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Abstract: Checkpoint inhibitor therapy constitutes a promising cancer treatment strategy that targets
the immune checkpoints to re-activate silenced T cell cytotoxicity. In recent pivotal trials, immune
checkpoint blockade (ICB) demonstrated durable responses and acceptable toxicity, resulting in the
regulatory approval of 8 checkpoint inhibitors to date for 15 cancer indications. However, up to
~85% of patients present with innate or acquired resistance to ICB, limiting its clinical utility. Current
response biomarker candidates, including DNA mutation and neoantigen load, immune profiles,
as well as programmed death-ligand 1 (PD-L1) expression, are only weak predictors of ICB response.
Thus, identification of novel, more predictive biomarkers that could identify patients who would
benefit from ICB constitutes one of the most important areas of immunotherapy research. Aberrant
DNA methylation (5mC) and hydroxymethylation (5hmC) were discovered in multiple cancers, and
dynamic changes of the epigenomic landscape have been identified during T cell differentiation and
activation. While their role in cancer immunosuppression remains to be elucidated, recent evidence
suggests that 5mC and 5hmC may serve as prognostic and predictive biomarkers of ICB-sensitive
cancers. In this review, we describe the role of epigenetic phenomena in tumor immunoediting and
other immune evasion related processes, provide a comprehensive update of the current status of
ICB-response biomarkers, and highlight promising epigenomic biomarker candidates.

Keywords: immunotherapy; predictor; resistance; epigenetics; stroma; melanoma; non-small-cell
lung cancer

1. Introduction

Immunotherapy constitutes a major breakthrough in cancer treatment. In particular, approaches
based on inhibiting programed death-1 (PD-1)/PD-L1 and cytotoxic T-lymphocyte-associated protein 4
(CTLA4) are the most rapidly growing drug class [1]. In recent years, the reprogramming of immune
checkpoint receptor (ICR) expression on the surface of T cells emerged as a critical mechanism of
tumor cell immune-evasion [2]. ICRs are a class of co-stimulators (CD27, CD28, and CD137) and
co-inhibitory receptors (e.g., PD-1, CTLA-4, lymphocyte activation gene 3 (LAG-3)) that regulate T cell
response quality [3]. The most widely used immune checkpoint blockade (ICB) therapeutic strategies
target the PD-1/PD-L1 and CTLA4 axes to regulate anti-tumor immune activity with demonstrated
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clinical benefits [4]. The interaction between PD-1 in the cytotoxic T lymphocyte and PD-L1 in the
cancer cell decreases the activity of T cells by several mechanisms, including the inhibition of the T
cell receptor downstream signaling [5,6], the enhancement of regulatory T cells [7], and the decrease
in B cells and natural killer activities [8]. Another important ICR is CTLA-4, which impairs T cell
activation by outcompeting the co-stimulatory receptor CD28 [9]. PD-1 and CTLA-4 blockade restores
the anti-tumor immune response by inducing the expansion of exhausted-like tumor-infiltrating CD8 T
cells; in addition, CTLA-4 blockade rescues Th1-like CD4 effector T cells and could be implicated in the
enhancement of CD8 infiltration and cytolytic activity as well as the formation of memory T cells [10].

ICB is effective in multiple malignancies with strong immunogenicity including melanoma and
non-small-cell lung cancer (NSCLC). Indeed, the U.S. Food and Drug Administration (FDA) and
the European Medicines Agency (EMA) have approved the clinical use of ICB drugs for melanoma,
NSCLC, renal cell carcinoma, head and neck squamous cell cancer, Hodgkin’s lymphoma, urothelial
carcinoma, gastric cancer, cervical cancer, hepatocellular carcinoma, primary mediastinal large-B-cell
lymphoma, microsatellite instability-high/deficient mismatch repair cancer, and Merkel cell carcinoma.
In 2019, the first-line anti-PD-1 treatment was approved for patients with stage III NSCLC that were
not susceptible to surgery, definite chemoradiation, or present metastasis, and that complied with an
epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) wild-type phenotype
and PD-L1 expression (Table 1). Interestingly, more than 20 clinical trials are currently ongoing
for various novel oncological indications (Table 2). Although a considerable fraction of patients
demonstrate an objective clinical response, the majority of patients do not respond appropriately to
ICB therapy because of primary or acquired treatment resistance [11,12]. The least efficient line of
treatment so far was anti-CTLA4, with ~85% of non-responding patients [13–15], followed by anti-PD-1
approaches with a response of ~40% [16,17]. Combination regimens are related to better percentages
of response (~50%) but also higher toxicity [18,19]. Hence, biomarkers predicting ICB response are
imperatively needed.

Table 1. Updated FDA approved immune checkpoint inhibitors and their indications.

Drug Approval
Date Mechanism Sample Size Reference

Clinical Trial Cancer Type Indications

Ipilimumab
(YERVOY®) * 28/10/2015 CTLA4 951 EORTC

(NCT00636168) Melanoma

Adjuvant treatment of cutaneous
melanoma patients with pathologic

involvement of regional lymph
nodes of more than 1 mm who

have undergone complete resection

Ipilimumab
(YERVOY®) * 25/3/2011 CTLA-4 676 MDX010-20

(NCT00094653) Melanoma
Unresectable or metastatic
melanoma with previous

systematic treatment previously

Pembrolizumab
(KEYTRUDA®) * 04/09/2014 PD-1 173 KEYNOTE-001

(NCT01295827) Melanoma

Unresectable or metastatic
melanoma and disease progression
following Ipilimumab and, if BRAF

V600 mutation positive,
a BRAF inhibitor

Pembrolizumab
(KEYTRUDA®) * 18/12/2015 PD-1 834+540

KEYNOTE-006
(NCT01866319);
KEYNOTE-002
(NCT01704287)

Melanoma Unresectable or
metastatic melanoma

Nivolumab +
Ipilimumab

(OPDIVO®+
YERVOY®) *

30/09/2015 PD-1,
CTLA4 142 CheckMate-069

(NCT01927419) Melanoma BRAF V600 wild-type, unresectable
or metastatic melanoma

Nivolumab
(OPDIVO®) * 22/12/2014 PD-1 120 CheckMate-037

(NCT01721746) Melanoma

Unresectable or metastatic
melanoma and disease progression
following Ipilimumab and, if BRAF

V600 mutation positive,
a BRAF inhibitor

Pembrolizumab
(KEYTRUDA®) * 15/02/2019 PD-1 1019 KEYNOTE-054

(NCT02362594) Melanoma
Melanoma with involvement of

lymph node(s) following
complete resection
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Table 1. Cont.

Drug Approval
Date Mechanism Sample Size Reference

Clinical Trial Cancer Type Indications

Nivolumab
(OPDIVO®) * 20/12/2017 PD-1 906 CheckMate-238

(NCT02388906) Melanoma Adjuvant treatment of
advanced melanoma

Nivolumab +
Ipilimumab

(OPDIVO®+
YERVOY®)

16/04/2018 PD-1,
CTLA4 847 CheckMate-214

(NCT02231749)
Hepatocellular

carcinoma

Intermediate or poor risk advanced
hepatocellular carcinoma without

prior treatment

Pembrolizumab
(KEYTRUDA®) 09/11/2018 PD-1 104 KEYNOTE-224

(NCT02702414)
Hepatocellular

carcinoma
Hepatocellular carcinoma

previously treated with Sorafenib

Nivolumab
(OPDIVO®) 22/09/2017 PD-1 154 CheckMate-040

(NCT01658878)
Hepatocellular

carcinoma
Hepatocellular carcinoma

previously treated with sorafenib

Pembrolizumab
(KEYTRUDA®) * 15/03/2017 PD-1 210 KEYNOTE-087

(NCT02453594) Lymphoma

Refractory classical Hodgkin
lymphoma patients, or those who
have relapsed after three or more

prior lines of therapy

Nivolumab
(OPDIVO®) * 17/05/2016 PD-1 95

CheckMate-205
(NCT02181738);
CheckMate-039
(NCT01592370)

Lymphoma

Recurrent Hodgkin lymphoma
following autologous

hematopoietic stem cell
transplantation and
post-transplantation
Brentuximab Vedotin

Pembrolizumab
(KEYTRUDA®) 13/06/2018 PD-1 53 KEYNOTE-170

(NCT02576990) Lymphoma

Refractory primary mediastinal
large B-cell lymphoma patients, or

who have relapsed after two or
more prior lines of therapy

Cemiplimab-rwlc
(LIBTAYO®) * 28/09/2018 PD-1 108

R2810-ONC-1423
(NCT02383212)

R2810-ONC-1540
(NCT02760498)

Cutaneous
squamous cell

carcinoma

Metastatic or locally advanced
cutaneous squamous cell

carcinoma patients who are not
candidates for curative surgery or

curative radiation

Pembrolizumab
(KEYTRUDA®) * 05/08/2016 PD-1 174 KEYNOTE-012

(NCT01848834)

Squamous cell
carcinoma of

the head
and neck

Recurrent or metastatic squamous
cell carcinoma of the head and neck

with progression on or after
platinum-containing

chemotherapy

Nivolumab
(OPDIVO®) * 10/11/2016 PD-1 361 CheckMate-141

(NCT02105636)

Squamous cell
carcinoma of

the head
and neck

Advanced squamous cell
carcinoma of the head and neck

with progression on/after a
platinum-based therapy

Nivolumab
(OPDIVO®) 31/07/2017 PD-1 74 CheckMate-142

(NCT02060188) Colorectal

Treatment of patients 12 years and
older with mismatch repair
deficient and microsatellite
instability high metastatic
colorectal cancer that has

progressed following treatment
with Fluoropyrimidine,

Oxaliplatin, and Irinotecan

Nivolumab +
Ipilimumab

(OPDIVO®+
YERVOY®)

10/07/2018 CTLA4 82 CheckMate-142
(NCT02060188)

Metastatic colorectal cancer with
high microsatellite instability or

mismatch repair deficiency

Pembrolizumab
(KEYTRUDA®) 23/05/2017 PD-1 149

KEYNOTE-016
(NCT01876511);
KEYNOTE-164
(NCT02460198);
KEYNOTE-012
(NCT01848834);
KEYNOTE-028
(NCT02054806);
KEYNOTE-158
(NCT02628067)

Colorectal

Unresectable or metastatic,
microsatellite instability-high or
mismatch repair deficient solid

tumors patients that have
progressed following prior
treatment and who have no

satisfactory alternative treatment
options or with microsatellite

instability-high or mismatch repair
deficient colorectal cancer that has

progressed following treatment
with Fluoropyrimidine,

Oxaliplatin, and Irinotecan

Pembrolizumab
(KEYTRUDA®) 12/06/2018 PD-1 98 KEYNOTE-158

(NCT02628067) Cervical

Recurrent or metastatic cervical
cancer patients with progression
on or after chemotherapy whose

tumors express PD-L1 as
determined by an

FDA-approved test
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Table 1. Cont.

