegNet is based on VGG-Net, and it does not
consider the residual connections; therefore, segmentation performance is lacking in the minor classes
of the road scene, such as column/poles, sign/symbols, and bicyclists [53]. The spatial information loss
is dealt with in X-RayNet by reducing convolutional blocks and using residual mesh.

The CXR images do not have superior quality, and the edges of the chest organs are not clear.
The segmentation in the CXR scenario is difficult in multiclass segmentation because of pixel differences.
Unlike other traditional networks where the final feature map is small (7 × 7) [51], the X-RayNet
maintains the final feature map at 21 × 21 for a 350 × 350 CXR image with a total of 17 layers overall.
Table 2 lists the key differences of the proposed X-RayNet with deep networks, such as ResNet [52],
SegNet [53], IrisDenseNet [54], fully residual encoder–decoder network (FRED-Net) [55], outer residual
skip network (OR-Skip-Net) [56], Vess-Net [15], and U-Net [57], in different application domains.
Considering the mesh residual structure of X-RayNet, Figure 2 shows the layer connectivity of the
candidate encoder and decoder block with a feature empowerment scheme. According to Figure 2,
each first encoder convolutional layer E-Con-Ai receives the pooled feature Ei from the pooling layer of
the previous block Pooli−1 and provides the output T(Ei), which is later changed to T∼i (Ei) after batch
normalization, and ReLU, where this feature T∼i (Ei) becomes K(Ei) after the second convolutional layer
E-Con-Bi operation. After the second convolution, the features T(Ei) and K(Ei) are added elementwise
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via an encoder inner identity stream (IIS) to create Ri = T(Ei) + K(Ei), which is later changed to R∼i ,
given as the following equation.

R∼i = (T(Ei) + K(Ei))
∼ (1)

Table 2. Key architectural differences between X-RayNet and previous approaches.

Method Other Architectures X-RayNet

ResNet [52]

Only adjacent convolutional layers have
residual skip paths

Both adjacent and nonadjacent layers
have residual skip connections. There are
paths between the encoder and decoder.

1 × 1 convolution is employed as
bottleneck layer in all ResNet variants

1 × 1 convolution is used to connect three
blocks of the decoder based on
nonidentity mapping

Max-pooling layers are without
indices information

Max-pool to max-unpool indices
information is shared between the
corresponding encoder and decoder block

All variants use fully connected layers for
classification purposes

The fully connected layers are not used to
make the network a fully convolutional
network (FCN) for semantic segmentation

Average pooling is employed at the end of
the network

Max-pooling layers and max-unpooling
layers are used in each encoder and
decoder block

IrisDenseNet [54]

Encoder and decoder consist of 13
convolutional layers each, resulting in a
total of 26 convolutional layers

Encoder and decoder consist of eight and
nine (3 × 3) convolutional
layers, respectively

Uses dense connectivity in encoder with
depth-wise concatenation

Residual connectivity between encoder
and decoder by elementwise addition

First two blocks have two convolutional
layers and the rest of the blocks have three
convolutional layers in the encoder
and decoder

Two convolutional layers in each encoder
and decoder convolutional block, where
one convolutional layer is at the end of
the network to produce respective
class masks

The decoder is the same as the VGG-16
network without feature reuse by
dense connectivity

Both encoder and decoder use the residual
mesh connectivity for feature reuse

FRED-Net [55]

Only uses residual skip connections
between adjacent convolutional layers of
same block

Uses residual skip connections for
adjacent convolutional layers and
between encoder and decoder externally

There is no skip connection between
encoder and decoder

Inner and outer residual connections for
spatial information flow

The overall network has six skip paths The overall network has 12 residual skip
paths that create the residual mesh

Overall network is based on
nonidentity mapping

Among the 12 residual paths that create a
residual mesh, nine are with identity
mapping and three are with
nonidentity mapping

The ReLU is used after the elementwise
addition that represents the
postactivation only

The network is based on pre- and
post-activation
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Table 2. Cont.

Method Other Architectures X-RayNet

SegNet [53]

26 convolutional layers 17 convolutional layers

No residual connectivity that causes
vanishing gradient problem

Vanishing gradient problem is handled by
residual mesh

Each block has a different number of
convolutional layers

All the blocks have the same two
convolutional layers

512-depth block used twice to increase the
depth of the network

Used 512-depth block once for
X-RayNet-1 and 512-depth block is not
used in X-RayNet-2

OR-Skip-Net [56]

There is no internal connectivity between
the convolutional layers in the encoder
and decoder

Both encoder and decoder convolutional
layers are connected with residual mesh
for feature empowerment

The outer skip connections are with
nonidentity mapping

The encoder-to-decoder connections are
with identity mapping

Only pre-activation is used as ReLU exists
before elementwise addition

The network is based on pre- and
post-activation

Four residual connections are used 12 residual skip connections are used

Vess-Net [15]

16 convolutional layers are used
16 convolutions are used with an extra
convolution in the decoder for fine
edge connectivity

The first convolutional layer has no
internal or external residual connection

The features from the first convolutional
layer are important for edge information
for the minor class, like the clavicle bones;
therefore, it is internally and
externally connected

