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Abstract: Contrast-Enhanced Spectral Mammography (CESM) is a novelty instrumentation for
diagnosing of breast cancer, but it can still be considered operator dependent. In this paper, we
proposed a fully automatic system as a diagnostic support tool for the clinicians. For each Region Of
Interest (ROI), a features set was extracted from low-energy and recombined images by using different
techniques. A Random Forest classifier was trained on a selected subset of significant features by
a sequential feature selection algorithm. The proposed Computer-Automated Diagnosis system is
tested on 48 ROIs extracted from 53 patients referred to Istituto Tumori “Giovanni Paolo II” of Bari
(Italy) from the breast cancer screening phase between March 2017 and June 2018. The present
method resulted highly performing in the prediction of benign/malignant ROIs with median
values of sensitivity and specificity of 87.5% and 91.7%, respectively. The performance was high
compared to the state-of-the-art, even with a moderate/marked level of parenchymal background.
Our classification model outperformed the human reader, by increasing the specificity over 8%.
Therefore, our system could represent a valid support tool for radiologists for interpreting CESM
images, both reducing the false positive rate and limiting biopsies and surgeries.

Keywords: breast cancer; contrast-enhanced spectral mammography (CESM); background
parenchymal enhancement (BPE); computer-automated diagnosis (CADx); feature extraction;
machine learning techniques

J. Clin. Med. 2019, 8, 891; doi:10.3390/jcm8060891 www.mdpi.com/journal/jcm


http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0002-2729-9896
https://orcid.org/0000-0002-4964-7951
https://orcid.org/0000-0003-2026-2000
https://orcid.org/0000-0002-1372-3916
http://www.mdpi.com/2077-0383/8/6/891?type=check_update&version=1
http://dx.doi.org/10.3390/jcm8060891
http://www.mdpi.com/journal/jcm

J. Clin. Med. 2019, 8, 891 20f19

1. Introduction

Among women, breast cancer is currently the most frequently diagnosed cancer and the first
cause of death in the world [1]. In recent years, breast cancer mortality has decreased due to the
combined effect of early diagnosis and improvement in treatment effectiveness [1,2]. The systematic
use of Full-Field Digital Mammography (FFDM) on the female population since the early 2000s,
the progressive technological improvement of equipment for early diagnosis, and the training of
dedicated operators for the disease have allowed increasingly precocious and precise diagnoses.

The FFDM diagnostic performances are variable and dependent on some properties of the breast
itself, among which the density of the mammographic pattern [3,4]: the hard reading of mammograms
is often linked to the low intrinsic contrast of the glandular and fibrous tissue and to the possibility
of masking lesions in the context of a particularly dense mammary structure [5-7]. Therefore, dense
breasts constitute a mammographic vulnus and this becomes particularly important in the population
screening phase, where mammography is the main or even exclusive investigation. For this reason,
further radiological investigation techniques are used [8] to improve diagnostic performance in this
type of breasts.

With the advent of digital mammography, in the last few years, several implementations of
the same technique have been developed in order to increase its diagnostic accuracy, especially
in dense breasts: among these, the Contrast-Enhanced Spectral Mammography (CESM) [9,10].
This mammographic technique is based on a dual-energy exposure after a single injection of an
iodinated Contrast Medium (CM), yielding a Low- (LE) and a High-Energy (HE) image from which a
ReCombined (RC) image is obtained.

The LE images obtained as part of a CESM exam can be overlapped on digital images according
to modern quality standards [11,12]. The RC images exploit the principle of neo-angiogenesis
characterized by the formation of small blood contiguous vessels to the neoplasia in order to provide it
with nutrients sufficient for growth [13,14].

Magnetic Resonance Imaging (MRI) is also based on this phenomenon, but using gadolinium-based
contrast agents. However, iodinated contrast agents have similar properties, as showed in some studies
with breast Computerized Tomography (CT) [15].

Unlike CESM, the MRI technique is able to characterize in a more objective way a finding according
to the signal obtained from the diffusion of water molecules. This is known as Diffusion-Weighted
Magnetic Resonance Imaging (DWI or DW-MRI) and, through Regions Of Interest (ROIs) corresponding
to the individual lesions, it also allows for automatically calculating the Apparent Diffusion Coefficient
(ADC). In this way, it is possible to express further evaluations on the diagnosis of benignity or
malignancy of a lesion. However, MRI exams are more expensive than the traditional ones [16-18] and
are contraindicated in women who are particularly obese, poorly mobilized, suffer from claustrophobia,
or have pacemakers, splinters, clips, not-titanium prostheses or other type of ferromagnetic material
implanted in their body.

CESM, as well as magnetic resonance, may present different degrees of Background Parenchymal
Enhancement (BPE): this represents how much the normal tissue is impregnated after the CM injection
and depends on several factors, such as tissue vascularity and permeability, endogenous and exogenous
hormones, and endocrine therapy effects [19,20]. The BPE degree is evaluated according to four
qualitative categories: minimal, mild, moderate and marked [20,21]. Its value seems to be also
correlated with the breast density and the volume of fibroglandular tissue and, according to [22],
it represents a risk factor for the development of breast cancer. Since CESM is less influenced by
hormonal status than MRI [23], this could provide important additional information on the detection
of lesions in patients with a high (moderate or marked) degree of BPE in which it is objectively difficult
to distinguish a lesion from the non-enhanced background.