Drug Approval
Date Mechanism Sample Size Reference

Clinical Trial Cancer Type Indications

Pembrolizumab
(KEYTRUDA®) * 11/04/2019 PD-1 1274 KEYNOTE-042

(NCT02220894) Lung

First-line treatment of patients with
stage III non-small-cell lung cancer
who are not candidates for surgical

resection or definitive
chemoradiation or metastatic

non-small cell lung cancer. Patients’
tumors must have no EGFR or ALK
genomic aberrations and express
PD-L1 (Tumor Proportion Score
[TPS] ≥1%) determined by an

FDA-approved test

Atezolizumab
(TECENTRIQ®)

+ chemotherapy *
06/12/2018 PD-L1 1202

IMpower150
trial

(NCT02366143)
Lung

Metastatic non-squamous,
non-small-cell lung cancer with no

EGFR or ALK genomic
tumor aberrations

Atezolizumab
(TECENTRIQ®) * 18/10/2016 PD-L1 1137

POPLAR
(NCT01903993);

OAK
(NCT02008227)

Lung

Metastatic non-small-cell lung
cancer patients whose disease

progressed during or following
platinum-containing

chemotherapy.

Pembrolizumab
(KEYTRUDA®)
+ pemetrexed

and carboplatin *

10/05/17 PD-1 123 KEYNOTE-021
(NCT02039674) Lung

Previously untreated metastatic
non-squamous non-small-cell

lung cancer

Nivolumab
(OPDIVO®) * 09/10/2015 PD-1 582 CheckMate-057

(NCT01673867) Lung
Metastatic non-small-cell lung

cancer with progression on or after
platinum-based chemotherapy

Pembrolizumab
(KEYTRUDA®)
+ carboplatin/

paclitaxel *

30/10/2018 PD-1 559 KEYNOTE-407
(NCT02775435) Lung Metastatic squamous non-small

cell lung cancer

Pembrolizumab
(KEYTRUDA®) * 24/10/2016 PD-1 305 + 1033

KEYNOTE-024
(NCT02142738);
KEYNOTE-010
(NCT01905657)

Lung

Metastatic non-small-cell lung
cancer patients whose tumors

express PD-L1 as determined by an
FDA-approved test

Nivolumab
(OPDIVO®) * 04/03/2015 PD-1 272 CheckMate-017

(NCT01642004) Lung

Metastatic squamous
non-small-cell lung cancer with

progression on or after
platinum-based chemotherapy

Pembrolizumab
(KEYTRUDA®)
+ pemetrexed
and platinum *

20/08/2018 PD-1 616 KEYNOTE-189
(NCT02578680) Lung

Metastatic, non-squamous
non-small-cell lung cancer, with no

with no EGFR or ALK genomic
tumor aberrations

Durvalumab
(IMFINZI®) * 06/02/2018 PD-L1 713 PACIFIC

(NCT02125461) Lung

Unresectable stage III non-small
cell lung cancer patients whose

disease has not progressed
following concurrent

platinum-based chemotherapy and
radiation therapy

Pembrolizumab
(KEYTRUDA®) * 02/10/2015 PD-1 61 KEYNOTE-001

(NCT01295827) Lung

Metastatic non-small cell lung
cancer patients whose tumors

express programmed death ligand
1 as determined by an

FDA-approved test, with disease
progression on or after
platinum-containing

chemotherapy

Atezolizumab
(TECENTRIQ®)

+ carboplatin and
etoposide *

18/03/2019 PD-L1 403 IMpower133
(NCT02763579) Lung Extensive-stage small cell

lung cancer

Nivolumab
(OPDIVO®) 16/08/2018 PD-1 109 CheckMate-032

(NCT01928394) Lung

Progressive metastatic small cell
lung cancer with progression after
platinum-based chemotherapy and

other lines of therapy
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Table 1. Cont.

Drug Approval
Date Mechanism Sample Size Reference

Clinical Trial Cancer Type Indications

Nivolumab
(OPDIVO®) * 02/02/2017 PD-1 270 CheckMate-275

(NCT02387996) Urothelial

Locally advanced or metastatic
urothelial carcinoma patients who
have disease progression during or

following platinum-containing
chemotherapy or have disease

progression within 12 months of
neoadjuvant or adjuvant treatment

with a platinum-containing
chemotherapy

Durvalumab
(IMFINZI®) 01/05/2017 PD-L1 182 Study 1108

(NCT01693562) Urothelial

Locally advanced or metastatic
urothelial carcinoma patients who
have disease progression during or

following platinum-containing
chemotherapy or who have disease
progression within 12 months of

neoadjuvant or adjuvant treatment
with platinum-containing

chemotherapy

Atezolizumab
(TECENTRIQ®) * 18/05/2016 PD-L1 310 IMvigor210

(NCT02108652) Urothelial

Locally advanced or metastatic
urothelial carcinoma patients who
have disease progression during or

following platinum-containing
chemotherapy or have disease

progression within 12 months of
neoadjuvant or adjuvant treatment

with platinum-containing
chemotherapy

Avelumab
(BAVENCIO®) 09/05/2017 PD-L1 242

JAVELIN Solid
Tumor

(NCT01772004)
Urothelial

Locally advanced or metastatic
urothelial carcinoma patients

whose disease progressed during
or following platinum-containing

chemotherapy or within 12 months
of neoadjuvant or adjuvant

platinum-containing
chemotherapy

Pembrolizumab
(KEYTRUDA®) * 18/05/2017 PD-1 542 KEYNOTE-045

(NCT02256436) Urothelial

Locally advanced or metastatic
urothelial carcinoma patients who
have disease progression during or

following platinum-containing
chemotherapy or within 12 months

of neoadjuvant or adjuvant
treatment with

platinum-containing
chemotherapy

Pembrolizumab
(KEYTRUDA®) 19/12/2018 PD-1 50 KEYNOTE-017

(NCT02267603)
Merkel cell
carcinoma

Recurrent locally advanced or
metastatic Merkel cell carcinoma

Avelumab
(BAVENCIO®) * 23/3/2017 PD-L1 1738

JAVELIN
Merkel 200

(NCT02155647)

Merkel cell
carcinoma Metastatic Merkel cell carcinoma

Nivolumab
(OPDIVO®) * 23/11/2015 PD-1 821 CheckMate-025

(NCT01668784) Renal
Advanced renal cell carcinoma in

patients with previous
anti-angiogenic therapy

Atezolizumab
(TECENTRIQ®) * 08/03/2019 PD-L1 902 IMpassion130

(NCT02425891) Breast

Unresectable locally advanced or
metastatic triple-negative breast
cancer patients whose tumors
express PD-L1 (PD-L1 stained

tumor-infiltrating immune cells
[IC] of any intensity covering ≥ 1%
of the tumor area), as determined

by an FDA-approved test

Pembrolizumab
(KEYTRUDA®) 22/09/2017 PD-1 259 KEYNOTE-059

(NCT02335411)

Gastric/gastro-
esophageal

junction

Recurrent locally advanced or
metastatic, gastric or

gastroesophageal junction
adenocarcinoma patients whose

tumors express PD-L1 as
determined by an

FDA-approved test

* Drug administration also approved by the European Medicines Agency (EMA) for the same cancer type.
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Table 2. Active clinical trials of immune checkpoint blockade for novel oncological indications.

Drug Targeted IC Sample Size Cancer Type Response Rate Phase Trial Number

Ipilimumab CTLA-4 100 Melanoma (stage III/IV) 10.9% III/IV NCT00094653

Pembrolizumab PD-1 31 Hodgkin Lymphoma (recurred) 65% I NCT01953692

Pembrolizumab PD-1 26 Locoregional Merkel-cell
carcinoma (advanced) 56% II NCT02267603

Nivolumab PD-1 240 Squamous-Cell Carcinoma
(relapsed or advanced) 13.3% III NCT02105636

Nivolumab PD-1 410 Renal-Cell Carcinoma
(advanced) 25% III NCT01668784

Pembrolizumab PD-1 270 Urothelial Carcinoma
(advanced) 21.1% III NCT02256436

Pembrolizumab PD-L1 27 Triple-Negative Breast Cancer
(advanced) 18.5% I NCT01848834

Nivolumab PD-1 39 Hepatocellular carcinoma
(advanced) 23% I/II NCT01658878

MDX1105-01
(anti–PD-L1) PD-L1 207

Non-small-cell lung cancer,
melanoma, colorectal cancer,
renal cell carcinoma, prostate
cancer, ovarian cancer, gastric

cancer, breast cancer

12.6% I NCT00729664

Atezolizumab PD-L1 175
Non-small-cell lung cancer,

renal cell carcinoma,
melanoma, other tumors

18% I NCT01375842

Tremelimumab CTLA-4 17
Hepatocellular carcinoma
(advanced with chronic

hepatitis C)
17.6% II NCT01008358

Avelumab PD-L1 88
Merkel cell carcinoma

(chemotherapy-refractory
stage IV)

31.8% II NCT02155647

Atezolizumab PD-L1 116 Triple-negative breast cancer
(metastatic) 9.5% I NCT01375842