All the convolutional layers are internally
connected with each other inside the
encoder and decoder with
nonidentity mapping

Most of the internal layers of the encoder
and decoder are connected using
identity mapping

10 residual paths 12 residual paths

U-Net [57]

23 convolutional layers are used 17 convolution layers are used

Up convolutions are used in the
expansive part for upsampling

The unpool layer in combination with
normal convolution is used
for upsampling

1 × 1 convolution is used at the end of
the network

1 × 1 convolution is only used in the
decoder internal residual connections

Feature concatenation is utilized
for empowerment

Feature elementwise addition is utilized
for feature empowerment

Cropping is required owing to border
pixel loss during convolution

The feature map size is controlled by
indices information transfer between
pooling and unpooling layers
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Figure 2. X-RayNet residual mesh schematic.

Here, R∼i is the enhanced feature (available for the pooling layer of the current encoder block) that
compensates for the loss of information created by E-Con-Ai; “+” represents the elementwise addition;
“∼” indicates the combined process of batch normalization and ReLU. The most important enriched
feature (fine edge information) is Ei, which is a nonaltered feature directly from the pooling layer. Here,
Ei is directly fed to the corresponding decoder block by the outer identity stream (OIS). If Ei is from the
first block of the network, it contains real edge information of the feature. Similar to the encoder block,
the first convolution of decoder block D-Con-Ai receives the Dj feature from the current unpooling
layer Unpoolj and gives T(Dj) as an output feature, which later is changed to T∼i (Dj) after batch
normalization and ReLU operation. Feature T∼i (Dj) becomes K(Di) after the second convolutional
layer D-Con-Bj operation. After the second convolution in the decoder, features F (T(Dj)), K(Dj),
and Ei are added elementwise and are features from the decoder inner nonidentity stream (INIS) to
create Sj = Ei + K(Dj) +F (T(Dj)), which is later changed to S∼j , given by the following equation.

S∼j = (Ei + K(Dj) +F (T(Dj)))
∼ (2)

Here, S∼j is the enhanced feature (available for the unpooling layer of the next decoder block),
which compensates for the loss of information created by D-Con-Aj and D-Con-Bj and also empowers
the feature with important edge information Ei from the encoder; “+”represents elementwise addition;
“∼” indicates the combined process of batch normalization and ReLU. Here, S∼j is the feature that
guarantees better segmentation edges and ensures the detection of the minor class, such as the clavicle
bones, with accuracy.

Figure 3a,b shows the complete description of X-RayNet-1 and X-RayNet-2, respectively.
Both networks are identical in terms of architecture; however, there is a large difference between the
number of trainable parameters. To reduce the number of trainable parameters, there is no schematic
difference created in the architecture; however, the number of filters in all the convolutional layers
are halved.
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Figure 3. Proposed X-RayNet architecture for chest X-Ray (CXR) semantic segmentation: (a) X-RayNet-1
without filter reduction and (b) X-RayNet-2 with filter reduction.

2.2.1. X-RayNet Encoder

Considering the encoder, there are a total of eight convolutional blocks for X-RayNet-1 and
X-RayNet-2. In each encoder convolutional block, there are two convolutional layers that are connected
to each other with the inner identity stream (IIS). ReLU is combined with batch normalization (BN) and
exists after elementwise addition; thus, it exhibits postactivation. The encoder performs the continuous
convolutional operation until the image is represented by the tiny feature for multiclass segmentation.
The final feature map after the last max-pooling layer is 21 × 21; however, it is empowered to represent
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the fine features for all the classes. The X-RayNet-1 encoder starts the convolutional process with
64 filters and ends with 512 filters. X-RayNet-2 is a swift network that reduces the number of filters
substantially. X-RayNet uses an RGB image of 350 × 350 pixels as an input, and at the end of the
encoder, it provides an output of 21 × 21 pixels to the decoder for upsampling.

The X-RayNet encoder structure is listed in the Appendix A section in Table A1, which shows
that the residual mesh provides four residual skip connections by IIS and initiates four residual skip
connections by OIS for the decoder. Table A1 also lists the feature map sizes and learnable parameters
by each layer in the encoder.

2.2.2. X-RayNet Decoder

Figure 3 shows the overall structure of X-RayNet. The X-RayNet decoder has two convolutions in
each block; however, there are a few important changes. To provide connection to all convolutional
layers in the decoder through the residual mesh, most of the internal residual connections in the decoder
are based on nonidentity mapping (except the last convolutional block in the decoder). Moreover,
one additional convolutional layer at the end of the network is added for the class masks. The X-RayNet
decoder receives the 27 × 27-pixel feature from the last pooling layer of the encoder and provides the
output mask of 350 × 350, similar to the size of input image. Considering the decoder of X-RayNet-2,
the architectural scheme is similar to X-RayNet. As explained earlier, the number of filters in X-RayNet
is reduced by half to reduce the number of trainable parameters. for practical scenarios. After the last
convolutional block, there is an output block that contains one convolution layer for the class masks
and a combination of softmax and pixel classification layer. The purpose of the pixel classification
layer is to assign a pixel label for each class according to the loss. Table A2 lists the layer structure and
feature map sizes for the X-RayNet decoder.