Expert systems for characterizing ROIs may offer radiologists a reliable support in the evaluation
of CESM images to improve accuracy of breast lesion identification in the presence of parenchymal
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background. Hence, the development of Computer-Automated Diagnosis (CADXx) systems for breast
lesions using CESM images is an important challenge.

Nevertheless, recent literature has concerned the diagnostic performance of human readers on CESM
images with respect to those of mammographic and MR images. On the contrary, the state-of-the-art is
poor about the development of expert systems as diagnostic support tools. In [24], the authors proposed
a CADx aimed to increase the diagnostic performances of CESM compared with those obtained by
experienced radiologists. This algorithm used a set of morphological and textural features extracted
from low-energy and recombined images in order to train a Support Vector Machine (SVM) [25]
classifier for the recognition of benign and malignant lesions. In [26], a deep learning support system
is presented to improve the specificity of breast cancer diagnosis by CESM images. These expert
systems provided complementary information to radiologists; nevertheless, they needed a manual
segmentation of the lesion by radiologists.

To make the lesion analysis more objective and less operator-dependent, in this paper, we
proposed a fully automated model which allows an efficient recognition of both benign/malignant
ROIs and normal/abnormal tissues characterized by mild or high parenchymal background. From each
suspicious area, manually identified by an expert radiologist, we extracted texture features in a fully
automated manner without further human operation or indication about the semiotics of lesions. In
order to face the fundamental challenge of improving of the breast lesion characterization, and then to
decrease unnecessary biopsies and later surgeries, in the proposed model, an important role could be
played by the feature extraction and selection processes used to describe and characterize ROls.

2. Materials and Methods
2.1. Materials

2.1.1. CESM Examination

CESM is an imaging technique allowing the acquisition of multiple views of both breasts by
producing two types of images: a low-energy image (Figure 1a) and a high-energy image (Figure 1b).
However, the latter is not displayable in the reporting monitor, but it is necessary for the creation of a
recombined image (Figure 1c) that emphasizes the breast areas with greater angiogenesis, as it occurs
exactly in the breast MRI [27].

®) ©

Figure 1. Typical example of images obtained from a CESM examination [27]: low-energy (a),

high-energy (b) and recombined (c) images. A suspicious lesion is pointed by a white arrow on
the recombined image, masked by the denser breast parenchyma on the low-energy image.

For all CESM exams, a modified FFDM system derived from a standard Senographe Essential
(GE Healthcare) was used. A single-shot intravenous injection of 1.5 mL/kg of body mass of iodinated
contrast agent (Visipaque 320 mg I/mL) was then performed at a flow rate of 2-3 mL/s by using
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an automated injector. Two minutes after the CM injection, a set of images was acquired in quick
succession while the breast remains compressed. First, the breast with no pathology was imaged, then
the breast with the suspected lesion. Both CranioCaudal (CC) and MedioLateral Oblique (MLO) views
were collected. For each view, the CESM technique allowed for obtaining two images: an LE acquisition
at 26-30 kVp and an HE acquisition at 45-49 kVp, with these values depending on breast density
and thickness. Image acquisition was completed within 5 min (as shown in Figure 2), after which LE
and HE images were recombined in order to suppress background and made evident the CM uptake.
The dual-energy subtraction technique is less sensitive to movement artifact than traditional temporal
subtraction, although motion blur may be sometimes observed on RC images due to movements
between the acquisition of low- and high-energy images.

CM injection . 5 min
l, 2 min " o
compression compression compression compression
CC cC MLO MLO
] low-energy (breast 1) (breast 2) (breast 2) (breast 1)

[ high-energy

Figure 2. CESM examination: the diagram shows the steps of the image acquisition in the standard
CranioCaudal (CC) and MedioLateral Oblique (MLO) views, after the iodinated Contrast Medium
(CM) injection. Breast 1 stands for the breast with no pathology, while breast 2 is the breast with one or
more lesions.

All of the images obtained were in DICOM format and were evaluated by a dedicated radiologist
with more than 10 years of experience in reading mammography and breast MR images and trained in
reading contrast-enhanced images.

2.1.2. Inclusion and Exclusion Criteria

For this study, we have considered women referred to I.R.C.C.S. Istituto Tumori “Giovanni Paolo I1”
of Bari (Italy) from the breast cancer screening phase between March 2017 and June 2018.

Patients undergone to CESM had indications for breast MRI, but, for several reasons, they could
not perform it. In more detail, due to the presence of radiation exposure in CESM, in our Institute,
the use of this method was applied only as a second alternative to MRI in case of contraindications or
impossibility of the patient to perform MRI. CESM was preferred to resonance even for patients who
had to perform urgent MRI for therapies or programmed surgery but that have not found access to
MR, as indicated by the European guidelines on CESM [28,29]. Our observational study was approved
by medical ethics committee of the Institute. All eligible patients provided a written informed consent
prior to undergoing the CESM examination.