Atezolizumab PD-L1 32 Head and neck cancer 22% I NCT01375842

Atezolizumab PD-L1 95 Urothelial cancer (metastatic) 26% I NCT01375842

Nivolumab PD1 296

Melanoma (advanced),
non–small-cell lung cancer,

prostate cancer
(castration-resistant), renal-cell

cancer, colorectal cancer

18% in non-small-cell
lung cancer,

28% in melanoma,
27% in renal-

cell cancer

I NCT01354431

Pidilizumab PD-1 66 Diffuse large B-cell lymphoma 51% II NCT00532259

Pidilizumab PD-1 32 Follicular lymphoma (relapsed) 66% II NCT00904722

Nivolumab PD-1 23 Hodgkin’s lymphoma
(relapsed or refractory) 87% I NCT01592370

Lambrolizumab PD-1 135 Melanoma (advanced) 38% I NCT01295827

Nivolumab PD1 107 Melanoma (advanced) 30.8% I NCT00730639

Nivolumab PD1 418 Melanoma (untreated without
BRAF mutation) 40.0% III NCT01721772

Nivolumab PD1 631
Melanoma (advanced that

progressed after anti-
CTLA-4 treatment)

31.7% III NCT01721746

Pembrolizumab PD1 495 Non–small-cell lung cancer 19.4% I NCT01295827

Nivolumab PD1 272 Squamous-cell non-small-cell
lung cancer (advanced) 20% III NCT01642004

Nivolumab PD1 129 Non–small-cell lung cancer
(previously treated advanced) 17% I NCT00730639

There is increasing evidence of the important role of epigenetic marks, such as 5mC and 5hmC, in
carcinogenesis [20–22]. Interestingly, 5mC is also of critical importance for regulating T cell proliferation
and maintaining differentiation in cytotoxic and helper T cells [23], whereas 5hmC dynamically changes
during T cell differentiation [24]. Recently, a specific role of 5hmC deposition in key immune genes
has been reported for the activation and differentiation of T lymphocytes after antigen presentation.
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Interestingly, the variations in 5hmC were more dynamic than those in 5mC [25]. Importantly, tumor
cells such as hepatocellular carcinoma cells show a cancer-specific methylome and hydroxymethylome
profile [26], indicating the potential of these epigenetic marks to serve as diagnostic or prognostic
biomarkers [27]. Indeed, we have recently shown that specific patterns of DNA methylation, named as
the “EPIMMUNE” signature, that can be been further subrogated to a single CpG variant in FOXP1,
have been associated with clinical benefit in NSCLS patients receiving ICB [28]. Here, we will revisit
the current research on and clinical use of ICB biomarkers, and we will critically review 5mC and
5hmC as potential biomarkers of response to cancer immunotherapy.

2. Induction of Inhibitory Immune Checkpoints (ICs) as a Major Mechanism of Tumor
Immune Evasion

The “immunoediting” hypothesis conceptualizes the evolution of the tumor cells under immune
pressures towards expansion and immune surveillance escape of the tumor [29]. Several factors contribute
to this immune evasion. The tumor microenvironment (TME) can be immunosuppressive per se,
facilitating tumor progression with cytokines, chemokines, and inhibitory factors [30]. For example,
VEGFA can upregulate PD-1 expression on CD8+ T cells, while TGF-β enhances PD-L1 expression on
tumor cells [31,32]. In addition, immune-cold tumors could prevent effector T cells from entering into
the tumor, in which case the patients are mostly irresponsive to cancer immunotherapy. Moreover, the
TME can also recruit immunosuppressive immune cells including regulatory T cells, myeloid-derived
suppressor cells (MDSCs), and tumor-associated macrophages to evade immune clearance [33–35].

Besides, tumor cells could diminish the number of T-cell-recognized neoantigens by reducing
their gene expression or losing the mutant allele in a selection process triggered by the pressure of the
immune attack [36]. Other mechanisms related to tumor immunoediting include the downregulation
of interferon-γ (IFN-γ) or antigen presentation and recruitment pathways [37–39].

Finally, one of the major mechanisms of immunosuppression that occurs in the context of
tumorigenesis and tumor growth is the upregulation of multiple inhibitory co-receptors (ICRs) that
create a series of interactions on the tumor–stroma interface and within the stroma itself, leading
to the blockade of the immune attack and exhaustion of the T cells [12]. T cell exhaustion was first
observed in mice infected with certain strains of lymphocytic choriomeningitis virus (LCMV) [40].
Strikingly, these viruses escaped elimination by rapidly inducing most of the CD8+ effector T cells
(Teff), thereby resulting in the depletion of this specific antiviral T cell population within a few days
and, consequently, persistent infection. The key hallmarks of T cell exhaustion are the expression of
ICR, leading to loss of effector functions and failure to transition into the memory T cell pool [41].

Importantly, recent research demonstrated that T cell exhaustion is of central importance in
various cancers similarly to the exhaustion occurring during chronic infection. In both cases, chronic
antigen stimulation triggers co-expression of high levels of multiple inhibitory receptors, including
PD-1, CTLA-4, LAG-3, and T-cell immunoglobulin and mucin domain-3 (TIM-3) [42]. The PD-1/PD-L1
signaling axis plays a predominant role in negative regulation of immune response. For instance, when
co-expressed with TIM-3, PD-1 decreases the secretion of various pro-inflammatory cytokines, such
as IL-2, IFN-γ, and TNF, and results in T cell tolerance towards tumor cells in acute myelogenous
leukemia, colon adenocarcinoma, and melanoma [43–45]. Another clinically relevant ICR is CTLA4
that, as PD-1, but non-redundantly, establishes immune inhibitory interactions for the blockade of
the co-stimulation of T cell activation, and it maintains the peripheral immune tolerance. When
CTLA-4 and PD-1 are co-blocked in B16 melanoma cells vaccinated with B16-Flt3-ligand (Fvax), these
agents synergistically increase the ratio of Teff to Treg and myeloid-derived suppressor cells, as well as
the production of T cells that secrete IFN-γ and TNF-alpha. This triggers an inflammatory cascade
that enhances tumor rejection and diminishes tumor-induced immune suppression [46]. Given this
prominent role of the PD-1/PD-L1 and CTLA4 pathways in cancer immune evasion, anti-PD-1/PD-L1
and anti-CTLA4 drugs, and their combinations, have become the current paradigm of IBC-based
cancer immunotherapy.
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3. Mechanisms of Clinically Targeted ICR Signaling pathways

3.1. PD-1 Signaling

PD-1 is broadly expressed on T-lymphocytes, B-lymphocytes, antigen-presenting cells, NK cells,
and macrophages [47,48]. PD-1 is usually deemed as a dominant inhibitory ICR. Unlike CTLA-4,
activation of the PD-1 signaling pathway mainly occurs in the effector phase of the adaptive immune
suppression cascade, and it blocks the capacity of cytotoxic T cell to eliminate cancer cells [9].

Binding of PD-1 to PD-L1 moreover blocks CD28 [49] and T cell receptor (TCR) signaling activation
and the contact of T lymphocytes and dendritic cells (DCs) [50]. In tumor-associated macrophages,
a high PD-1 expression level causes decreased macrophage phagocytosis [48]. Expression of its ligand
PD-L1 on tumor cells leads to Teff cytolysis resistance and reduced transcript levels of granzyme A and
perforin [51,52]. Activated PD-1 signaling inhibits conversion of Teff into the memory T cell pool by
pro-apoptotic activities of Teff with upregulation of BCL-2-interacting mediator of cell death (BIM) [41].
Furthermore, PD-1 signaling paralyses CD4+ and CD8+ T cell motility during exhaustion by stabilizing
the immunological synapse formation [53]. Besides, PD-1 promotes the suppression of melanoma
antigen-specific CTL that is mediated by CD4+CD25Hi regulatory T cells [54]. This relevance of PD-1
signaling in tumor immunity is exemplified by the identification of PD-1 expression in CD8+ T cells
as a biomarker of resident tumor reactive T cell subpopulations in advanced melanoma and cervical
cancer patients [55,56].

3.2. CTLA-4 Signaling

In contrast to the broad expression of PD-1, cytotoxic T lymphocyte antigen-4 (CTLA-4) is mainly
expressedonTreg cellsandcontrols immunologicalself-toleranceandTreg-inducedimmunosuppression[57,58].
On one hand, CTLA-4 inhibits CD28-dependent T cell activation and survival, resulting in reduced
levels of IL-2, IL-4, TNF-α, and IFN-γ as well as diminished proliferation of CD8+ and CD4+ T
cells [49,59,60]. Also, CTLA-4 interaction with CD80 and CD86 expressed by conventional T cells
(Tconv) increases their susceptibility to Treg-mediated suppression [61]. Furthermore, CTLA-4 inhibits
CD86/80 expression on DC and impairs antigen priming (initial T cell activation) by excluding Treg

physical attachment with DCs and conventional T cells (Tconvs) [62]. In addition, CTLA-4+ CD4+ T
cells have shorter-term interactions with DCs under antigen exposure than that of CTLA-4- CD4+ T
cells, causing a decrease in IL-2 levels and proliferation [63]. Lastly, CTLA-4 restricts follicular helper T
cell (Tfh) differentiation by controlling the level of CD28 engagement [64].

4. Molecular Underpinnings of ICB Failure

Although ICB has revolutionized the therapy of cancer, significant fractions of patients are
insensitive, or eventually develop resistance to ICB [39]. Overall, 9% of patients receiving anti-PD-1/

PD-L1 monotherapy shows hyper-progressive tumor aggression with poor overall survival [65].
Resistance is generally driven by intra-tumor heterogeneity coupled to selection of resistant cells.
Generally, intratumor heterogeneity results in molecularly different cancer cell subpopulations,
among which a fraction is insensitive to cancer therapy [66]. With sensitive tumor cells being killed,
the surviving resistant cells drive tumor progression. In the context of ICB, this tumor heterogeneity
can be particularly important, given that many different tumor intrinsic and stromal factors collude
in the final clinical outcome. Tumor heterogeneity has been described for key modulators of the ICB
response such as PD-L1 [67], and the neoantigens and tumor clonality has already been reported as a
predictor of enhanced response to anti-CTLA4 and anti-PD-1 treatment in NSCLC [68].