3. Results

3.1. Experimental Data and Environment

This research focused on multiclass chest anatomy segmentation. Therefore, the segmentation
performance of the proposed X-RayNet was tested on a publicly available multiclass dataset released
by the Japanese Society of Radiological Technology (JSRT) [58]. The JSRT dataset consists of a total of
247 CXRs for research purposes. The multiclass pixel-level annotation for the lungs, heart, and clavicle
bones was provided by Van Ginneken et al. [59], and these annotations are used for training and
testing of the proposed network. Specifically, two observers familiar with medical image analysis
manually segmented the chest objects with instructions from an experienced radiologist; both observers
reviewed the results repeatedly until the radiologist was convinced that the segmentation was reliable.
The original size of the images is 2048 × 2048 pixels with 0.175 mm of pixel space. Out of 247 images,
154 images contain nodules, where the remaining 94 images do not contain lung nodules. The JSRT
is available in two folds of 124 and 123 images, respectively. In this study, one fold was used for
training and the other fold was used for testing based on the two-fold cross-validation criteria used
in [47]. Then, the final accuracy was calculated by averaging the accuracies of both folds. Figure 4
shows example CXRs from the JSRT dataset with corresponding multiclass ground truth for the lungs,
heart, and clavicle bones. The blue, green, and red pixels show the lung, heart, and clavicle bone
pixels, respectively.

To reduce the training time and graphic processing unit (GPU) memory usage, the images and
labels of JSRT were evenly resized to 350 × 350 pixels. The X-RayNet is a semantic segmentation
network that performs pixel-wise classification. This pixel-wise classification requires a large amount
of training data, which is artificially created by data augmentation explained in Section 3.2.
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Figure 4. Sample CXR images and ground truths for the Japanese Society of Radiological Technology
(JSRT) dataset.

X-RayNet was trained and tested on a desktop with Intel® Core™ i7-3770K CPU with the clock
speed of 3.50 GHz (4 cores). The system RAM was 28 GB with NVIDIA GeForce GTX Titan X GPU
(3072 Cuda cores with a graphics memory of 12 GB) [60]. In our experiments, X-RayNet was designed
and trained from scratch using MATLAB 2019a [61](without fine-tuning of a pretrained model, such as
ResNet, GoogleNet, Inception, or DenseNet.)

3.2. Data Augmentation

To train a semantic segmentation network sufficiently, a large amount of labeled data is required,
which is difficult to arrange in all scenarios. Considering the medical domain, the datasets are difficult
to label because expert knowledge is required. Thus, different data augmentation schemes are used to
artificially increase the amount of data or to create a variety for network learning. To train X-RayNet
and X-RayNet-2 with a variety of images and guarantee successful learning, artificial images were
created with several image transformations, such as cropping, resizing, and horizontal flipping with
interpolation. The basic schematic of the proposed data augmentation is shown in Figure 5.

Using a total of 124 images, the first step X-Y translation with (X = 5, Y = −5) was applied without
flipping, resulting in 248 images. In the second step, the 248 images from the previous step were
flipped horizontally to create a total of 496 images. In the third step, the 496 images from the previous
step were X-Y translated (X = −5, Y = 5) with a horizontal flip, resulting in a total of 992 images. In the
fourth step, two different transformations of (X = 10, Y = 10) with the horizontal flip and (X = −10,
Y = −10) with the horizontal flip were applied to the 992 images from the previous stage, resulting in
1984 and 1984 images, respectively. Therefore, with the combination of transformational images from
step four, a total of 3968 (1984 + 1984) images were obtained, which were used for training purposes
(as shown in Figure 5).
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Figure 5. Data augmentation strategy used to artificially increase the training data; H-Flip represents
the horizontal flip.

3.3. X-RayNet Training

X-RayNet is based on a residual mesh, which provides the network with several residual paths
for the encoder-decoder internal and external connectivity and helps the network to quickly converge.
The spatial edge information through the residual mesh provides fine edge segmentation to avoid the
preprocessing overhead. The training of X-RayNet was performed from scratch without prior weight
transfer or initialization. X-RayNet is our designed network; therefore, to train X-RayNet, finetuning
was not used from the conventional models. The Adam optimizer is a well-known version of stochastic
gradient descent (SGD), and it provides efficient performance for diagonal scaling of the gradient,
suitable for larger data, and even good for moving object classification problems [62]. Because of the
benefits of Adam, it was adopted as an optimizer to train X-RayNet. Considering the other training
parameters, the initial learning rate was 0.0003, which was maintained during the training of 20 epochs
(34,440 iterations). The X-RayNet design has a low memory requirement; therefore, a minibatch size
of 17 images was used for the training. The global L2 normalization with an epsilon of 0.000001
was used as the gradient threshold method, where the gradient threshold of six was maintained
during the training. The CXR images are multiclass with a different number of pixels per class;
thus, the cross-entropy loss with median frequency balancing was used to quickly train the network.
A similar scheme of cross-entropy in combination with frequency balancing was utilized in [53–56].
Figure 6 shows the training loss and accuracy curves for the proposed X-RayNet. The x-axis represents
the number of epochs. The training loss is presented on the left y-axis (red color), and the training
accuracy is presented on the right y-axis (blue color). The loss and accuracy are shown on the basis
of the minibatch of 17 images per epoch. The X-RayNet training of 20 epochs with a learning rate of
0.0001 and minibatch size of 17 images achieved the training accuracy of approximately 97% with a
training loss of approximately 0.01. As described in Section 1, the X-RayNet trained models will be
made publicly available to allow comparison with other studies via [50].
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3.4. Testing of the Proposed Method