Patients were excluded when: they were assumed to be pregnant or breastfeeding; they
had contraindications to CESM including a history of an anaphylactoid or anaphylactic reaction
to any contrast media or impaired renal function of chronic kidney disease stage 3 and higher
(e.g., creatinine clearance <60 mL/min); they had received any contrast material within 24 h prior to
the contrast-enhanced spectral mammography; they had breast implants; they had already undergone
surgery, hormone treatment or radiation therapy for the index lesion; they had already started
neoadjuvant chemotherapy before inclusion.

2.1.3. Experimental Dataset

We have selected images in MLO or CC view of 53 patients aged between 37 and 76 years
(with a mean of 52.2 + 10.1 years), resulting as positive to CESM examination for the presence of
at least one findings after histological examination. A total of 58 ROIs containing primary and,
if present, also secondary lesions from 0.6 to 13.5 cm was manually identified using a bounding box
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and classified by a radiologist of our Institute dedicated to senologic diagnostics according to the
BIRADS classification [30]: lesions belonging to BIRADS 2 and 3 classes were labeled as benign, while
lesions belonging to BIRADS 4 and 5 classes were considered as malignant. Then, this radiologist
classification was compared to the histological diagnosis based on bioptic sampling: as result, 24
lesions were benign (BIRADS 2) and 34 malignant (BIRADS 5). Moreover, for each patient, our radiologist
identified an enhanced ROI not containing any lesions.

The patient distribution in three BPE classes, i.e., minimal, mild and high (moderate or marked),
is shown in Figure 3. All ROIs were extracted on both low-energy and recombined images.

4 BPE MINIMAL (I) BPE MILD (I) - BPE HIGH (III-1V)

Figure 3. BPE distribution of the patients (%) undergone to CESM examinations and analyzed in
this study.

2.2. Methods

In this paper, we presented a fully automated model to classify benign and malignant ROIs and
to discriminate an ROI containing lesions from an enhanced ROI without any lesions, both extracted
from CESM images.

As schematically illustrated in Figure 4, the method was developed in three phases: (i) for each
RO, a set of textural features was extracted, (ii) a feature sub-set was selected on training set by
means 100 round of stepwise selection, and, (iii) finally, a Random Forest (RF) binary classifier [31] was
trained to discriminate ROIs using the selected feature sub-set. Feature extraction, selection, analysis,
and classification model generation were performed using the MATLAB R2017a (Mathworks, Inc.,
Natick, MA, USA) software.

i. Feature extraction

( Filtering by means non-parametric test \

v

= 3 100 rounds of sequential
|| ii. Feature selection NS backward feature selection
i\ J
i -
i ~ Selection of features with
| 3 \ highest frequency of occurence
! iil. Training binary ™
| RF classifier

100 ten-fold cross-validation rounds

Figure 4. Flow-chart of the proposed model. In the first phase, a set of features on each ROl is extracted,
then a sub-set of significant features is selected; finally, binary RF classifiers are trained.
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2.2.1. Feature Extraction

Starting from each ROI extracted from both original LE and RC images, five feature sets were
extracted by using different techniques.

Statistical Features

From each original ROI, not pre-processed by any imaging technique, we have extracted a first
set of statistical features: mean, standard deviation and their ratio, variance, skewness, entropy,
relative smoothness, kurtosis, minimum and maximum values of gray-level and their difference. These
11 features were extracted from each LE and RC original ROI, forming the STAT set with 22 features.

Interest Point, Corner and Region Detection

Another set of features was defined by counting the number of interest points, corners and
regions detected on each original ROIs by using five different algorithms, such as Scale Invariant
Feature Transform (SIFT) [32,33], Minimum Eigenvalue (MinEigen) algorithm [34], Features from
Accelerated Segment Test (FAST) algorithm [35,36], Binary Robust Invariant Scalable Keypoints
(BRISK) method [37], and Maximally Stable Extremal Regions (MSER) [38]. These methods allowed
for detecting significant points, corners and regions on an image, in order to describe local features by
means of particular functions, depending on the problem to be solved and exploiting some invariant
properties of image transformations. The feature set thus obtained and called COUNT set, containing a
total of 10 features, had been successfully used in our previous work on digital mammographic images
for the classification of clustered microcalcifications [39,40].

Gradient Image

We considered some statistical features (mean, variance, skewness, entropy, relative smoothness
and kurtosis), extracted from the gradient’s magnitude and direction of each LE and RC original ROL
This feature set was labeled as GRAD set and totally formed by 24 features. As known, the gradient
of a two-variable function f(x, y) is represented by a vector of the partial derivatives in the x and y
directions (fx, fy) [41]. In the case of an image, it is represented by a discrete function of (x, y) for which
the derivatives are not defined. Thus, the gradient could be calculated making some hypotheses about
the intensity function of the image and assuming that there is a continuous intensity function sampled
at the image points. In this way, the gradient of the image can be approximated by the convolution
with a kernel, such as the Sobel or Prewitt operator, and, mathematically, its vector can be calculated

at each pixel with a magnitude (Gmag) and a direction (Gdir) given by /2 + fy2 and arctan(fy / fx),

respectively; in this work, they were computed by using a Sobel kernel as a two-dimensional method,
to each pixel and its neighbours.