Resistance Mechanisms

A crucial tumor-intrinsic factor leading to ICB resistance is the low neoepitope load that generally
leads to minimal immune reinvigoration with both CTLA-4 and PD-1/PD-L1 blockade [69–72].
Interestingly, alterations in the epitope or mutation load during treatment with ICB has been reported as
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related to response. In the context of NSCLC patients at the moment of response to anti-PD-1 treatment,
a reduction of the number of clonal mutations and T cell repertoire evenness is proportional to the
response, being 19% the average fraction of remaining variants in those patients with complete and
partial response, and 101% the fraction for patients presenting disease progression [73]. Interestingly,
the tumor immunoediting induced by anti-PD-1 or anti-PD-1/anti-CTLA-4 therapies has also been related
to a loss of dominant mutation-associated neoantigens in initially responding patients that developed
acquired resistance, suggesting the further evolution to tumors with diminished immunogenicity [74].

In addition, there are a number of specific genetic and transcriptomic aberrations that have been
proposed as candidates for response biomarkers (Table 3). Prototypic oncogenic pathways include
amplifications in the MDM2 gene family, alterations in EFGR alterations, which are associated to
hyper-progressive disease after anti-CTLA-4 or PD-1/PD-L1 treatment [75], together with alterations
that imply the activation of the canonical Wnt/β-catenin signaling pathway [39]. The latter marks a
“non-T-cell inflamed” tumor microenvironment. In addition, Wnt/β-catenin signaling could directly
inhibit T cell activation [76].

Table 3. Candidate response biomarkers for immune checkpoint blockade.

Biomarker Type Target of
the Test Cohort Size Predictive Power Assay/Predictive Value

Amount and
clonality of TCR

repertoire
Genetic Immune 25 p = 0.004

TCR sequencing
In metastatic melanoma, high

clonality of TCR repertoire
significantly correlated with clinical

response to pembrolizumab
treatment [77]

Tumor neoantigen
clonality Genetic Tumor 139

No ITH threshold,
HR = 0.47, p = 0.025
ITH threshold = 0,

HR = 0.212, p = 0.019
ITH threshold = 0.01,
HR = 0.33, p = 0.008
ITH threshold = 0.05,
HR = 0.45, p = 0.083

Whole exome sequencing
In melanoma patients treated with

ipilimumab or tremelimumab,
overall survival was significantly

better in tumors with low
neoantigen intratumor

heterogeneity (ITH) and high clonal
neoantigen burden [68]

Tumor mutational
burden (TMB) Genetic Tumor 16, 49 HR = 0.19, p = 0.01,

HR = 1.38, p = 0.24

Whole exome sequencing targeted
next generation sequencing

High TMB associated with clinical
benefit [71,78,79]

ctDNA Genetic Tumor 28

Progression-free
survival, HR = 0.29,

p = 0.03
Overall survival,

HR = 0.17, p = 0.007

ctDNA level by next-generation
sequencing

High value of ctDNA drop indicates
good response [80]

JAK1, JAK2 Genetic Immune 4 /

JAK1/JAK2 mutation by whole
genome sequencing

JAK1/2 mutation indicates bad
response [37,39,81]

β2 microglobulin
(B2M) Genetic Tumor 40, 34 p = 0.009, p = 0.004

B2M mutation by whole-genome
sequencing

B2M mutation indicates bad
response [69]

Germinal SNPs
−1577G/G and

CT60G/G in CTLA4
Genetic Germinal 173

−1577G>A, OR = 0.04
and 0.24

CT60G>A, OR = 0.07
and 0.28

SNPs by genotyping.
−1577G>A and CT60G>A indicates

good response [82]

BRCA1/2 Genetic Tumor 38 OR = 6.2, p = 0.002

BRCA2 mutation by whole-genome
sequencing.

BRCA2 mutation indicates good
response [70,83,84]

KRAS, TP53 Genetic Tumor
54

(immunotherapy
cohort)

pTP53 mut = 0.042
pKRAS mut = 0.003

TP53 and KRAS mutation by whole
genome sequencing

TP53/KRAS mutation indicates good
response [85]

MDM2, EFGR Genetic Tumor 155 OR (MDM2) = 10.8
OR (EGFR) = 8.36

Targeted sequencing.
MDM2/EGFR amplification
indicates bad response [75]
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Table 3. Cont.

Biomarker Type Target of
the Test Cohort Size Predictive Power Assay/Predictive Value

rs17388568 Genetic Germinal 169 OR = 0.26, p = 0.0002

Genotyping by Sequenom
MassArray.

rs17388568 associated with
response [86]

FOXP1 BS-5mC Epigenetic Immune 61

Progression-free
survival, HR = 0.415,

p = 0.0063
Overall survival,

HR = 0.409, p = 0.0094

FOXP1 methylation by EPIC array
and pyrosequencing

FOXP1 methylation indicates bad
response [28]

CTLA4, PDCD1 Epigenetic Tumor 18 p < 0.01

Array-based CpG-methylation
assessment

Significant differences in the
CpG-methylation patterns between
tumor tissues and matched controls

were observed [87]

68 genes Epigenetic Tumor 18 p < 0.05
Differential DNA methylation

pattern between durable clinical
benefit vs. no clinical benefit [88]

LAMA3 Transcriptional Tumor 26 p = 0.003

RT-PCR
In patients with metastatic

melanoma, LAMA3 is differentially
expressed in regressing versus

progressing metastases [89]

IFN-γ-associated
gene-expression

score
Transcriptional Tumor 19, 62, 43, 33 p < 0.05

Expression score by NanoString
gene expression profiling

High value of expression level
indicates better response [1,90]

KRT1, KRT5, KRT10,
KRT15, KRT78
(keratin genes)

LOR, FLG2, DSC1,
DSC3, LGALS7,

LAMA3, KLK7 (cell
adhesion genes)

WNT3, WNT5A (Wnt
pathway genes)

Transcriptional Immune/
tumor 10 FC ≥ 1.5

Gene expression by whole
genome microarray

High values indicate bad
response [89]

Melanoma Antigen
Gene (MAGE)-A
cancer-germline

antigens

Transcriptional/
histopathological Tumor 55 p = 0.011

Expression of MAGE-A
cancer-germline antigens by

RT-PCR and IHC.
High value indicates bad

response [91]

PD-L1 Histopathological Immune/
tumor 455, 305, 26

Overall survival, p = 0.06
(≥1% PD-L1), p < 0.001
(≥5% and ≥10% PD-L1),

Progression-free
survival, p = 0.02 (≥1%
PD-L1), p < 0.001 (≥5%

and ≥10% PD-L1),
Objective response rate,

p = 0.002 (≥1%, ≥5% and
≥10% PD-L1);

Overall survival HR for
death, 0.60, p = 0.005;

p = 0.006.

PD-L1 IHC
In advanced non-small-cell lung

cancer patients treated with
Nivolumab, PD-L1 expression

predicts overall survival,
progression-free survival, and
objective response rate, with

increasing interaction p-values with
increasing % of PD-L1

expression [92]
In PD-L1 negative metastatic

non-small-cell lung cancer patients,
ICB efficacy is equivalent to

chemotherapy [93]
In advanced non-small-cell lung

cancer, first line setting
pembrolizumab in monotherapy is

correlated with better
progression-free survival (PFS) and

overall survival (OS) than
platinum-doublet chemotherapy,

only if PD-L1 expression is equal to
or above 50% [94]

In metastatic melanoma treated
with Pembrolizumab, the

responders presented significantly
higher numbers of PD-L1+ cells

when compared to the patients that
progressed (p = 0.006) [77]
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Table 3. Cont.

Biomarker Type Target of
the Test Cohort Size Predictive Power Assay/Predictive Value

CD8 Histopathological Immune 46 p < 0.0001

CD8 IHC
In metastatic melanoma treated

with Pembrolizumab, the
responders presented significantly

higher numbers of CD8+ cells when
compared to the patients that

progressed [77]

PD-1 Histopathological Immune 41 p = 0.0002

PD-1 IHC
In metastatic melanoma treated

with Pembrolizumab, the
responders presented significantly

higher numbers of PD-1+ compared
to the patients that progressed [77]

Immunoscore Histopathological Immune 475

Disease-specific survival,
HR = 2.4

(microsatellite instable)
Overall survival,

HR = 1.8
(microsatellite instable)

Disease-specific survival,
HR = 3.4

(microsatellite stable)
Overall survival,

HR = 2.43
(microsatellite stable)

CD3 and CD8 or CD8 and
CD45RO IHC

In colorectal cancer patients treated
with anti-PD-1, immunoscore is a

better response biomarker than
microsatellite instability.

Multivariate analysis shows a
significant correlation of

Immunoscore with disease-specific
survival, disease-free survival, and

overall survival despite their
microsatellite status [95]

CD63, E-cadherin,
CXCL4, CXCL12

Histopathological/
protein

Immune/
tumor 8

pCD63 = 0.013
pE-cadherin = 0.005

pCXCL4 = 0.04
pCXCL12 = 0.041

CD63, E-cadherin by IHC, CD63,
E-cadherin, CXCL4, CXCL12 by

proteomics
All of them indicate better response

[96]

PTEN Histopathological Tumor 39 p = 0.029
PTEN IHC

High value indicates bad response
(p = 0.029) [97]

Circulating CD8+ T
cells Cellular Immune 43 % survival, HR = 0.21,

p = 0.00063

Circulating CD8+ T cells by flow
cytometry.

High value indicates response [98]

Circulating
monocytic MDSCs

(CD14+)
Cellular Immune 43 Overall survival,

HR = 2.89, p = 0.002203

Circulating monocytic MDSCs
(CD14+) by flow cytometry.

High value indicates bad response
[98]

Circulating PD-1+

CD8+ T cells Cellular Immune 25 p = 0.02
Circulating PD-1+ CD8+ T cells by

flow cytometry
High value indicates response [99]

Neutrophils/
lymphocytes ratio Cellular Immune 58

Overall survival
(NLR ≥ 4) HR = 2.2,

p = 0.0009

Neutrophils and lymphocytes by
flow cytometry

High value indicates bad response
[100]

Circulating
Bim+PD-1+CD8+ T

cells
Cellular Immune 13 p < 0.05

Bim+PD-1+CD8+ T cell by flow
cytometry

High value indicates better
response [101]

Total tumor
infiltrating

lymphocytes (TILs)
Cellular Immune 64 p = 0.005

Total TILs by IHC
High value indicates response

[102,103]

Total eosinophils Cellular Immune 29
Progression-free survival

p < 0.0001, overall
survival p = 0.017

Absolute eosinophil counts by
blood tests

High values indicate better
response [104]

Lactate
Dehydrogenase

(LDH)
Secreted Serum 66 Overall survival

p = 0.0292

LDH ELISA.
Elevated value indicates bad

response [105]

sCD25 Secreted Serum 262 % survival, HR = 1.26,
p < 0.0165

sCD25 level by sIL-2
Receptor EIA assay

High value indicates bad response
[106]
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Table 3. Cont.

