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Abstract: Introduction: Neutrophil-lymphocyte count ratio (NLCR) is a simple and low-cost
marker of inflammatory response. NLCR has shown to be a sensitive marker of clinical severity in
inflammatory-related tissue injury, and high value of NLCR is associated with poor outcome
in traumatic brain injured (TBI) patients. The purpose of this study was to retrospectively
analyze NLCR and its association with outcome in a cohort of TBI patients in relation to the
type of brain injury. Methods: Adult patients admitted for isolated TBI with Glasgow Coma
Score lower than eight were included in the study. NLCR was calculated as the ratio between
the absolute neutrophil and lymphocyte count immediately after admission to the hospital,
and for six consecutive days after admission to the intensive care unit (ICU). Brain injuries were
classified according to neuroradiological findings at the admission computed tomography (CT) as
DAI—patients with severe diffuse axonal injury; CE—patients with hemispheric or focal cerebral
edema; ICH—patients with intracerebral hemorrhage; S-EH/SAH—patients with subdural and/or
epidural hematoma/subarachnoid hemorrhage. Results: NLCR was calculated in 144 patients.
Admission NLCR was significantly higher in the non-survivors than in those who survived at
28 days (p < 0.05) from admission. Persisting high NLCR value was associated with poor outcome,
and admission NLCR higher than 15.63 was a predictor of 28-day mortality. The highest NLCR
value at admission was observed in patients with DAI compared with other brain injuries (p < 0.001).
Concussions: NLCR can be a useful marker for predicting outcome in TBI patients. Further studies
are warranted to confirm these results.

Keywords: Neutrophil-lymphocyte count ratio; traumatic brain injury; Extended Glasgow Outcome
Score; diffuse axonal injury; cerebral edema

1. Introduction

Traumatic brain injury (TBI) is a major cause of death and disability worldwide [1]. While primary
brain injury is irreversible, secondary damage-consequent to neuronal dysfunction related to trauma
induced oxidative stress, ischemia, edema, and inflammatory response is amenable for treatment [2].
Inflammatory response after TBI may be triggered by the presence of injured neuronal cells,
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and the damage-related inflammatory molecular cascade then proceeds with the release of different
proinflammatory cytokines and angiogenic factors with consequent degradation of tight junctions
(TJs), cytoskeletal rearrangement, and protein extravasation promoted by adhesion molecules [3].
Additionally, the uncontrolled release of metalloproteinases, inflammatory cytokines, and proteases
and the inappropriate activation of endothelial cells may further impair the integrity of the blood-brain
barrier (BBB), leading to proteinaceous fluid extravasation into the interstitial space and significant
leukocyte infiltration [3–5]. The first peak of increased BBB permeability is observed within the first
few hours after injury and persists for 3–4 days; a second peak may occur after 5 days as a result
of microglial activation [6–8]. An experimental study has documented that this process leads to the
recruitment of neutrophils to the site of injury in the first hour after injury [9], which may result in
white blood cell (WBC) disorders [10].

Peripheral WBC analysis is a simple and low-cost test that provides important information about
the general inflammatory response. A peak of WBC has been demonstrated after delayed cerebral
ischemia and has been proposed as an independent risk factor for cerebral vasospasm following
aneurysmal subarachnoid hemorrhage [11]. Additionally, the neutrophil-to-lymphocyte count ratio
(NLCR) has been suggested as a sensitive biomarker to measure the inflammatory status of the immune
system in different conditions, such as malignancy [12,13], cardiovascular diseases [14], and stroke [15].
Recent studies have also suggested that NLCR is a useful marker for the prediction of clinical outcome
in patients with TBI [16], with high NLCR at admission being associated with poor outcome [17,18].
Furthermore, it is well-recognized that the type and severity of TBI plays a crucial role in the activation
of the inflammatory response [19,20]. At present, no data documenting the changes in the NLCR in
relation to the type and severity of TBI are available.

The first aim of this retrospective study was to analyze the NLCR and its effect on outcome in
relation to the type of brain injury in a cohort of isolated TBI. A secondary aim was to assess the
difference in NLCR values between different types of TBI.