Haar Wavelet Transform

By using a texture analysis approach, we exploited a wavelet transform, known as Haar
wavelet [41,42], since the image texture depends on the scale at which an image is analyzed. This
wavelet function allows for decomposing an image in a sequence of sub-images: the original ROI
was high-pass filtered in three directions (horizontal, vertical and diagonal, Figure 5a, top right and
bottom), then low-pass filtered and downscaled (Figure 5a, top left). To compute the successive
levels of decomposition, the process was iterated on the downscaled sub-image (Figure 5b, top left).
In particular, we considered two levels of decomposition and we extracted a set of six features (mean,
variance, skewness, entropy, relative smoothness and kurtosis) from each eight sub-ROI, i.e., Low-Low
(LL), High-Low (HL), Low-High (LH), and High-High (HH) for levels 1 and 2, from both LE and RC
sub-images. The so called HAAR set, including a total of 96 features, was obtained.
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LL, | HL,
LL, HL, | HL,

LH, HH, LH, HH,

(@ (b)

Figure 5. Haar decomposition schema. (a) one- and (b) two-level Haar decomposition.

Gray-Level Co-Occurence Matrix

The Gray-Level Co-occurence Matrix (GLCM) [43—45] is another common technique to extract
textural features. The GLCM is obtained counting how many times the gray-level intensity value occurs
to another in a specific spatial relationship to each pixel (i, j) (Figure 6a). This relationship, known as
offset, is fixed as the distance between a pixel and its neighbours with respect to a specific direction
(Figure 6b). A texture function reduces the number of intensity values in gray-scale image from 256 to
eight in order to determine the size of the GLCM matrix. Thus, we obtained a set of statistical features
(contrast, correlation, cluster prominence, cluster shade, dissimilarity, energy, entropy, homogeneity,
sum average, sum variance, sum entropy, difference entropy and normalized inverse difference
moment) extracted from the co-occurrence matrix of each sub-ROI previously decomposed by the Haar
transform (HL, LH and HH) only at the first level in four directions (6 = 0°,45°,90°,135°), resulting
in 156 features. This last set was named GLCM set and, considering both LE and RC sub-ROls, it was
formed by a total of 312 features.

0,35 = [-D,-D] 05 =[-D.0] 8, =[-D,D]

i-2 i-2 i-2
i-2 J jt2
i-1|i=1]i-1
Sl g Jitl
, i i _
(&) JEL|j+2 - 84, = [0,D]

Pixel of interest
1 1

(a) ()

Figure 6. (a) The spatial relationships of pixels; (b) the GLCM directions. D is the offset and represents
the distance between each pixels and the pixel of interest.

Figure 7 shows a scheme of the extraction of each feature set used in this work, starting from both
original LE and RC images and their extracted ROIs.
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Figure 7. Scheme of the extraction of each feature set.

2.2.2. Classification Model

The general structure of the proposed classification model is shown in Figure 4.

We first selected only the features useful in data analysis. Specifically, the non-parametric
Wilcoxon-Mann-Whitney test [46] was used to verify whether the medians of distributions of the two
classes of the binary problem were equal. Then, a backward feature selection algorithm [47] combined
with a Naive Bayes classifier was adopted in order to identify the most discriminant features for the
binary classification problem. The sequential backward selection algorithm identified a sub-set of
features that best predicted the expected result by sequentially removing features from the initial
candidate set until there was no improvement in prediction on 10-fold cross-valuation. The overall
feature sets were sorted in descending order by the occurrence frequency in a final sub-set identified
on 100 rounds of the sequential feature selection algorithm. Then, a state-of-the-art machine learning
classifier, such as RF classifier, was trained to solve the binary discrimination problem by selecting
iteratively an increasing number of the ordered features. The main advantage of RF classifier with
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respect to standard classification algorithms is its robustness against overfitting; moreover, it is easy
to tune because it depends only on two parameters that are the number of trees to be grown and the
number of features to pick at each node split. Therefore, it was a good choice for an exploratory analysis.
A standard configuration of RF was adopted with 100 trees and 20 features (as described in [31])
randomly selected at each split. Other different machine learning techniques of the state-of-the-art
have been evaluated, but no improvement in performance with respect to those obtained with an RF
classifier was achieved.

The proposed model was evaluated on two binary discrimination problems, i.e., benign vs.
malignant ROIs and normal tissue vs. parenchymal background. The performance of the prediction
model was evaluated on 100 ten-fold cross-validation rounds in terms of Area Under the Curve (AUC)
of the Receiver Operating Characteristic (ROC) curve and also accuracy, sensitivity and specificity
(in terms of median and InterQuartile Range—IQR) calculated by identifying the optimal threshold by
means of Youden'’s index on the ROC curve [48]. Finally, in order to compare performance also related
to unbalanced sub-samples, we provided the Matthews Correlation Coefficient (MCC) calculated as

(TP x TN) — (FP x FN)

MCC = ,
V(TP +FP) x (TP + FN) x (TN + FP) x (TN + FN))

¢y

where TP, TN, FP and FN were the true positive, true negative, false positive and false negative
rates, respectively.