Biomarker Type Target of
the Test Cohort Size Predictive Power Assay/Predictive Value

CXCL11 Secreted Serum 247 Overall survival,
HR = 1.88, p = 0.014

CXCL11 level examined by
bead-based multiplexed

immunoassay. High value indicates
bad response [107]

CXCL9 and CXCL10 Secreted Plasma 18 p < 0.001

CXCL9 and CXCL10 levels
examined by ELISA. Levels after
anti-PD1 + anti-CTLA4 treatment

are higher in responders vs.
non-responders [108]

C-reactive protein Secreted Serum 196 p = 0.028 CRP by immunofiltration
High value indicates response [109]

Among the immune-related mechanisms (Figure 1), loss-of-function mutations of Janus kinase
(JAKs) desensitize the T cells to the IFN-γ exposure and dramatically decrease the expression level
of PD-L1, which is normally transcribed in response to IFN-γ via Signal Transducer and Activator of
Transcription (STAT) activation. This decrease in PD-L1 leads to both primary and acquired resistance
of PD-1 blockade therapy, given that the reinvigoration capacity of T cells through reactivation of the
PD-1/PD-L1 axis has been abrogated [37,110]. Disruption of the IFN-γ pathway can also occur through
a transcriptional dysregulation of several genes used to build the “IFN-γ-associated gene expression
score”, which indicates to which extent the tumor microenvironment is “T cell inflamed”. This score is
predictive of response to pembrolizumab (anti-PD-1 ab), and the lack of IFN-γ-associated gene expression
is associated with lack of clinical benefit in ICB treatment of melanoma, NSCLC, and gastric cancers [39].
This scenario is associated with response to treatment with anti-PD-1 antibodies [90], and such
transcriptomic signatures are considered both prognostic and predictive [111]. Indeed, impairment of
the IFN-γ pathway through knockdown of Ifgr1 after anti-CTLA4 treatment shows enhanced tumor
growth and reduced survival in mice [112]. In addition, deleterious mutations in the gene encoding β2
microglobulin (a MHC class I subunit) have also been described in anti-PD-1-antibody-resistant patient
samples and cell lines [37,113].

Another immune-related proposed mechanism of resistance to PD-1 inhibition is the propensity
of tumor-related PD-1 macrophages to take up the anti-PD-1 monoclonal antibodies, even those that
are already PD-1-engaged on the membrane of the PD-1+CD8+ T cells [114]; in such a scenario, the
co-receptor PD-1 and PD-L1 interaction between the T and tumor cells cannot not be disrupted and the
immune blockade not unleashed.

Finally, upregulation of other co-inhibitory ICs is among other possible causes of acquired
resistance in PD-1 blockade [115], as well as in CTLA-4 therapy, where the activation of tumor
indoleamine-2,3-dioxygenase (IDO) constitutes an important resistance mechanism that results in
suppression of T cells and NK cells in the TME, stimulation of regulatory T cells, and enhancement
and expansion of myeloid-derived suppressor cells (MDSCs) [116,117]. Indeed, IDO-deficient mice
increase CD4+ and CD8+ effector T cell infiltration in the tumor microenvironment and show better
anti-CTLA-4 therapy effects than that of the wild-type [118].
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kinase (JAKs) desensitize the T cells to the IFN-γ exposure and dramatically decrease the expression 
level of PD-L1 through lack of activation of the transcription factor STAT. This decrease in PD-L1 
leads to both primary and acquired resistance of PD-1 blockade therapy, given that the reinvigoration 
capacity of T cell through reactivation of the PD-1/PD-L1 axis is abrogated. (C) Deleterious mutations 
in the gene encoding β2 microglobulin (an MHC class I subunit) lead to loss of antigen presentation, 
producing resistance to anti-PD-1 drugs. (D) The propensity of the tumor-related PD-1 macrophages 
to take up anti-PD-1 monoclonal antibodies causes the capture of the anti-PD-1 antibody even from 
the surface of the PD-1+CD8+ T cells that already bound the drug. This impedes or reverts the anti-
PD-1/PD-1 interaction at the cytotoxic T cell provoking resistance to the treatment. (E) In the “escape” 
phase of the tumor immunoediting, when the tumor is clinically manifested, tolerogenic dendritic 
cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages secrete 
indoleamine-2,3-dioxygenase (IDO), which decreases tryptophan and increases kynurenine. These 
molecules inhibit effector T cells and NK functions and stimulate regulatory T cells, provoking 
immunosuppression and enhancing the tolerogenicity of macrophages and dendritic cells. IDO1 also 
enhances the expansion and activation of MDSCs. All previous alterations suppress the activity of 
anti-tumor effector T cells. 
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Despite substantial progress in our understanding of immune checkpoints and the development 
of specific immune checkpoint inhibitors, many patients with immunogenic tumors are insensitive 
to ICB. In addition to this lack of efficacy, serious adverse effects and high treatment cost incentivize 
the search for biomarkers that allow a preemptive identification of ICB responders [119]. 
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and further clinical stratification are supposed to be incorporated into ICB treatment regimens [120]. 

Figure 1. Representative mechanisms of resistance to anti-PD-1 immune checkpoint blockade. (A) A
low epitope load in the tumor cells normally drives to a minimal immune reinvigoration due to a
lower capacity of antigen presenting cells (APC) to present antigen to T cells (low priming) and a lower
cytotoxic T cell recognition of the tumor cell antigen. (B) Loss-of-function mutations of Janus kinase
(JAKs) desensitize the T cells to the IFN-γ exposure and dramatically decrease the expression level of
PD-L1 through lack of activation of the transcription factor STAT. This decrease in PD-L1 leads to both
primary and acquired resistance of PD-1 blockade therapy, given that the reinvigoration capacity of T cell
through reactivation of the PD-1/PD-L1 axis is abrogated. (C) Deleterious mutations in the gene encoding
β2 microglobulin (an MHC class I subunit) lead to loss of antigen presentation, producing resistance
to anti-PD-1 drugs. (D) The propensity of the tumor-related PD-1 macrophages to take up anti-PD-1
monoclonal antibodies causes the capture of the anti-PD-1 antibody even from the surface of the
PD-1+CD8+ T cells that already bound the drug. This impedes or reverts the anti-PD-1/ PD-1 interaction
at the cytotoxic T cell provoking resistance to the treatment. (E) In the “escape” phase of the tumor
immunoediting, when the tumor is clinically manifested, tolerogenic dendritic cells, myeloid-derived
suppressor cells (MDSCs), and tumor-associated macrophages secrete indoleamine-2,3-dioxygenase
(IDO), which decreases tryptophan and increases kynurenine. These molecules inhibit effector T cells
and NK functions and stimulate regulatory T cells, provoking immunosuppression and enhancing the
tolerogenicity of macrophages and dendritic cells. IDO1 also enhances the expansion and activation of
MDSCs. All previous alterations suppress the activity of anti-tumor effector T cells.

5. ICB Response Biomarker Candidates

Despite substantial progress in our understanding of immune checkpoints and the development
of specific immune checkpoint inhibitors, many patients with immunogenic tumors are insensitive to
ICB. In addition to this lack of efficacy, serious adverse effects and high treatment cost incentivize the
search for biomarkers that allow a preemptive identification of ICB responders [119]. Combination
of static biomarkers obtained in pre-treatment and dynamic biomarkers for monitoring and further
clinical stratification are supposed to be incorporated into ICB treatment regimens [120]. Currently,
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response biomarker candidates for ICB have been discovered on several levels, including genomic,
transcriptomic, and proteomic levels, along with immunological parameters [121,122] (Table 3).

5.1. Solid Biopsy Biomarker Candidates

Clinical biomarkers that might be useful for the prediction of ICB response have been uncovered
at different biological levels (cellular, protein, transcript, gene), in different locations (tumor, peripheral
blood), and associated to the biology of both immune and tumor-related cell populations.

5.1.1. Genetic and Epigenetic Markers

Various studies have addressed the relationship between overall tumor mutation load/neoantigen
burden and ICB response in NSCLC and melanoma, in the context of anti-PD-1 and anti-CTLA-4
monotherapy [69–72]. Importantly, neoantigen burden was more strongly associated with tumor
immunogenicity than mutation load, reflecting the selection process of the tumor antigens that are
finally recognized by the T cell receptors and trigger a sufficient immune activation. Thereby, specific
genetic mutations in genes, such as JAK1/2 and BRCA1/2, emerge to predict ICB clinical efficacy,
likely due to the failure to activate the IFN-γ target genes and the increased mutation load in tumors
deficient in the DNA repair machinery, respectively [37,70,110,123]. Loss-of-function mutations of JAK
family members render melanoma resistant to IFN-γ stimulation with insensitivity to IFN-γ-triggered
growth arrest [37] and potentially down-regulate PD-L1 expression, which is a possible mechanism for
desensitization towards PD-1 blockade [110]. Indeed, melanomas with mutations in IFN-γ signaling
are resistant to anti-CTLA-4 blockade [112]; also, this pathway is activated in responders to anti-PD-L1
treatment [124]. In addition, IFN-γ-induced IDO expression is increased in melanoma patients
responding to CTLA-4 and PD-L1 blockade [102,124]. Mutations in the DNA double strand repair
enzyme BRCA2 result in drastically increased mutational burden, leading to increased responsiveness
to PD-1 blockade [70]. In relation with this, mismatch repair deficiency tumors of different origins
with germline alterations of MSH2, MSH6, PMS2, or MLH1 were associated with high neoantigen
burden, and indicative of recognition by tumor-specific T cells [83]. However, similar mutation and
neoantigen profiles were observed in responders and non-responders under ICB treatment [89,110,125].
Other genetic variants that can constitute ICB response biomarkers are the genotypes 1577G/G and
CT60G/G in CTLA4, which demonstrate a favorable overall response (OS) in patients receiving
anti-CTLA4 therapy [82]. Also, higher TCR clonality identified by sequencing of the β-chain of the
TCR is observed in responders to PD-1 blockade rather than CTLA-4 blockade [77,125]. With respect
epigenetic biomarkers of response, we reported for the first time a signature of DNA methylation in
301 CpGs, EPIMMUNE, that could be downscaled to the unmethylated state of a single CpG site in
the transcription factor FOXP1, which regulates both quiescence in naive CD4+ cells [126], and Th
follicular cells [127], as predictive of response to ICB in NSCLC patients [28].