2. Patients and Methods

This study was approved by the Bioethics Committee of the Medical University in Lublin, Poland,
and by the Bioethics Committees of Szczecin, Poland. This retrospective analysis of the NLCR was
performed, including consecutive adult patients with isolated severe TBI admitted to the intensive care
unit (ICU). Patients aged below 18 years, pregnant women, patients with drug-overdoses, and patients
with a history of neoplastic, cardiac, hepatic diseases, or renal diseases were excluded.

2.1. ICU Protocol and Treatment

All patients included in the study were sedated with propofol (AstraZeneca, Macclesfield, UK) and
fentanyl (Polfa, Warsaw, Poland) and were intubated and mechanically ventilated; 30◦ head elevation
was implemented for all patients. The fraction of inspired oxygen (FiO2) was adjusted to maintain
oxygen saturation (SpO2) between 92% and 98% and regional cerebral oximetry (SrO2) higher than
50%. Patients were treated according to the latest Brain Trauma Foundation guidelines [21]. Heart rate
(HR), continuous mean arterial pressure (MAP), regional cerebral oximetry (SrO2), and SpO2 were
monitored in all patients. Additionally, hemodynamic variables, such as cardiac output/index (CO/CI),
stroke volume variation (SVV), central venous pressure (CVP), systemic vascular resistance index
(SVRI), and extravascular lung water index (ELWI) were monitored using EV 1000 platform (Edwards
Lifesciences, Irvine, CA, USA). The frontotemporal activity was monitored with electroencephalography
(EEG) using a Masimo Root device with a SEDLine monitor (Irvine, CA, USA) or bispectral complete
4-channel monitor (BIS, Medtronic, Minneapolis, MN, USA). Blood potassium, sodium, glucose,
and lactate levels were measured 5 times/day, and blood osmolality was measured 1–2 times/day.
Continuous norepinephrine infusion and balanced crystalloids (Sterofundin ISO, Melsungen, G) were
used to maintain cerebral perfusion pressure (CPP) above 60 mmHg. Patients with intracranial
hypertension despite the adoption of basic measures to control and prevent intra-cranial pressure (ICP)
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received as first instance hyperosmotic therapy with 1.5 g/kg 15% mannitol to reduce ICP. Hyperosmotic
therapy was discontinued in patients who had a plasma osmolality higher than 310 mOsm/kg H2O.
Other medical procedures to control ICP included carbon dioxide (CO2) optimization, temperature
control, and cerebral spinal fluid withdrawal.

Intracranial space-occupying lesions, i.e., subdural and/or epidural hematomas, were evacuated
via craniotomy or craniectomy at neurosurgeon’s discretion. Subsequently, decompressive craniectomy
was performed in patients with refractory intracranial hypertension with mass effect and/or cerebral
herniation [21].

2.2. Study Protocol and Data Collection

Blood samples were routinely collected for full blood count analysis immediately after admission
to the hospital and for six consecutive days after admission to the ICU. The NLCR was calculated as
the ratio between the absolute neutrophil and lymphocyte count.

Brain injuries were classified according to neuroradiological findings at the admission computed
tomography (CT) as DAI—patients with severe diffuse axonal injury; CE—patients with hemispheric
or focal cerebral edema; ICH—patients with intracerebral hemorrhage; S-EH/SAH—patients with
epidural and/or subdural hematoma/subarachnoid hemorrhage. DAI was diagnosed as the presence of
multiple microhemorrhage focal lesions located at the grey-white matter junction and/or in the corpus
callosum and/or the brainstem. Additionally, the Glasgow Coma Scale (GCS) at admission and the
8-point the Extended Glasgow Outcome Score (GOSE—Table 1) [22] at 7, 28-days, and 6-months were
collected. Patients who withdrew their agreement from participation in this study were excluded from
the 6-months outcome analysis. Poor outcome was defined as death or patients with GOSE 2–4.

Table 1. The Extended Glasgow Outcome Score measured 6 months after TBI (traumatic brain injury).