The MCC is often used in machine learning as a measurement of the quality of binary
classification [49] to compare performance results when the classes are very different in sizes because
it also considers both true and false positives and false negatives against other similar coefficients [50].
The MCC is a correlation coefficient between true and predicted binary classification having a real
value between 0 and 1: the closer to one the value of the coefficient is, the better the classification is.

3. Results

3.1. Human-Reader Diagnostic Accuracy

Our radiologist first evaluated only LE images (similar to standard 2D digital mammograms),
and then jointly LE and RC images (denoted as CESM images) providing a diagnosis based on BIRADS
classification, as described in Section 2.1.3. In Table 1, we compared the diagnostic performances of
our radiologist obtained by reading only LE images or CESM ones with respect to micro-histological
results (24 benign and 34 malignant). Out of 53 patients, by evaluating only LE images, 57 lesions were
detected, of which 38 were classified as malignant, while by evaluating also RC images, 58 lesions
were identified by the radiologist, of which 38 were classified as malignant.

Compared to the gold standard provided by micro-histological results, CESM showed a high
diagnostic sensitivity, but a lower specificity (100% vs. 83.3%).

Moreover, CESM diagnostic performances presented an improvement by about 11%, 8%, and 13%
in accuracy, sensitivity and specificity, respectively, with respect to standard mammography ones.
However, it should be stressed that the performances measured by the observation of an LE image
are likely overestimated with respect to a standard mammographic image. This is due both to the
best image quality and the administration of the contrast medium, which allow a contrastographic
assessment of the breast highlighting the areas that capture the contrast medium, as for magnetic
resonance images, typical expression of neoplastic neo-angiogenesis.
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Table 1. Diagnostic performances of human reader on only LE and CESM images with respect to
micro-histological investigation. We denote with “CESM images” the joint reading of LE and RC images.

Diagnostic Test Only LE CESM Micro-Histological Results
Parameter Images Images (Only LE/ CESM)

No. of selected patients 53 53 53/53

No. of selected breasts 47 48 47/48

No. of selected lesions 57 58 57/58

No. of malignant lesions (TP) 38 (34) 38 (34) 34/34

No. of benign lesions (TN) 16 (16) 20 (20) 23/24

Sensitivity [CI 95%] 91.2% (88.8-93.5%)  100% (95.0-100%)
Specificity [CI 95%] 69.6% (67.9-71.2%)  83.3% (81.2-85.4%)
Accuracy [CI 95%] 82.5% (80.4-84.6%)  93.1% (90.7-95.5%)
MCC 0.63 0.86

Size of lesions: mean £ SD (mm) 26.1+£179 28.8 £18.3
Size of the smallest lesion detected (mm) 6 6

3.2. Prediction Accuracy of Benign and Malignant ROIs

The proposed method has been trained on a sub-set of significant features identified by means of
a sequential backward feature selection algorithm. Specifically, as described in Section 2.2, a binary
RF classifier was trained on a significant feature sub-set identified by the feature selection process.
We showed the performance classification results for an increasing number of features sorted by their
occurrence frequency defined by the sequential feature selection algorithm.

Since the number of benign ROIs was reduced with respect to that of malignant ones,
we considered it appropriate to apply the under-sampling technique in order to solve the benign vs.
malignant ROI discriminant problem. Therefore, we have trained a classifier on balanced sub-set of
48 ROIs (24 benign and 24 malignant) by removing randomly instances from the over-represented
class to reduce the training bias. As highlighted in Figure 8, the experimental outcomes calculated
on 100 rounds of ten-fold cross-validation showed that the developed model was highly performing
even using a reduced number of features. Indeed, the proposed model showed a median AUC value
of 93.1% (IQR of 90.5-93.4%) with only four features; selecting an optimal threshold by means of
Youden’s test at each round, the model reached a median accuracy of 87.5% (IQR of 85.4-89.6%),
a median sensitivity of 87.5% (IQR of 83.3-91.7%), and a specificity of 91.7% (IQR of 87.5-91.7%).
Moreover, we have calculated the performance for each BPE class. As shown in Table 2, the model
was highly performing in each of the three classes, i.e., minimal, mild and high (moderate or marked),
with a median accuracy value of 86.0% (IQR of 84.0-88.0%), 95.5 % (IQR of 90.0-100%), and 83.3%
(IOR of 81.3-84.3%), respectively. However, the three classes are not numerically balanced, making
the standard measurements of performance not comparable; therefore, we evaluated the goodness of
the classification performance by calculating the MCC. The MCC for the three classes was 0.84, 0.91,
and 0.68, respectively, confirming that, even when the background parenchymal enhancement was
high, the classification was still moderately performing.