5.1.2. Transcriptional Biomarkers

Transcriptional signatures can be also informative of response to PD-1 blockade, and in particular
when DNA mutation profiles and immunological features are similar [89]. Several gene expression
signatures related to IFN-γ [1,90] and the Wnt/β-catenin signaling pathways [39] have been associated
to response to ICB. Other signatures associated with clinical outcomes after ICB introduce novel
putative resistance mechanisms such as the action of extracellular matrix components like laminins,
which might create a barrier excluding immune cells from penetrating the tumor and thus impairing
immunotherapy, or the neutrophil infiltration or activation in progressing [89]. Another recently
reported panel of expression markers has proven useful to associate survival advantage with moderate
tumor proliferation in comparison with tumors that are highly/poorly proliferative in NSCLC patients
treated with ICB [128]. Also, expression of endogenous retroviruses (ERV) RNA is correlated with
clinical response to anti-CTLA-4 and PD-L1 treatment [129]. Finally, a novel expression signature based
on the overexpression of MAGE-A cancer germline antigens has been reported as a putative specific
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predictor of resistance to anti-CTLA4 treatment. The expression of these germline antigens is typically
restricted to immune-privileged gonadal tissues and several types of tumors, and the MAGE-A types
are often targets of anti-tumor T cells in melanoma [91].

5.1.3. Histopathological Biomarkers

At the protein level, histopathological biomarkers include PD-L1 expression, which is a biomarker
candidate during anti-PD-1 and PD-L1 monotherapy in the context of melanoma, NSCLC, renal cell
carcinoma (RCC), and bladder cancer [130], and several other proteins, in their majority marking
the presence of relevant immune cell populations to the efficacy of ICB. PD-L1 so far is the only ICB
biomarker for which FDA has approved a companion test for pembrolizumab (anti-PD-1) treatment
in patients with NSCLC, gastric or gastroesophageal junction adenocarcinoma, cervical cancer, and
urothelial carcinoma (PD-L1 IHC 22C3 pharmDx).

5.1.4. Cellular Biomarkers

Indeed, the immune cell panorama within the tumor differentiates clinical response and resistance
in both CTLA4 and PD-1 blockade [131]. PD-1 intratumor CD8+ T cell density prior to therapy indicates
shrinking radiographic tumor size [77]. More specifically, within the tumor-infiltrating CD8+ T cells,
the presence of the particular population of CD8+ T cells of PD-1+CTLA4+T cells is associated with
progression-free survival (PFS). Melanoma patients with frequency higher than 20% have a PFS of
31.6 months, while those with less than 20% have a PFS of 9.6 months [132]. These cells represent
the tumor-associated T cells with a partial exhaustion phenotype; hence, they are more susceptible to
reinvigoration via the blockade of the co-inhibitory receptor interaction. On the other hand, the rescue
of CD8+ T cells alone is not necessarily correlated with clinical response. However, when related to
tumor burden, circulating rejuvenated PD-1+Ki67+CD8+ T cells are a better predictor of PFS after
PD-1 blockade than rejuvenated cell counts alone [99]. Also, the ratio of CD8+ T cells and Treg cells is
linearly associated with tumor necrosis in CTLA-4 blockaded melanoma [133].

5.2. Liquid Biopsy Biomarker Candidates

Circulating components are of great potential for the identification of response biomarkers that can
be tested non-invasively and dynamically in bodily fluids [134]. So far, the detection of circulating free
DNA (cfDNA) provides clinical guidance for multiple cancer treatment strategies [135]. The mutations
identified in cfDNA constitute a reliable surrogate of tumor biopsy, and the increase of post-treatment
cfDNA levels might be related to progressive disease in melanoma patients. Moreover, cfDNA levels
are informative of response before its clinical manifestation and predict the tumor burden in melanoma
patients treated with ICB [136]. Also, copy number instability quantified in cfDNA predicts disease
progression and shows better overall accuracy than cfDNA concentration alone in patients with diverse
tumors treated with immunotherapy [137]. In addition, a recent proof-of-concept work demonstrated
the added value of screening 5mC and 5hmC variants in cfDNA for the diagnosis and prognosis of
several types of cancers [138].

Several recent studies also indicate that the detection and quantification of circulating tumor cells
(CTCs) can be considered a promising circulating biomarker candidate in ICB. A recently published
case report [139] associated the detection of CTCs in peripheral blood with the metastatic process. In
addition, PD-L1 was highly expressed in CTCs in advanced head and neck cancer patients, indicating
that PD-L1+ CTCs could serve as a predictive biomarker of ICB response.

Other proposed biomarkers of response include several proteins and cell populations such as
serum level of interleukin-8 (IL-8), which is secreted by the tumor and is inversely correlated with OS
in NSCLC and melanoma patients under PD-1 blockade [140]. Serum baseline and post-treatment
level of angiopoietin-2 is also inversely related to OS in both anti-CTLA4 and PD-1 therapy [141].

Proteins that belong to the ICR pathways have also been detected in liquid biopsies and are
correlated with response; patients with higher ICB pre-treatment soluble PD-L1 levels are more likely
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to progress, while interestingly the post-treatment increase of PD-L1 level is correlated with partial
response in ICB [142]. Co-inhibitory IC T cell immunoglobulin mucin 3 (TIM3) and PD-1 and IL-15
serum level are negatively associated with long survival after CTLA-4 blockade, in which context,
IL-15 increases TIM3 and PD-1 expression [143].

With regards to circulating immune populations, it has been reported that the amount of
circulating PD-1+ CD4+Teff cells is inversely related to OS in anti-CTLA-4 treated prostate cancer
patients, with no significant difference in the case of PD-1+ CD8+ T cells [144]. Also, pre-treatment
levels of circulating CD45RO+CD8+ T cells are positively correlated with patient survival after CTLA-4
blockade. In addition, a higher fraction of circulating CD4+ICOShi T cells indicates longer survival
after CTLA-4 blockade [145]. Low baseline LDH level, high relative/absolute eosinophil counts, and
relative lymphocyte counts are correlated with prolonged OS in melanoma anti-PD-1 and CTLA-4
treatment [146,147]. Finally, possibly because the BIM level positively reflects PD-1 expression and
PD-1/PD-L1 interaction, an increased frequency of circulating Bim+PD-1+CD8+ T cell has been found
to be correlated with anti-PD-1 efficacy [101].

6. DNA Methylation and Hydroxymethylation as Potential Biomarkers of Response to
Cancer Immunotherapy

6.1. Involvement of DNA Methylation and Hydroxymethylation in Tumor Immune Evasion

The fact that 5mC and 5hmC are dynamic marks that correlate with tumor immune evasion and
T cell exhaustion opens new avenues for clinical biomarkers research, where epigenetic variants or
signatures can represent a new class of biomarkers for ICB response.

In the context of T cell exhaustion, it can be hypothesized that DNA methylation can be involved
in the maintenance and reinforcement of exhaustion gene expression signatures. Indeed, a progressive
Dnmt3a-mediated de novo methylation has been observed in murine antigen-specific CD8 T cells that
underwent exhaustion via repression of key genes implicated in the effector function, the proliferation,
metabolism, and tumor recruitment of immune cells, impairing T cell expansion and clonal diversity
under treatment with anti-PD-1 [148]. These findings are corroborated by observations in chronic
lymphocytic choriomeningitis virus (LCMV)-infected mice, where the preservation of a specific
chromatin configuration was associated with a transient reinvigoration of T cells induced by treatment
with PD-1 [149]. This reinvigoration was likely mediated mainly by NFκB signaling, and the preserved
chromatin configuration that sustains the transient nature of the anti-tumor immune reactivation
could be related to the post-treatment static expression of key transcription factors implicated in
the exhaustion phenotype such as T-bet and Eomes [149]. Indeed, in primary human CD4+ T cells
that were TCR-stimulated in vitro using antibodies against CD3 and CD28, the genomic binding
regions of specific enhancers and transcription factors involved in the activation of the T cells overlap
with regions of accessible chromatin in the post-treatment remodeled scenario [150]. Interestingly,
in some individuals, these regions have mutations associated with autoimmune diseases and enhancer
specific of different T cells. In addition, correlations between specific SNPs and local regions of
accessible chromatin have been delineated, raising the possibility that interindividual genetic variation
is affecting the chromatin remodeling after treatment with ICB [150]. Combined, the highlighted
studies provide evidence of an important role of epigenetic mechanisms in relapse risk of patients post
ICB therapy [151,152].

The involvement of DNA methylation in the transcriptional reprogramming of the T cells has also
been reported in the context of T cell exhaustion following viral infections, where the PD-1 promoter
undergoes extensive de-methylation resulting in permanent CD8+T cell exhaustion [153]. By contrast,
in the acute setting, it is subsequently re-methylated in the transition of Teff to Tmem [153]. Ten-eleven
translocation (TET) dioxygenases-dependent oxidation of DNA methylation has been related to
reprogramming processes in differentiated cells [154]. Indeed, this form of active de-methylation is
underlying the dynamics of 5mC and 5hmC in the promoter of the murine gene coding for PD-1 (Pdcd1)
in CD4+ autoimmune T effector cells. The deposition of 5hmC seems to mark a poised state. Only in
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the context of permanent induction of PD-1 provoked by peptide immunotherapy, 5hmC is erased in
mouse [155]. In view of this information, 5hmC constitutes and good candidate for monitoring the
phenotypic reprogramming of Teff cells during exhaustion or ICB resistance.