Points Clinical Condition

1 Death
2 Vegetative state (VS)
3 Lower severe disability (SD-)
4 Upper severe disability (SD+)
5 Lower moderate disability (MD-)
6 Upper moderate disability MD+)
7 Lower good recovery (GR-)
8 Upper good recovery (GR+)

2.3. Statistical Analysis

Data distribution was determined using the Kolmogorov–Smirnov test. Categorical variables were
compared using the χ2 and Fisher’s exact test, and Yates’ correction was applied. Student’s unpaired
t-test was used for normally distributed data analysis, which is presented as the mean and standard
deviation (mean ± SD and SEM). Non-parametric data were analyzed using the Wilcoxon single-rank
test and the Mann–Whitney U test for initial detection of differences, and these data were presented as
a median, quartiles 1 and 3, and IQR—interquartile range. The cut-off points for NLCR were calculated
with the use of receiver operator characteristic (ROC) curves with auto-calculated maximum specificity
and sensitivity.

3. Results

A total of 144 adult patients aged 18–89 years were included in the present study. The main
demographic data are presented in Table 2. The median admission GCS score was five (IQR: 3–6).
In the DAI group, 7 and 28-day mortality were 10.3% and 34.5%, respectively. After 6 months, six
patients were excluded from the study because they or their families did not agree to respond to the
phone interview (Table 2).
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Table 2. Demographic data.

TBI Age Sex GCS 28-Day
Mortality

GOSE 6-Months
Outcome RQ Mean

GOSE

Total
(n = 144)

48
(IQR: 32–59)

26 female
118 male

5
(IQR: 3–6)

42 patients
(29.17%)

Death 2

5.1 ± 2.1

VS 8
SD- 10
SD+ 7
MD- 11
MD+ 7
GR- 13
GR+ 10

DAI
(n = 29)

50
(IQR: 35–57)

4 female
25 male

4.6 ± 1.1
13 patients

(44.83%)

Death 2

5.4 ± 1.98

VS 2
SD- 0
SD+ 0
MD- 2
MD+ 2
GR- 4
GR+ 0

CE (n = 34) 44
(IQR: 32–57)

7 female
27 male

5.3 ± 1.96
6 patients
(17.65%)

Death 0

4.9 ± 1.79

VS 2
SD- 4
SD+ 0
MD- 7
MD+ 2
GR- 4
GR+ 1

ICH
(n = 19)

54
(IQR: 43–59)

2 female
17 male

4.3 ± 1.5
10 patients

(52.63%)

Death 0

3.7 ± 1.3

VS 2
SD- 3
SD+ 2
MD- 1
MD+ 1
GR- 0
GR+ 0

S-EH/SAH
(n = 62)

44
(IQR: 29–60)

10 female
52 male

5.3 ± 1.8
13 patients

(20.97%)

Death 0

5.8 ± 2.14

VS 2
SD- 3
SD+ 6
MD- 1
MD+ 2
GR- 5
GR+ 9

RQ—respondents to questionnaire, DAI—diffuse axonal injury, CE—cerebral edema, ICH—intracerebral hemorrhage,
S-EH/SAH—subarachnoid hemorrhage, epidural and/or subdural hematoma, GCS—Glasgow Coma Scale,
GOSE—Extended Glasgow Outcome Score.

The median admission NLCR was 11.74 (IQR: 6.79–19.23) in the studied population. The highest
NLCR value at admission was detected in the DAI group, compared to the CE, ICH, and S-EH/SAH
groups (Figure 1). Admission NLCR was statistically higher in the non-survivors than in those who
survived at 28 days from admission (Figure 2).

Among the patients with CE, the 28-day mortality was 17.65%. Eight patients withdrew their
agreement to this study after discharge from ICU or at the phone interview. In the ICH group, 28-day
mortality was 52.63%, and only nine patients responded at the 6 months phone interview. In the
SAH or subdural and/or epidural hematoma group, 7 and 28-day mortality were 16.13% and 4.84%,
respectively. After 6 months, only 28 patients responded to the phone interview.