Table 2. ROI classification into benign and malignant, in terms of accuracy, sensitivity, specificity,
and MCC with respect to BPE degree. For each BPE class, the number of benign/malignant (B/M)

ROIs is shown.
BPE1 BPE 11 BPE III-IV Overall Dataset
(15B/10M) (4B/7M) (5B/7M) (24B/24M)
Accuracy (%) 86.0 (84.0-88.0) 95.5(90.9-100) 83.3 (81.3-84.3)  87.5 (85.4-89.6)
Sensitivity (%) 75.0 (70.0-80.0) 100 (100-100) ~ 92.9 (85.7-100)  87.5 (83.3-91.7)
Specificity (%)  96.7 (86.7-100) 100 (75.0-100)  80.0 (60.0-80.0) 91.7 (87.5-91.7)
MCC 0.84 (0.72-0.91) 091 (0.81-1)  0.68 (0.66-0.71)  0.76 (0.74-0.79)
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Figure 8. Accuracy for benign/malignant classification with respect to the number of features. The gray
box highlights the accuracy peak obtained for n = 4, significantly different to the model with only two
features (p-value of Wilcoxon-Mann-Whitney test < 0.05).

As summarized in Table 3, our classification model showed an increase of diagnosis performance
by over 8% in detecting benign lesions (i.e., specificity) with respect to the human reader performances.
On the contrary, the radiologist exceeded the proposed model in detecting malignant lesions.

Table 3. Result comparison between human reader and proposed model.

Human Reader (24B/34M) Proposed Model (24B/24M)
Accuracy (%) 93.1 87.5
Sensitivity (%) 100 87.5
Specificity (%) 83.3 91.7
MCC 0.86 0.76

3.3. Prediction Accuracy of Normal and Abnormal ROIs Characterized by Mild/High BPE

Same classification model has been applied to the recognition problem of normal and abnormal
regions when the patient’s breast was characterized by a mild or high BPE. Therefore, we have
trained a classifier on a sub-set of ROIs (31 containing lesions and 32 without any lesions, that were
enhanced ROIs).

The experimental results, intended as the first approach to the development of an automated
detection system, have shown that at least 12 features were required to obtain performing results:
a greater number of features did not seem to record an appreciable increase in accuracy. Indeed, with
only 12 features, the model reached a median AUC value of 85.0% (IQR of 84.5-87.4%) and a median
accuracy of 82.5% (IQR of 79.0-82.5%), calculated by selecting an optimal threshold using Youden'’s
test. Nevertheless, in terms of recognition of regions characterized by a lesion, the performances were
not particularly appreciable (median sensitivity of 70.3% with an IQR of 68.8-84.4%), compared to the
recognition of a normal region (median specificity of 94.0% with an IQR of 88.0-96.0%). This result
seems to depend on the BPE degree, since, as shown in Table 4, the performances were better when
BPE was mild (median value of MCC equals to 0.71).

Table 4. ROI classification into background and lesion, in terms of accuracy, sensitivity and specificity
with respect to BPE degrees. The minimal BPE class (I) is not included.

BPE II
(15 Normal/20 Abnormal)

BPE III-IV
(10 Normal/12 Abnormal)

Overall Dataset

Accuracy (%) 82.9 (80.0-88.6) 77.3 (77.3-81.8) 82.5 (79.0-82.5)
Sensitivity (%) 70.0 (65.0-80.0) 75.0 (66.7-91.7) 70.3 (68.8-84.4)
Specificity (%) 100 (100-100) 85.0 (85.0-90.0) 94.0 (88.0-96.0)
MCC 0.71 (0.67-0.79) 0.57 (0.55-0.65) 0.65 (0.63-0.69)
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4. Discussion

CESM is a mammographic technique based on a dual-energy exposure after a single injection of
an iodinated contrast medium whose LE image yielded as part of a CESM exam can be overlapped on
a digital mammography image according to modern quality standards.

In the early studies published in the literature, CESM had a higher sensitivity than standard
mammography in the detection of breast lesions [51,52]. In these works, it was shown how the use of
CESM in addition to digital mammography significantly improved the performance of the human
reader compared to those obtained with the use of mammography alone.

According to literature [53-55], our experience showed that the performances of human reader by
CESM instrumentation get a low specificity, probably due to the hormonal influence of the patients
which generates an inevitable variation of BPE in terms of both diffusion and intensity. Moreover,
CESM diagnostic performances presented an improvement by about 13% in accuracy, and in particular
over 8% in specificity with respect to standard mammography ones.

Nevertheless, this estimate seems to reflect what was made evident by recent studies, i.e.,
the greatest increase observed in terms of specificity. Indeed, in [56], it was reported that, by using
CESM instrumentation, the cancer diagnosis improved by 15%, 9%, and 26% in accuracy, sensitivity
and specificity, respectively, compared to digital mammography; however, in [51], the authors showed
that the use of CESM improved the cancer diagnosis by 33.6%, 3.1%, and 45.7%.