3.4.1. X-RayNet Testing for Chest Anatomy Segmentation

As stated in Section 1, X-RayNet does not require preprocessing of the image using conventional
image processing schemes for training and testing. The original image with a size of 350 × 350 was
directly provided to X-RayNet, where the network performed the continuous convolution process
to classify the object available classes in a feed-forward fashion. The continuous process degrades
the image on each step; however, the residual mesh, which consists of an OIS, IIS, and INIS, ensures
compensation for the lost feature with residual paths, as shown in Figure 3 and listed in Tables A1
and A2. X-RayNet enhances the feature from the preceding layers using 12 different internal and
external residual skip paths. At the X-RayNet output, the convolution layer was used with four filters
(MConv, as listed in Table A2), in which each channel represents the separate classes of the lung, heart,
clavicle bones, and background. Thus, the output of X-RayNet is the four masks for each individual
class output. To evaluate the segmentation performance by the proposed X-RayNet, the accuracy
(Acc); mean intersection of union (mIOU), which is also referred as the Jaccard index (J); and dice
coefficient (D) were measured, which were similarly utilized by [1,12,47] to evaluate and compare the
JSRT dataset with other methods. The formulas for J and D are given by Equations (3)–(5).

Acc =
TP + TN

TP + FP + FN + TN
(3)

J =
TP

TP + FP + FN
(4)

D =
2TP

2TP + FP + FN
(5)

Here, TP, FP, and FN are the numbers of true positives, false positives, and false negatives,
respectively. Considering the example of one class of lungs, the TP pixels are the pixels that are
predicted as lung pixels and listed as lung pixels in the ground truth. The FP pixels are the pixels that
are predicted as lung pixels and listed as a nonlung pixels in the ground truth. The FN pixels are the
pixels that are predicted as nonlung pixels by our network but listed as lung pixels in the ground truth.
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3.4.2. Chest Organ Segmentation Results by X-RayNet

Figure 7 shows the multiclass segmentation results of the CXR images by X-RayNet with the
JSRT dataset and CTR predicted (CTR_P) with the proposed method, and the CTR with ground truth
(CTR_G) mask provided by [59] in the supervision of expert radiologist using the same criteria. Figure 7
shows the convention of FP (shown in black for each class), FN (shown in yellow for each class), and TP
(shown in blue, green, and red for the lung, heart, and clavicle bone classes, respectively). Considering
the bad segmentation cases, there is no considerable segmentation error for the test images using
our method.
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Figure 7. Examples of chest anatomical structure segmentation by X-RayNet for the JSRT dataset:
(a) original CXR image; (b) ground-truth mask; (c) predicted mask result by X-RayNet; false positives
(FP) (shown in black for each class), false negatives (FN) (shown in yellow for each class), and true
positives (TP) (shown in blue, green, and red for the lung, heart, and clavicle bone classes, respectively).
CTR_P and CTR_G represent the CTR predicted by the proposed method and CTR by ground-truth mask.

3.4.3. Comparison of X-RayNet with Other Methods

In this section, the segmentation performance comparisons between X-RayNet and other methods
are compared based on the performance measure of J and D described in Section 3.4.1. Table 3 lists
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the segmentation performance comparisons of the existing method with those obtained by X-RayNet
for the JSRT dataset. The results prove the superior performance of X-RayNet for chest anatomy
segmentation compared to current studies, based on the values of J and D. The comparison in Table 3
lists the local feature-based methods and learned feature-based methods separately.

Table 3. Accuracies of X-RayNet and existing methods for the JSRT dataset (unit: %).

Type Method
Lungs Heart Clavicle Bones

Acc J D Acc J D Acc J D

Local
feature-based

methods

Peng et al. [22] 97.0 93.6 96.7 - - - - - -
Candemir et al. [25] - 95.4 96.7 - - - - - -

Jangam et al. [28] - 95.6 97.4 - - - - - -
Wan Ahmed et al. [30] 95.77 - - - - - - - -

Vital et al. [29] - - 95.9 - - - - - -
Iakovidis et al. [31] - - 91.66 - - - - - -
Chondro et al. [38] - 96.3 - - - - - - -
Hybrid voting [59] - 94.9 - - 86.0 - - 73.6 -

PC post-processed [59] - 94.5 - - 82.4 - - 61.5 -
Human Observer [59] - 94.6 - - 87.8 - - 89.6 -