ICH patients presented the highest 6-month mortality, compared to the other groups: S-EH/SAH
(χ2 = 6.94, p < 0.01, χ2 with Yates’ correction = 5.49 for p < 0.05), and CE (χ2 = 7.08, p < 0.01, χ2 with
Yates’ correction = 5.52 for p < 0.05). The mortality rate was higher in the DAI group compared to
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the S-EH/SAH group (χ2 = 5.29, p < 0.05, χ2 with Yates’ correction = 4.21 for p < 0.05) and CE group
(χ2 = 5.49, p < 0.05, χ2 with Yates’ correction = 4.27 for p < 0.05). Additionally, the mortality rate was
higher in the CE group than in the S-EH/SAH group (χ2 = 7.17, p < 0.01, χ2 with Yates’ correction = 5.7
for p < 0.05). GOSE was significantly different between ICH group and S-EH/SAH, DAI, and S-EH/SAH
groups (p < 0.05).
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28 days, and those, who did not survive. * p < 0.05.

Two patients were dead at 28 days after TBI and discharge from ICU (GOSE 1) (Table 3). NLCR was
significantly higher in patients with GOSE 1, GOSE 2, and GOSE 3 compared to the other groups
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during the studied period (Table 3). NLCR of 15.63 was calculated as the cut-off point for a significant
increase in the 28-day mortality risk (Figure 3).

Table 3. Changes in the mean value of neutrophil-to-lymphocyte count ratio (NLCR) during the first 6
days of treatment in accordance with 6-months Extended Glasgow Outcome Score (GOSE). * p < 0.05,
** p < 0.01—comparison with admission day (Day 0).

GOSE
Scores Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

GOSE 1 and
GOSE 2

17.79 ± 5.7
(SEM = 1.8)

15.92 ± 3.97
(SEM = 1.3)

12.05 * ± 4.2
(SEM = 1.3)

12.69 ± 7.5
(SEM = 2.4)

11.93 ± 5.2
(SEM = 1.6)

13.02 ± 4.8
(SEM = 1.5)

10.11 ** ± 3.1
(SEM = 0.98)

GOSE 3 13.66 ± 6.3
(SEM = 2.0)

9.23 ± 4.2
(SEM = 1.3)

9.23 ± 3.9
(SEM = 1.2)

11.2 ± 6
(SEM = 1.9)

10.06 ± 4.23
(SEM = 1.3)

9.95 ± 3.2
(SEM = 1.0)

8.59 ± 3.7
(SEM = 1.2)

GOSE 4 9.55 ± 5.6
(SEM = 2.0)

5.96 ± 2.4
(SEM = 0.84)

5.23 * ± 3.6
(SEM = 1.3)

5.59 ± 2.4
(SEM = 0.85)

7.7 ± 4.6
(SEM = 1.6)

6.01 ± 3.3
(SEM = 1.2)

5.94 ± 3.2
(SEM = 1.1)

GOSE 5 14.4 ± 10.8
(SEM = 3.0)

7.12 * ± 2.8
(SEM = 0.8)

5.54 * ± 2.1
(SEM = 0.6)

6.03 * ± 2.2
(SEM = 0.6)

7.51 * ± 1.8
(SEM = 0.5)

9.52 ± 6.3
(SEM = 1.7)

7.08 * ± 2.9
(SEM = 0.8)

GOSE 6 12.77 ± 8.7
(SEM = 3.3)

16.29 ± 19.3
(SEM = 7.2)

11.5 ± 10.6
(SEM = 4.0)

6.7 ± 4.97
(SEM = 1.9)

8.23 ± 3.7
(SEM = 1.4)

5.72 * ± 2.1
(SEM = 0.8)

5.99 * ± 2.1
(SEM = 0.8)

GOSE 7 17.9 ± 16.9
(SEM = 4.7)

7.69 ** ± 3.9
(SEM = 1.1)

5.47 ** ± 2.1
(SEM = 0.6)

5.61 **± 2.6
(SEM = 0.7)

5.48 ** ± 2
(SEM = 0.6)

4.5 ** ± 1.3
(SEM = 0.4)

5.12 ** ± 2.1
(SEM = 0.6)

GOSE 8 15.53 ± 18.8
(SEM = 5.7)

7.57 ** ± 4.9
(SEM = 1.5)

6.47 * ± 3.6
(SEM = 1.1)

4.98 **± 2.8
(SEM = 0.9)

5.43 * ± 3.5
(SEM = 1.1)

4.01 **± 1.5
(SEM = 0.5)