CESM shows interesting results in terms of diagnostic sensitivity, compatible with those obtained
by MRI: in [57], the sensitivity for both techniques was 100%, while, in [14], it was 100% by CESM
and 93% by breast MRI. Then, CESM can be considered a valid alternative to MRI in the case of
contraindications to the latter [28]. On the basis of state-of-the-art comparative results, CESM also
has better tolerance and less discomfort compared to MRI, as shown in [51,58,59]. Nevertheless, both
CESM and MRI present false positive cases, particularly in some fibroadenomas [10]. Moreover,
the diagnosis by CESM can still be considered operator-dependent, also due to the current lack of
objective measurement system of pathological enhancement (I/T curves, ROI) [10,52,53,60].

In this work, we proposed a CADx system as a support tool to human reader aimed at
reducing unnecessary biopsies and later surgeries. The experimental results have pointed out that the
benign/malignant problem can be effectively solved with a number of features decidedly contained
(no more than 4), as shown in Figure 8, achieving a median AUC value of 93.1% and an accuracy
of 87.5%. Specifically, the best performances were obtained by using the four most frequently selected
features highlighted in Table 5, for which the accuracy peak is reached. For this problem, the most
discriminating features were the number of interest points obtained by the SIFT method and the
variance calculated on a Haar decomposition (LL2); in addition, the relative smoothness measurement,
calculated on the original RC ROI and the gradient magnitude of its corresponding LE ROI, had
significant information content discriminating benign/malignant ROIs. It is worth noting that the four
most significant features belong to four of the five categories of features, confirming the importance
of the multivariate feature selection analysis carried out in this work. In Table 5, all features used
for benign/malignant ROI classification with a frequency significantly different from the chance are
also summarized.

With respect to the ROI classification into background/lesion, all features with a frequency
significantly different from the chance are listed in Table 6. This is a much more complex problem that
currently does not present references in literature. For this case, the 12 most frequently selected features
for which the accuracy peak (82.5%, corresponding to a median AUC value of 85.0%) is reached are
highlighted in Figure 9. This excellent result was obtained by using mainly features calculated on
various Haar decompositions (LH1, LH2 and LL2), and GLCM matrices on LH1 Haar decomposition
with different directions. Moreover, we can note that most features were extracted from RC images,
where a suspicious lesion is not generally masked by the denser breast parenchyma, as instead happens
in LE images. The prevalence of RC-derived features could therefore emphasize the importance of
recombined images that characterize CESM.
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Figure 9. Accuracy for background/lesion classification with respect to the number of features.

The gray box highlights the accuracy obtained for n = 12, significantly different to the model with only
two features (p-value of Wilcoxon-Mann-Whitney test < 0.05).

Table 5. All features whose selection frequency is significantly different from the chance in the

benign/malignant classification (p-value null model test <0.05). Direction and level of the Haar

decomposition, GLCM direction, and gradient’s magnitude or direction of the extracted features

are shown.
Feature Set Feature ROI Type Frequency (%)

COUNT SIFT LE 84.8
HAAR Variance_LL2 RC 50.4

STAT RelativeSmoothness RC 45.8
GRAD RelativeSmoothness_Gmag LE 43.8
HAAR Variance_LL1 RC 34.8

STAT Variance RC 34.2
GRAD Variance_Gmag LE 31.9
GLCM ClusterProminence_HL1 (6 = 90°) RC 31.0
GLCM Correlation_LH1 (6 = 0°) RC 30.3
HAAR Variance_LH1 LE 29.9
HAAR RelativeSmoothness_HL2 RC 29.5
HAAR Variance_LH2 LE 23.6
GLCM Homogeneity_LH1 (6 = 0°) RC 224

STAT Standard Deviation RC 20.3
HAAR Variance_HIL2 RC 19.5

STAT Maximum — Minimum RC 17.8
COUNT MinEigen RC 16.4

The diagnostic problem can be solved effectively with a limited number of textural features
(no more than 4), achieving high performances (sensitivity and specificity of 87.5% and 91.7%)
comparable to the state-of-the-art, although this comparison is purely qualitative because all models
are evaluated on private databases, and so their results could not be repeated. The literature is not
really particularly nourished with references to the development of expert systems supporting the
analysis of CESM images. However, there are two relevant works proposing automated predictive
models. In [24], an ROI classification model was performed by training an SVM classifier on a textural
and morphological feature set extracted from 50 lesions (24 malignant, 26 benign) segmented by the
radiologists, and reaching a sensitivity and a specificity of 88% and 92%, respectively. With respect
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to this work, our model does not need a manual segmentation of lesions by radiologist but only an
identification of suspicious areas as human operation, and it can be able to characterize the lesions by
a reduced number of features.

Table 6. All features whose selection frequency is significantly different from the chance in the
background/lesion classification (p-value null model test <0.05). Direction and level of the Haar
decomposition, and GLCM direction of the extracted features are shown.