PC [59] - 93.8 - - 81.1 - - 61.8 -
Hybrid ASM/PC [59] - 93.4 - - 83.6 - - 66.3 -
Hybrid AAM/PC [59] - 93.3 - - 82.7 - - 61.3 -

ASM tuned [59] - 92.7 - - 81.4 - - 73.4 -
AAM whiskers BFGS [59] - 92.2 - - 83.4 - - 64.2 -

ASM default [59] - 90.3 - - 79.3 - - 69.0 -
AAM whiskers [59] - 91.3 - - 81.3 - - 62.5 -
AAM default [59] - 84.7 - - 77.5 - - 50.5 -
Mean shape [59] - 71.3 - - 64.3 - - 30.3 -

Dawoud [35] - 94.0 - - - - - - -
Coppini et al. [4] - 92.7 95.5 - - - - - -

Deep
feature-based

methods

Dai et al. FCN [40] - 92.9 96.3 - 86.5 92.7 - - -
Dong et al. [41] 95.5 - 90.2
Mittal et al. [24] 98.73 95.10 - - - - - - -

Oliveira et al. FCN [45] 95.05 97.45 89.25 94.24 75.52 85.90
Oliveira et al. U-Net [45] 96.02 97.96 89.21 94.16 86.54 92.58
Oliveira et al. SegNet [45] 95.54 97.71 89.64 94.44 87.30 93.08

Novikov et al. InvertedNet [1] 94.9 97.4 88.8 94.1 83.3 91.0
ContextNet-1 [44] 95.8 - - - - - - -
ContextNet-2 [44] - 96.5 - - - - -

ResNet50 (512, C = 4) ~* [47] 93.9 96.8 88.3 93.7 79.4 88.3
ResNet50 (512, C = 4) * [47] 95.3 97.6 89.4 94.3 84.9 91.8
ResNet50 (512, C = 6) * [47] 94.5 97.2 89.3 94.3 84.3 91.5
ResNet50 (512, C = 8) * [47] 94.9 97.4 89.7 94.5 84.7 91.6

ResNet101 (512, C = 4) * [47] 95.3 97.6 90.4 94.9 85.2 92.0
ResNet50 (256, C = 4) * [47] 95.0 97.4 89.8 94.6 82.3 90.2

ResNet101 (256, C = 4) * [47] 94.9 97.4 90.1 94.7 79.6 88.5
BFPN [12] - 87.0 93.0 - 82.0 91.0 - - -

OR-Skip-Net [56] 98.92 96.14 98.02 98.94 88.8 94.01 99.7 83.79 91.07
X-RayNet-1 (proposed method) 99.06 96.65 98.29 99.16 90.99 95.22 99.8 88.72 93.94
X-RayNet-2 (proposed method) 98.93 96.14 98.02 98.96 89.30 94.25 99.8 86.65 92.73

~ represents the experiment without data augmentation. * ResNet50 and ResNet101 are used as the backbone
network for Mask-RCNN; 512/ 256 shows that the input image size is (512 × 512)/(256 × 256), where C represents the
number of the convolutional layer in the mask prediction branch of Mask-RCNN by Wang et al. [47]. ACC means
accuracy, J shows jaccard, and D means dice score.

3.4.4. Lung Segmentation with Other Open Datasets Using X-RayNet

To evaluate the segmentation performance with X-RayNet in different image acquisition conditions,
this study included experiments with two additional publicly available datasets of lung segmentation:



J. Clin. Med. 2020, 9, 871 16 of 27

the Montgomery County chest X-Ray set (MC) [63] and Shenzhen chest X-ray set (SC) [63]. MC consists
of l38 frontal chest X-Ray images from the Montgomery County tuberculosis program run by the
department of health and human services of Montgomery County, Maryland, USA. The MC dataset
consists of 80 normal and 58 tuberculosis cases, where the X-Ray images were obtained using a Eureka
stationary X-Ray machine. The images are provided in PNG format along with the lung contour
binary mask as ground truth (as shown in Figure 8a). The SC dataset is from Shenzhen No. 3 People’s
Hospital of Guangdong Medical College, Shenzhen, China. The SC dataset consists of 662 frontal
chest X-Ray images with 326 normal and 336 tuberculosis manifestation cases, where the images were
obtained using a Philips DR Digital Diagnostic System. In our experiments with MC, we followed the
same criteria as [43]. For the 138 images, 80 images were used for training, 20 images for validation,
and 38 images for testing purposes. Considering the SC dataset with the provided 662 images, the lung
mask of 566 images was provided with the dataset. From the 566 images, 50% of the images (283)
were used for training, and the remaining images (283) were used for testing purposes with a two-fold
cross-validation. Example images of the MC and SC dataset with the ground truth image are shown in
Figure 8a,b), respectively. To train X-RayNet with MC and SC, similar data augmentation was used as
described in Section 3.2. The ground-truth mask for MC and SC are provided for only the lungs.
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Figure 8. Examples of X-Ray images from the (a) Montgomery County chest X-Ray set (MC) and
(b) Shenzhen chest X-Ray set (SC) datasets with corresponding ground truths.