4.94 * ± 2.1
(SEM = 0.6)

NLCR in GOSE 1 and GOSE 2 groups was significantly higher than NLCR in GOSE 3 group only at day 1 (p < 0.05).
Additionally: NLCR in patients with GOSE 1 and GOSE 2 was significantly higher than NLCR in patients with:
GOSE 4 at days 0 (p < 0.01), 1 (p < 0.001), 2 (p < 0.01), 3 (p < 0.001), 5 (p < 0.01), and 6 (p < 0.05); GOSE 5 from days 2 to
5 (p < 0.001) and at day 6 (p < 0.05); GOSE 6 at days 3 (p < 0.05), 5 (p < 0.001), and 6 (p < 0.05); GOSE 7 from day 1 to 6
(p < 0.001), and GOSE 8 at days 0 (p < 0.05), 1 (p < 0.01), 2 (p < 0.05), 3 (p < 0.01), 4 (p < 0.001), and 5 and 6 (p < 0.001).
Similar differences were noted in NLCR in patients with GOSE 3 and the other patients. There were no significant
differences in NLCR between patients with GOSE 4, GOSE 5, GOSE 6, GOSE 7, and GOSE 8 in all studied days.
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ratio (NLCR) in accordance with the mortality risk. An increase in NLCR with a cut-off point of
15.63 increases risk of death.
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4. Discussion

The present study demonstrated the role of NLCR as a predictor of poor outcome in patients with
TBI. NLCR higher than 15.63 at admission was found to be a predictor for 28-day mortality. Additionally,
significantly higher NLCR value during the first week of treatment showed to be correlated with severe
disability in patients with TBI. Admission NLCR was significantly higher in the DAI group compared
to the CE, ICH, and S-EH/SAH groups.

Neutrophils constitute the 50–70% of the total circulating leukocytes, and their recruitment and
activation is a characteristic for an early inflammatory response following TBI [23]. Neutrophils infiltration
into the injured sub-endothelial space plays an important role in the increase of BBB permeability.

Disrupted vascular wall induces increased plasma and molecules leakage into the extravascular
space, which intensifies cerebral edema [3,5,24]. Additionally, activated matrix metalloproteinases
(MMPs), such as MMP-2, MMP-3, MMP-7, and MMP-9, induce BBB disruption in experimental ischemic
stroke and severe inflammatory response following septic shock [25–27]. Yang et al. documented
that early disruption of the BBB caused an increased expression of mRNA for MT1-MMP and furin,
which activated MMP-2; finally, this process led to tight junctions (TJs) injury [25]. On the other hand,
MMP-9 activity increases after 24–72 hours after BBB injury event disrupting TJs and basal lamina
proteins [25,27]. Notably, a major enzyme of neutrophil azurophilic granules is myeloperoxidase
MMP-9-positive, thus suggesting that neutrophils play a crucial role in BBB disruption [27,28]. A recent
clinical study using cerebral microdialysis documented that the expression of neutrophil collagenase
was associated with increased intracranial pressure and was significantly higher in non-survivors
than in survivors after TBI [29]. Additionally, increased expression of MMP-9 in the pericontusional
area of brain injury within 72 hours was associated with increased risk of refractory vasogenic
edema and pericontusional hemorrhagic progression [29]. Other authors suggested that prolonged
neuroinflammation impairs regeneration and promotes secondary injury and neurodegeneration,
leading to poor outcome [30]. Also, a rapid elevated blood neutrophils levels may result from a
TBI-induced increase of catecholamines and glucocorticosteroids [10,17,31–33].

In the present study, NLCR at admission was higher in non-survivors than in survivors. Also,
in patients with poor outcome, NLCR in the first 6 days after admission was higher than in patients
with a good outcome. Based on our findings, we can speculate that higher NLCR might be related to
persistent inflammation in the pericontusional brain; however, this hypothesis has to be confirmed in
further studies.