Regarding the tumor-intrinsic reprogramming that features the immunosuppressive TME, it has
been reported that DNA methylation at the promoter regions of the tumor Th1-type chemokines CXCL9
and CXCL10, mediated by DNMT1, represses their transcript and protein expression in ID8 ovarian cancer
in C57/BL6 mice. Consequently, cytotoxic T cell trafficking into the tumor microenvironment decreases.
Interestingly, the epigenetic modulation of the expression of these chemokines with azacytidine indicated
that the modification of the epigenetic program can improve the Teff infiltration as well as the response
to anti-PD-L1 agents [156]. Another tumor-intrinsic adaptation against the immune anti-tumor activity
is the DNA methylation-induced repression of tumor-specific antigens [157]. For example, promoter
hypermethylation of cancer/testis antigens abrogates the tumor immunogenicity by nullifying the
recognition and response of antigen-specific CD8+ T cells [158–160]. On the other hand, de-methylation
increases the level of endogenous retrovirus double-stranded RNA and triggers the activation of the
MDA5/MAVS signaling pathway, which stimulates immune-related transcription factors and IFN
response, and reduces the tumor growth [161,162].

As highlighted above, epigenetic alterations associated with immune response and evasion in
immune cells are extensive, and they set the stage for the identification of 5mC and 5hmC biomarkers
of response. Specifically, Tet2 controls the differentiation of naïve CD4+ T cells into several lineages of
helper T (Th) cells in mice, thereby directly modulating cytokine production [163]. Moreover, Tet2 has
been found to contribute to CD8+ T-lymphocyte effector differentiation [164]. The important role of
TET-mediated active de-methylation is furthermore exemplified by its direct control of Foxp3 expression
in Treg, where demethylation gives rise to lineage-specific epigenetic signatures that guide development
and maturation of Foxp3+ Treg within the thymus [165]. In addition, TET activity modulation is related
to the maintenance of Foxp3 expression [166], and active de-methylation of the IL2 promoter coincides
with increased IL2 expression upon CD4+ cell activation [167].

Even though the field is prolific in determining the roles of 5mC and 5hmC profiles in different
tumor immune evasion scenarios, it is important to emphasize that the mechanisms underlying
these associations are, so far, poorly understood. Scharer and collaborators identified a step-wise
differentiation process of CD8+ T cells triggered by antigen presentation, in which inactive genes,
such as Pdcd1 in naïve cells, were progressively demethylated towards CD8+ Teff-cells [168]. These
transitions would start by the DNA binding of transcription factors that do not contain any CpGs
in their binding site (e.g., NFATc1). They would induce histone H3 and H4 acetylation, as well as
DNA de-methylation. The generated open chromatin landscape is permissive to the binding of DNA
methylation-sensitive transcription factors that direct the rewiring of the expression towards the
effector phenotype (e.g., Pdcd1). Interestingly, the DNA methylation-sensitive transcription factors
c-JUN, JUND, c-MYC, CREB/ATF, CTCF, and ETS1 are expressed ubiquitously in differentiating CD8+

T cells [169].

6.2. Emerging Evidence Supporting the Roles of DNA Methylation and Hydroxymethylation as Epigenetic
Predictors of ICB Response

The appreciation of the important role of the 5mC and 5hmC landscape has given rise to the
emerging discipline of pharmacoepigenetics. Particularly in tumor cells, epigenomic patterns undergo
substantial changes, which has resulted in the discovery of an increasing repertoire of epigenomic
biomarkers. For an overview of this field, we refer the interested reader to recent comprehensive
reviews [170–174]; however, we would like to emphasize how such epigenetic alterations, when
associated to ICB response, could serve useful for monitoring the clinical benefit during the course
of the disease by agglutinating in Table 4 the most relevant DNA methylation non-invasive cancer
biomarkers. It is important to note that the great majority of identified cytosine methylation biomarkers,
so far, pertain to DNA methylation, at least in part because methodologies that discriminate 5mC from
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5hmC have only been recently developed [175,176]. By adapting the newly arising technologies that
allow distinct typing of 5mC and 5hmC, we have characterized the absorption, distribution, metabolism,
and excretion (ADME)-related methylome and hydroxymethylome of the human liver [177], and we
have reported a proof-of-principle study where specific 5hmC mapping unmasks a unexpectedly
high degree of hypermethylation in human hepatocellular carcinoma tumors and contributes to the
identification of novel diagnostic biomarkers [178].

Concerning the epigenetic biomarkers of response to ICB, we have recently reported the association of
the methylation state of 301 CpGs that conform to the “EPIMMUNE” signature, and its subrogation to the
unmethylated state of a single CpG of FOXP1, a transcription factor involved in the regulation of quiescent
CD4+ cells, and the regulation of follicular T helper cells, with overall and progression-free survival to
anti-PD-1 treatment in NSCLC patients [28]. We speculate that the release of the immunosuppression that
had been induced by the PD-1/PD-L1 interaction would give rise to the activation of a remaining pool of
naïve CD4+ cells and the subsequent enhancement of the anti-tumor immune activity. Interestingly, the
most amply studied response predictors, such as CD8, PD-L1 immunodetermined proteins, and the
tumor mutational burden, did not separate significantly those patients with better treatment outcome.
This constitutes the first reported association of epigenetic variants with the clinical benefit of ICB.

To our knowledge, so far, no specific 5hmC biomarker of response to cancer therapy has been
validated, although several lines of evidence suggest the involvement of TET enzymes in the response
mechanisms; for example, TET1 knockdown in lung cancer cell lines with EFGR mutations leads to
enhanced EFGR inhibitor resistance, while the responsive tumors show increased TET1 expression [179].
As discussed above, epigenetic remodeling of 5mC and 5hmC signatures controls many aspects of
the reprogramming events associated with innate and acquired resistance to ICB, both tumor-intrinsic
and extrinsic. Indeed, DNA methylation seems to control PD-1, PD-L1, PD-L2, and CTLA-4 gene
expression; when these genes are silenced, the antigen presentation and the immune cytotoxic effects
are inhibited [180,181]. The hypermethylation-derived silencing of CTLA-4 and PD-1 was also observed
in baseline tumor biopsies compared to their pair-matched tissues in NSCLC patients [87]. In addition,
in colorectal cancer, PD-L1 expression is associated with CpG island hypermethylation in a subpopulation
of BRAF V600E carriers with high infiltration of CD3+ T cells [182]. Moreover, in metastatic melanoma
patients treated with CTLA-4 blockers, responders and non-responders have a differential pattern of
DNA methylation in specific genes of the nervous system development and neuron differentiation
pathways [88]. Because neuron and melanocytes have precursor cells of neural crest origin, these results
suggest a process of de-differentiation of the transformed melanocytes refractory to ICB treatment.
Noteworthy, de-differentiation induced by inflammation has been already reported as a possible tumor
immune evasion mechanism [183].

Stepwise hypermethylation has also been related to the facilitation of tumor escape by repressing
expression of the IFN regulator IRF8 [184]. Importantly, the positive effect of de-methylation on
transcriptional activity for some immune-related genes, including PD-L1 and genes of the interferon
signaling cascade, has been validated in vitro, corroborating that epigenetic modulation might be a
useful tool to sensitize patients to anti-PD-L1 ICB, and the facilitation of tumor escape by repressing IFN
regulatory factor 8 transcriptional expression [185]. Importantly, the positive effect of de-methylation
on transcriptional activity for some immune-related genes, including PD-L1 and genes of the interferon
signaling cascade, has been validated in vitro, corroborating that epigenetic modulation might be
a useful tool to sensitize patients to anti-PD-L1 ICB [186]. In addition, in a mouse ovarian cancer
model, de-methylation triggers the type I interferon signaling pathway, sensitizing mice to anti-CTLA4
therapy [161]. Furthermore, azacytidine and CTLA-4 mAb combination therapy represses tumor
growth more strongly than each of the monotherapies, via the upregulation of MHC class I components
as the putative mechanism [187]. Other studies also identify the increase of the lymphocyte infiltration
and the T helper 1-type chemokines and cytokines as possible cause of the better observed outcome
when de-methylation and anti-PD-L1 and CTLA4 agents are used in combination in a murine ovarian
cancer model [188]. Interestingly, the inverse interaction between immune signaling pathways and
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epigenetic regulation in cancer has also been observed, where NF-kβ interacts with TET1 promoter for
its downregulation in breast cancer cells [189].

As a consequence of this ample pre-clinical evidence and the appreciation that epigenetic
reprogramming participates in acquired drug resistance, there is a drastic increase of clinical trials that
explore the synergy of epidrug combination therapies [170,190]. Indeed, demethylating agents and
histone deacetylases are being combined with ICB in numerous clinical trials and types of malignancies.
Sun and collaborators have recently reviewed the current clinical trials that combine histone modifications
inhibitors with immunotherapy. The majority of combinations include anti-PD-1 drugs and histone
deacetylases. Some suggested mechanisms for the synergy of the combinations in enhancing the
response and preventing the relapse are the upregulation by inhibitors of histone deacetylases of CD80
and CD86 in the context of anti-CTLA-4 treatment, the regulation of immune checkpoint ligands,
and the induction of tumor neoantigens on tumor cells for PD-1/PD-L1 therapy. Consistently, most
of the combinatorial strategies with DNA-demethylating and histone modification inhibiting drugs
aim at the upregulation of tumor neoantigens and the downregulation of PD-L1 expression. Also,
BET/bromodomain 4 inhibitors promote depolarization of macrophages into immunostimulatory ones,
leading to the decrease of MDSCs in the tumor microenvironment [191].

Table 4. Examples of the relevancy of DNA methylation alterations as non-invasive diagnostic and
prognostic biomarkers in cancer.