Figures 9 and 10 show the segmentation results by X-RayNet for the MC and SC datasets with the
areas of TP, FN, and FP. Considering the bad segmentation performance case, X-RayNet is powered by
the residual mesh; therefore, there is no significant segmentation error or nonsegmentation case for
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the MC and SC datasets. Tables 4 and 5 list the experimental result comparison for X-RayNet-1 and
X-Ray-Net-2 with existing studies based on the MC and SC datasets. The experimental results validate
the fine performance of X-RayNet for lung segmentation, which will be used for diagnostic purposes.
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in yellow). 
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(b) ground-truth mask; (c) segmented image by X-RayNet (TP is presented in blue, FP in black, and FN
in yellow).



J. Clin. Med. 2020, 9, 871 18 of 27
J. Clin. Med. 2020, 9, 871 17 of 25 

 

   

(a) (b) (c) 

Figure 10. Examples of lung segmentation by X-RayNet for the SC dataset: (a) original image; (b) 
ground-truth mask; (c) segmented image by X-RayNet (TP is presented in blue, FP in black, and FN 
in yellow).  

Figure 10. Examples of lung segmentation by X-RayNet for the SC dataset: (a) original image;
(b) ground-truth mask; (c) segmented image by X-RayNet (TP is presented in blue, FP in black, and FN
in yellow).



J. Clin. Med. 2020, 9, 871 19 of 27

Table 4. Accuracies of X-RayNet and other methods for the Montgomery County (MC) dataset (unit: %).

Type Method Acc J D

Handcrafted local
feature-based methods

Candemir et al. [25] - 94.1 96.0
Peng et al. [2] 97.0 - -

Vajda et al. [64] * 69.0 - -

Learned/deep
feature-based methods

Souza et al. [43] 96.97 88.07 96.97
Feature selection with BN [65] * 77.0 - -

Feature selection with MLP [65] * 79.0 - -
Feature selection with RF [65] * 81.0 - -
Feature selection and Vote [65] * 83.0 - -

Bayesian feature pyramid network [12] - 87.0 93.0
X-RayNet-1 (proposed method) 99.11 96.36 98.14
X-Ray-Net-2 (proposed method) 98.72 94.96 97.40

* The results for [64] and [65] are taken from [2]. BN, batch normalization; MLP means multi layer perceptron,
and RF shows random forest. ACC means accuracy, J shows jaccard, and D means dice score.

Table 5. Accuracies of X-RayNet and other methods for the Shenzhen X-ray set (SC) dataset (unit: %).

Type Method Acc J D

Handcrafted local
feature-based methods

Peng et al. [2] 97.0 - -
Vajda et al. [64] * 92.0 - -

Learned/deep
feature-based methods

Feature selection with BN [65] * 81.0 - -
Feature selection with MLP [65] * 88.0 - -
Feature selection with RF [65] * 89.0 - -
Feature selection and Vote [65] * 91.0 - -

Bayesian feature pyramid network [12] - 87.0 93.0
X-RayNet-1 (proposed method) 97.70 91.82 95.64
X-Ray-Net-2 (proposed method) 97.32 90.56 95.0

* The results for [64] and [65] are taken from [2]. ACC means accuracy, J shows jaccard, and D means dice score.

Separate training and testing were performed in the experiment to provide a fair comparison with
existing studies (based on the same experimental protocol), as listed in Tables 3–5. From Tables 3–5,
our proposed X-RayNet-1 and X-RayNet-2 outperformed the state-of-the-art methods for chest anatomy
segmentation for all three datasets. To test the portability of the proposed X-RayNet, two additional
experiments were performed. In the first, X-RayNet was trained on MC and tested on SC. In the
second experiment, X-RayNet was trained on SC and tested on MC. For these two cross-dataset
experiments, the network was trained individually without any heuristic of the testing data. Table 6
lists the portability of our method. The performance of X-RayNet is sufficiently good for the training
and testing of different datasets. The performance numbers in Table 6 show that the degradation in
performance is small and better than the numerous state-of-the-art methods for lung segmentation.

Table 6. Accuracies of X-RayNet trained on MC and tested on the SC dataset and vice versa (unit: %).

Method Train Test Acc J D

X-RayNet-1 MC SC 96.27 87.74 93.24
X-RayNet-1 SC MC 98.10 92.52 96.06

4. Discussion

As described in Section 1, chest radiography is one of the most common diagnostic schemes to
analyze multiple cardiothoracic and pulmonary diseases. The automatic detection of disease and
CAD is an important aspect to reduce the workload of the medical practitioner. CTR can be used as
the diagnostic tool for related diseases such as cardiomegaly which is a medical condition in which
the heart size is increased, and this enlargement of the heart is estimated by CTR. The computation
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of CTR is normally performed by the medical practitioner manually using a visual analysis of the
CXRs. This process of CTR computation can be automated by our proposed semantic segmentation
network (X-RayNet), which segments the lungs and heart boundary accurately. In X-Ray images,
the heart boundary is crucial as there is a only small change in pixel values as shown in Figure 11a.
The CTR calculation by our method depends upon the clear boundary segmentation of the heart and
lungs. The exact boundary segmentation is required even with minor changes of pixel values, which is
effectively helped with feature empowerment. Figure 11a–c show an example image, a segmentation
result by X-RayNet, and the CRT computation schematic for the JSRT dataset. Based on [13,41], CTR
estimation was performed with the ratio of distance A←→B and C←→D. Here, A←→B is the distance
between two extreme points A and B for the heart, and C←→D is the distance between two extreme
outer points C and D for both lungs, as shown in Figure 11c and Equation (6).