Previous studies have explored the role of NLCR as prognostic factors after brain injury [10,15–17].
Chen et al. demonstrated a higher NLCR in TBI patients with unfavorable outcome compared to NLCR
in patients with favorable outcome, with a cut-off point identified as 18.16 [10]. AL-Mufti et al. found
that admission NLCR higher than 5.9 predicted a twofold increased risk of delayed cerebral ischemia
after aneurysmal subarachnoid hemorrhage [18]. Additionally, persistently high NLCR was associated
with a lower 6 months GOS after TBI [17]. Our findings are in agreement with those observations.
Higher NLCR was observed in patients who died after 28 days from admission and in those with
unfavorable neurological outcome after 3 months. In contrast, some authors did not confirm the
sensitivity of NLCR in predicting poor outcome in TBI patients, suggesting that other factors, such
as the international normalized ratio (INR), have a higher sensitivity as prognostic markers when
compared to NLCR [33–35].

In the present study, the highest NLCR was observed in patients with DAI. Indeed, TBI-related
DAI is associated with a massive neuroinflammatory response with neutrophils infiltration to the cortex,
subcortical white matter, and areas of axonal injury, leading to complex cognitive disorders [19,36,37].
An increase in the TBI-related inflammatory response begins 2–3 hours after injury and reaches
maximal levels in 12–24 hours [37–40]. Notably, the severity of TBI-related neuroinflammation also
depends on microglial activation. Proinflammatory mediators promote the M1 type of microglia,
which intensifies the release of proinflammatory cytokines and production of reactive oxygen
species [41]. Microglia-released cytokines prolong astrocyte activation, leading to the formation of glial
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scars. These glial scars limit axonal regeneration and prevent new functional connections between
neuronal networks, resulting in cognitive deficits in memory, executive function, and attention [42].
These mechanisms may also explain the high incidence of poor neurological outcome in patients with
severe DAI; indeed, a clinical study demonstrated that the number of brain lesions identified on MRI
was associated with an increased risk of mortality [43].

Limitations

This study has several limitations. One important limitation of the study is the small number of
respondents who agreed to respond to our phone interview (only nine and 12 patients or their family
responded to the questionnaire in ICH and DAI groups, respectively). This fact significantly limited the
power of our statistical analysis. Second, in the present study, we aimed to demonstrate the usefulness
of a simple marker-NLCR-as a prognostic factor of outcome after TBI; however, the inclusion of other
markers, and in particular of the brain-damage biomarkers or inflammatory cytokines, could have
added further information and strengthened our results.

The high usefulness of NLCR and biomarkers has been also previously described as predictors
of delirium in patients with acute ischemic stroke [44]. Indeed, brain injury following trauma or
peri-traumatic ischemia increases the concentration of specific biomarkers, such as S100β protein,
neuronal-specific enolase (NSE), ubiquitin C-terminal hydrolase-L1 (UCH-L1), and glial fibrillary
acidic protein (GFAP) [45–48]. Some of those biomarkers correlated with Glasgow Outcome Score at
6-month and with mortality in TBI patients [46]. Some authors have also shown that inflammatory
cytokines are sensitive in the prognosis of post-TBI recovery and significantly correlated with 6-month
outcome [47,49]. Noteworthy, the severity of TBI is commonly assessed by CT examinations, which
cannot provide any information about the metabolic and inflammatory response after brain injury.
The severity of neuroinflammatory-related trauma can be only provided through advanced imaging
or biomarkers; however, biomarkers sample and analysis are frequently expensive [50,51]. On the
contrary, NLCR is a low-cost and very simple marker, which can be determined in every hospital.

5. Conclusions

In our study, we demonstrated the potential usefulness of NLCR for the definition of prognosis of
brain injuries. The neutrophil-to-lymphocyte count ratio can also be considered as a sensitive marker
for predicting outcome according to the type of TBI; however, further studies should be performed to
establish the best prognostic marker for patients with TBI.
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Abbreviations

BBB blood-brain barrier
CT computed tomography
DAI diffuse axonal injury;
CE cerebral edema
GCS Glasgow Coma Score
GOS Glasgow Outcome Score
ICH intracerebral hemorrhage
ICU intensive care unit
INR international normalized ratio
MMP matrix metalloproteinases
MRI magnetic resonance imaging
NLCR neutrophil-lymphocyte count ratio
S-EH/SAH epidural and/or subdural hematoma
TBI trauma brain injury
TJ tight junctions
WBC white blood cell
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