Type of Biomarker Gene Type of Cancer Description Accuracy of Panel Including
Methylated Gene or p Value

Diagnostic ARF Bladder Urine ARF promoter detects bladder
cancer [192] ∆82%/96%

Prognostic APC, GSTP1 Prostate
APC and GSTP1 hypermethylation in
prostate cancer strongly correlated to

adverse pathological features [193]

ROC of the assay test score:
clinical AUC = 0.79

Diagnostic BCL Bladder Urine sediments BCL methylation
detects bladder cancer [194] † 78% (29/37)

Prognostic CDH13 Prostate

Serum methylation of CDH13 was
significantly associated with advanced
tumor stage, worse survival outcome

and relative risk of death [195]

HR 6.132 (95%CI: 3.160–12.187)
p = 0.0073

Diagnostic CDKN2A Bladder Urine CDKN2A promoter detects
bladder cancer [192] ∆82%/96%

Diagnostic DAPK Bladder Urine sediments DAPK methylation
detects bladder cancer [194] † 78% (29/37)

Diagnostic (early) ERα Prostate/breast
(primary)

Serum promoter ERαmethylation
detects early stage prostate and breast

cancer [196,197]
∆75%/70%

Diagnostic (early) ERβ Prostate Serum promoter ERβmethylation
detects early stage prostate cancer [196] ∆75%/70%

Diagnostic FBN1 Colorectal Stool FBN1 methylation detects
colorectal cancer [198] ∆84.3%/93.3%

Diagnostic FBN2 Colorectal
(primary)

Serum methylation of FBN2 detects
colorectal cancer in males and hepatic

metastasis [199]

Male: p = 0.0167; hepatic
metastasis:
p < 0.0001

Diagnostic,
Prognostic GSTP1

Bladder/prostate/
castrate-resistant
prostate/breast

Urine/serum GSTP1 is hypermethylated
in prostate cancer and strongly

correlated to adverse pathological
features [193,200,201]

∆82%,96%/−/† 82%
(28/34)/∆75%/98%/† 6% 7/120/†

22% 22/101

Diagnostic FHIT Ductal breast
cancer

Serum FHIT is associated with breast
cancer [202] p < 0.05

Diagnostic hMLH1 Breast Serum hMLH1 detects breast
cancer [203]

AUC = 0.727 (BCa versus NC),
AUC = 0.789 (BCa versus BN)

Prognostic HLTF Colorectal Serum HLTF methylation is associated
with increased risk of recurrence [204]

HR 2.7
(95%CI: 1.2–6.0)

p= 0.014)

Diagnostic HOXD13 Breast Serum HOXD13 detects breast
cancer [203]

AUC = 0.727 (BCa versus NC),
AUC = 0.789 (BCa versus BN)
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Table 4. Cont.

Type of Biomarker Gene Type of Cancer Description Accuracy of Panel Including
Methylated Gene or p Value

Diagnostic (early) 5MCAM Prostate Serum promoter 5MCAM methylation
detects early stage prostate cancer [196] ∆75%/70%

Diagnostic MGMT Bladder/lung/
Colorectal

Clinical response to dacarbazine is
restricted to those with MGMT
hypermethylation in colorectal

cancer [205]

∆82%/96%

Diagnostic NID2 Bladder (primary) Urine NID2 methylation detects
primary bladder cancer [206] † 94% (466/496)

Diagnostic P16 Breast Serum P16 detects breast cancer [203] AUC = 0.727 (BCa versus NC),
AUC = 0.789 (BCa versus BN)

Diagnostic PCDHGB7 Breast Serum PCDHGB7 detects breast
cancer [203]

AUC = 0.727 (BCa versus NC),
AUC = 0.789 (BCa versus BN)

Prognostic PCDH10 Prostate

PCDH10 methylation in serum is an
independent predictor of worse

biochemical recurrence-free survival
and overall survival [207]

HR 2.796 (95%CI: 1.431–6.763)
p = 0.006

Diagnostic PCDH17 Bladder Urine sediment PCDH17 methylation
detects bladder cancer [208] ∆90%/93.96%

Diagnostic PHACTR3 Colorectal Stool PHACTR3 methylation detects
colorectal cancer [209]

Sensitivity: 55%–66%;
specificity: 95%–100%

Diagnostic POU4F2 Bladder Urine sediment POU4F2 methylation
detects bladder cancer [208] ∆90%/93.96%

Diagnostic TERT Bladder Urine sediments TERT methylation
detects bladder cancer [194] † 78% (29/37)

Diagnostic TMEFF2 NSCLC

Higher frequency of TMEFF2
methylation in tumors without EGFR
mutations than those harboring EGFR

mutations [210]

Multivariate adjusted odds
ratio = 7.13 (95%CI: 2.05–24.83)

p = 0.002

Diagnostic (early) RARB Prostate Urine sediments RARB methylation
detects early stage prostate cancer [211] † 82% (28/34)

Diagnostic RARβ2 Breast
Serum RARβ2 promoter methylation as
part of a methylation/specific PCR assay

detects breast cancer [200]
† 6% 7/120/†22% 22/101

Diagnostic (early) RASSF1 Prostate Urine sediments RASSF1 methylation
detects early-stage prostate cancer [211] † 82% (28/34)

Diagnostic,
Prognostic RASSF1a Breast/lung/

ovarian

Serum RASSF1a promoter methylation
as part of a methylation/specific PCR

assay detects breast cancer [200]

AUC = 0.727 (BCa versus NC),
AUC = 0.789 (BCa versus

BN)/† 6% 7/120/† 22% 22/101

Diagnostic,
prognostic SEPT9, TAC, CEA Colorectal

Serum SEPT9 methylation predicts
colorectal cancer; Epipro Colon 2.0 with

2/3 algorithm is the most effective
assay [212]. In postoperative serum,

SEPT9, CEA or TAC methylation predict
recurrence and survival [213]

(Diagnostic) Sensitivity = 0.71,
Specificity = 0.92, AUC = 0.88.

(Prognostic) Disease-free
survival: adjusted hazard

rations of the ∆ = 2.58–4.71
p < 0.05; recurrence:
sensitivity = 32.6–90;
specificity = 80–90

Diagnostic SFN Breast Urine sediment SFN methylation
detects bladder cancer [194]

AUC = 0.727 (BCa versus NC),
AUC = 0.789 (BCa versus BN)

Diagnostic SNCA Colorectal Stool SNCA methylation detects
colorectal cancer [198] ∆84.3%/93.3%

Prognostic SST Colorectal
High serum SST methylation is an

independent prognostic biomarker of
colorectal cancer [214]

Multivariate adjusted for
cancer-specific survival: HR

1.96 (95%CI: 1.06, 3.62)
p = 0.031; for overall survival

HR 2.60 (95%CI: 1.37, 4.94)
p = 0.003

Diagnostic TWIST1 Bladder (primary) Urine TWIST1 methylation detects
primary bladder cancer [206] † 94% (466/496)

Diagnostic,
prognostic VIM Colorectal

Serum VIM methylation correlated with
liver metastasis, peritoneal
dissemination, and distant

metastasis [215]

(Liver metastasis)
p = 0.026

(Peritoneal dissemination)
p = 0.0029

(Distant metastasis)
p = 0.0063
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Table 4. Cont.

Type of Biomarker Gene Type of Cancer Description Accuracy of Panel Including
Methylated Gene or p Value

Prognostic mir-34b/c Colorectal
Mucosal wash fluid mir-34b/c

methylation is associated with
invasiveness [216]

Accuracy: 91.3% for the
training set and 85.1% for the

test set.

Prognostic MGMT Glioblastoma
multiforme

Serum and tumor methylation of
MGMT is associated with better stable

response [217]

Median time to progression:
log-rank test, p = 0.006, 29.9

weeks with methylated
MGMT, 95%CI, 24.3–35.4) vs.

15.7 weeks with unmethylated
MGMT (95%CI, 14.3–17.2).

Diagnostic,
Prognostic (early)

Panel of 6 genes
(CDO1, HOXA9,
AJAP1, PTGDR,

UNCX, and
MARCH11)

Lung

Methylation status in the 6 genes
analyzed in serum for the detection of

stage IA NSCLC. In addition, a
prognostic risk category based on the

cancer and serum methylation status of
CDO1, HOXA9, PTGDR, and AJAP1

refined the risk stratification for
outcomes as an independent prognostic

factor in early-stage disease [218]

(Serum) Sensitivity: 72.1%;
specificity: 71.4%.
(Prognosis factor)

Combination methylation
marker multivariate adjusted

p = 0.035

Prognostic BRMS1 Lung

Cell-free DNA circulating BRMS1
promoter methylation has a statistically
significant influence both on operable
NSCLC patients’ disease-free interval
(DFI) time and OS and on advanced
NSCLC patients’ PFS and OS [219]

Multivariate analysis: for
progression-free survival: HR

1.951 (95%CI: 1.175–3.238)
p = 0.01; for overall survival:

HR 2.057 (95%CI: 1.247–3.386)
p = 0.005

Prognostic SOX17 Lung

SOX17 promoter methylation in plasma
cell-free DNA has a statistically

significant influence on advanced
NSCLC patient overall survival [220]

Univariate analysis for overall
survival: HR 1.834

(95%CI: 1.105–3.045)
p = 0.019

† Overall detection level.

7. Future Perspectives and Conclusions

The reactivation of the anti-tumor immune response with antibodies that compete with the
co-inhibitory immune receptor could be intuitively considered an Achilles heel for tumor immunoediting
and evasion from immune surveillance. However, given the absence of good response biomarkers
and the complex network of interactions of the TME that influences the efficacy of ICB, a significant
fraction of patients experience innate and acquired resistance, and some even hyperprogression.
As we have extensively described in this review, much effort has been devoted to the identification of
biomarkers that could predict response to ICB. Lately, new approaches use top-down strategies and
Next Generation Sequencing to identify novel tumor-intrinsic and -extrinsic mechanisms. However,
despite the importance of epigenetic regulation for reprogramming events during tumor immune
evasion, only a single study has reported the identification of CpG-site specific epigenetic biomarkers
of response to ICB in human samples [28]. Furthermore, DNA methylation stands as the putative
mechanism for the maintenance of the exhaustion gene expression program during ICB. Therefore,
we anticipate that the search for 5mC and 5hmC signatures associated with differential clinical
outcomes of ICB will reveal new biomarkers and give rise to novel mechanistic hypotheses that could
be integrated in multiomics prediction algorithms to further personalize cancer immunotherapy.
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