CTR =
A←→B
C←→D

(6)
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from training data. This trained knowledge is then utilized to predict the pixel-wise classes in the 
testing X-Ray image. The learning method-based predictions are subject to training knowledge; 
therefore, the misclassification of pixels can create a prediction error for the CTR computations. In 
addition, our method shows that FN cases occur more frequently than FP cases especially in the upper 
areas of heart, as shown in Figure 11b, because of the indistinctive boundary of the heart. 
Nevertheless, these errors do not affect the correct calculation of CTR because the CTR is calculated 
based on the horizontal distances of heart and lungs as shown in Equations (7). The proposed method 
can aid the medical practitioner for the diagnosis with CTR and the analysis of the segmented chest 
anatomy as a second opinion system.  

Figure 11. Sample image of chest anatomy segmentation for pixel count: (a) original image, (b) predicted
mask by X-RayNet (FP (shown in black for each class), FN (shown in yellow for each class), and TP (shown
in blue, green, and red for the lung, heart, and clavicle bone classes, respectively)), and (c) procedure
for calculating CTR, CTR_P, and CTR_G represent the CTR predicted by the proposed method and that
predicted by the ground-truth mask.

Considering the specific example provided in Figure 11, the distance A←→B by our method is
130 pixels, where the distance C←→D is 302 pixels. In this example case, the predicted CTR (CTR_P)
calculated using Equation (6) is 0.4305 where the CTR ground truth (CTR_G) calculated by the
ground-truth mask provided by [59] under supervision by an expert radiologist using Equation (6)
is 0.4262. According to [41], the CTR threshold can vary for different age groups explained by [13],
and the determination of cardiomegaly through the CTR value can be automatically made by our
method. Brakohiapa et al. [13] explained that the CTR is one of the main parameters that can be used
for the detection of heart failure and cardiomegaly. The computational criteria related to age and
gender for the CTR is effectively discussed for cardiomegaly in [13].

The proposed X-RayNet is a learning-based method in which the network learns the weights from
training data. This trained knowledge is then utilized to predict the pixel-wise classes in the testing
X-Ray image. The learning method-based predictions are subject to training knowledge; therefore,
the misclassification of pixels can create a prediction error for the CTR computations. In addition,
our method shows that FN cases occur more frequently than FP cases especially in the upper areas
of heart, as shown in Figure 11b, because of the indistinctive boundary of the heart. Nevertheless,
these errors do not affect the correct calculation of CTR because the CTR is calculated based on the
horizontal distances of heart and lungs as shown in Equation (6). The proposed method can aid the
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medical practitioner for the diagnosis with CTR and the analysis of the segmented chest anatomy as a
second opinion system.

5. Conclusions

This study proposed a residual mesh-based semantic segmentation network (X-RayNet) to
segment the chest anatomical structures (lungs, heart, and clavicle bones) for diagnostic purposes.
The method provides fine segmentation performance in nonideal scenarios and multiclass fashions.
The innovative residual mesh design preserves the spatial edge information, which is provided
throughout the network. The segmentation of the heart is crucial because the pixel value is low, and the
edges mix with the lung borders. X-RayNet maintains feature empowerment to accurately segment the
heart in inferior quality X-Ray images caused by the indistinctive boundaries of the heart. The accuracy
of segmentation (for the heart and lungs area) is directly related to the correct computation of the
CTR. The conventional convolutional neural networks reduce the feature map size to classify the
classes. In this scenario, the minor information (clavicle bones and small-sized heart) vanishes owing
to excessive use of the max-pooling layers. X-RayNet is designed to not reduce the feature map size
for classification purposes. It uses a smaller number of pooling layers and maintains a sufficiently
large final feature map to retain the minor class information. The performance of the minor class
segmentation is listed in Table 3 for the clavicle and heart classes. The direct outer residual connection
by the residual mesh causes direct information transfer, which enables X-RayNet to converge faster in
merely 20 epoch (3440) iterations. X-RayNet-2 is a standalone complete variant of X-RayNet, in which
the number of filters is optimized to reduce the total number of trainable parameters. Following
similar residual mesh-based connectivity, X-RayNet-2 has sufficiently good segmentation performance
with 75% reduction (compared to X-RayNet-1) of the trainable parameters, as shown in Figure 3a,b.
The automated design of our proposed method can accurately determine the boundaries of the lungs
and heart to reliably measure the CTR. The correctness of segmentation is directly proportional to the
correctness of the CTR value. The CTR is considered a special parameter used to diagnose multiple
cardiac and pulmonary diseases.

X-RayNet creatively segments the boundaries with intersections and feature empowerment. In the
future, we will create a similar low-cost network with separable convolutions to ensure sufficiently
good segmentation performance with a low number of trainable parameters. In addition, X-RayNet
can be used for other medical applications, such as semantic segmentation of brain tumors, melanoma,
and orthopedic tasks.
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Appendix A

Table A1. X-RayNet encoder with residual mesh and feature map size of each of the following: EB, EC,
OIS, IIS, and pool (indicating encoder block, encoder convolution, outer identity stream, inner identity
stream, and pooling layer, respectively). The layer with “**” denotes that the layer includes batch
normalization (BN) and the ReLU unit, where “*” indicates that only BN is included with the layer.
The table is based on an input image size of 447 × 447 × 3.

Block Name/Size Number of
Filters

Output Feature Map
Size (Width ×

Height ×Number of
Channels)

Number of
Trainable

Parameters
(EC + BN)

EB-1

EC-1_1 **/3 × 3 × 3
To decoder (OIS-1) and

E-Add-1
64

350 × 350 × 64

1792 + 128

EC-1_2 /3 × 3 × 64 64 36,928

E-Add-1 (EC-1_1 + EC-1_2)
using IIS -

BN + ReLU 128

Pool-1 Pool-1/2 × 2 To decoder
(OIS-2) - 175 × 175 × 64 -

EB-2

EC-2_1 **/3 × 3 × 64 To
E-Add-2 128

175 × 175 × 128

73,856 + 256

EC-2_2 */3 × 3 × 128 128 147,584

E-Add-2 (EC-2_1 + EC-2_2)
using IIS - -

BN + ReLU 256

Pool-2 * Pool-2/2 × 2 To decoder
(OIS-3) - 87 × 87 × 128 -

EB-3

EC-3_1 **/3 × 3 × 128 To
E-Add-3 256

87 × 87 × 256

295,168 + 512

EC-3_2 /3 × 3 × 256 256 590,080 + 512

E-Add-3 (EC-3_1 + EC-3_2)
using IIS - -

BN + ReLU

Pool-3 * Pool-3/2 × 2 To decoder
(OIS-4) - 43 × 43 × 256 -

EB-4

EC-4_1 **/3 × 3 × 256 To
E-Add-4 512

43 × 43 × 512

1,180,160 + 1024

EC-4_2 */3 × 3 × 512 512 2,359,808

E-Add-4 (EC-4_1 + EC-4_2)
using IIS - -

BN + ReLU 1024

Pool-4 * Pool-4/2 × 2 - 21× 21 × 512 -
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Table A2. X-RayNet decoder with residual mesh and feature map size of each of the following:
DB, DC, OIS, INIS and unpool (indicating decoder block, decoder convolution, OIS, inner nonidentity
stream, and unpooling layer, respectively). The layer with “**” denotes that the layer includes batch
normalization (BN) and the ReLU unit, where “*” indicates that only BN is included with the layer;
“ˆ” shows that the path comes from the encoder corresponding block using the OIS (OIS-1 to OIS-4),
where MConv represents the last convolutional layer that generates the class masks. The table is based
on an input image size of 350 × 350 × 3.

Block Name/Size Number of
Filters

Output Feature Map
Size (Width ×

Height ×Number of
Channels)

Number of
Trainable

Parameters
(DCon + BN)

Unpool-4 Unpool-4 -
43 × 43 × 512

-

DB-4

DCon-4_2 **/3 × 3 × 512 512 2,359,808 + 1024

INIS-4 */1 × 1 × 512 256

43 × 43 × 256

131,328 + 512

DCon-4_1 */3 × 3 × 512 256 1,179,904

Add-5
(DCon-4_2 + INIS-4 * +

Pool-3ˆ)
- -

BN + ReLU 512

Unpool-3 * Unpool-3 -
87 × 87 × 256

-

DB-3

DCon-3_2 **/3 × 3 × 256 256 590,080 + 512

INIS -3 */1 × 1 × 256 128

87 × 87 × 128

32,896 + 256

DCon-3_1 **/3 × 3 × 256 128 295,040

Add-6
(DCon-3_2 + INIS-3 * +

Pool-2ˆ)
- -

BN + ReLU 256

Unpool-2 * Unpool-2 -
175 × 175 × 128

-

DB-2

DCon-2_2 **/3 × 3 × 128 128 147,584 + 256

INIS -2 */1 × 1 × 128 64

175 × 175 × 64

8256 + 128

DCon-2_1 **/3 × 3 × 128 64 73,792

Add-7
(DCon-2_2 + INIS-2 * +

Pool-1ˆ)
- -

BN + ReLU 128

Unpool-1 * Unpool-1 -

350 × 350 × 64

-

DB-1
DConv-1_2 **/3 × 3 × 64 64 36,928 + 128

DConv-1_1 /3 × 3 × 64 2 36,928

Add-8
(DCon-1_1 + DConv-1_2 +

EC-1_1ˆ)
-

MConv **/3 × 3 × 64 4 350 × 350 × 4 2308

BN + ReLU 8
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