Feature Set Feature ROI Type Frequency (%)
HAAR Mean_LL2 RC 41.0
GLCM SumEntropy_LH1 (0 = 90°) RC 40.6
GLCM Entropy_LH1 (6 = 135°) RC 25.4
HAAR Mean_LL2 LE 23.8
HAAR Variance_LH1 RC 23.6
GLCM Entropy_LH1 (6 = 90°) RC 22.5
HAAR Entropy_LH1 RC 22.3
GLCM SumEntropy_LH1 (0 = 45°) RC 21.2
HAAR RelativeSmoothness LH1 RC 18.4
HAAR RelativeSmoothness_LH2 RC 17.8
HAAR Variance_LH2 RC 17.7
GLCM Energy_LH1 (6 = 135°) RC 17.5
HAAR Mean_LL1 RC 17.4
HAAR Variance_LL2 RC 174
HAAR Mean_LL1 LE 17.2
GLCM Entropy_LH1 (6 = 0°) RC 14.6

STAT Minimum RC 14.5
GLCM ClusterProminence_ HH1 (6 = 0°) RC 14.3
COUNT MSER RC 13.5
HAAR Variance_LL1 RC 13.2
HAAR RelativeSmoothness_LL1 RC 12.6
GLCM Entropy_LHI1 (6 = 45°) RC 125

In [26], a sensitivity of 100% and a specificity of 66% was achieved by incorporating BIRADS
textual features provided by the radiologists as an additional input to Convolutional Neural Network
(CNN). In this work, the authors used only textual descriptors provided by the radiologist and
combined with CESM pixel information extracted directly from the 129 images containing lesions of
various nature (56 malignant, 73 benign). On the contrary, our machine learning model is supported
by an important radiomic analysis for the characterization of benign and malignant ROISs, useful for
defining potential diagnostic biomarkers of the disease.

Moreover, in these works, no reference is made to diagnostic performances for each BPE degree:
this is a very important factor in the evaluation of the results achieved with the CADx because,
as already mentioned, the value of BPE degree could affect the distinction between a lesion and the
non-enhanced background.

5. Conclusions

Recent feasibility studies suggest that CESM is a useful investigation tool, and it can provide
pre-operative staging and accurate treatment planning in breast cancer patients with an accuracy
not less than MRI [9]. The intrinsic characteristics of this method make its use effective, especially
in cases in which MRI examinations can not perform or have some limitations (absolute or relative
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contraindications, pre-menopausal women with high BPE). However, the diagnosis by CESM can still
be considered very subjective and dependent on the operator experience.

In this context, we proposed an automated expert system for discriminating benign and malignant
ROIs. Our experimental results showed that it could offer radiologists a reliable support diagnostic
tool. Indeed, with respect to the human reader performances, our classification model showed an
increase of diagnosis performance by over 8% in terms of specificity, reducing the false positives rate
and thus the problems related to over-diagnosis, such as unnecessary biopsies and later surgeries.

Moreover, the proposed model is completely automated and does not require a lesion segmentation
or indications about textual descriptors by radiologists, but only the identification of a suspicious area.
Using only morphological features, experimental results are promising with respect to works at the
state-of-the-art also when BPE is moderate or marked.

Nevertheless, in this work, we have not considered the effects of the patient hormonal state
during the radiological examinations, which can generate a variation of BPE in terms of both diffusion
and intensity. Indeed, in young women, intense hormonal activity is almost always associated with a
high BPE, but a moderate-high BPE can also be present in menopausal women, although in certainly
smaller numbers. Therefore, in the next stage of our studies, it will be necessary to investigate these
effects on diagnostic performances of CESM instrumentation.
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Abbreviations

The following abbreviations are used in this manuscript:

ADC Apparent Diffusion Coefficient

AUC Area Under the Curve

BPE Background Parenchymal Enhancement
BRISK  Binary Robust Invariant Scalable Keypoints
CADx  Computer Automated Diagnosis

CcC CranioCaudal

CESM  Contrast-Enhanced Spectral Mammography
CI Confidence Interval

™M Contrast Medium

CT Computerized Tomography

DWI Diffusion-Weighted Imaging

FAST Features from Accelerated Segment Test
FFDM  Full-Field Digital Mammography

FN False Negative

FP False Positive

Gdir Gradient direction

Gmag  Gradient magnitude

GLCM  Gray-Level Co-occurence Matrix

HE High-Energy
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HH High-High

HL High-Low

IQR InterQuartile Range

LE Low-Energy

LH Low-High

LL Low-Low

MinEigen Minimum Eigenvalue

MCC Matthews Correlation Coefficient

MLO MedioLateral Oblique

MRI Magnetic Resonance Imaging

MSER Maximally Stable Extremal Regions

RC ReCombined

RF Random Forest

ROC Receiver Operating Characteristic

ROI Region Of Interest

SD Standard Deviation

SIFT Scale Invariant Feature Transform

SVM Support Vector Machine

N True Negative

TP True Positive

References

1. Bray, E; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer
J. Clin. 2018, 68, 394-424. [CrossRef] [PubMed]

2. Cronin, K.A,; Lake, A.J.; Scott, S.; Sherman, R.L.; Noone, A.M.; Howlader, N.; Henley, S.J.; Anderson, R.N;
Firth, A.U.; Ma, J.; et al. Annual Report to the Nation on the Status of Cancer, part I: National cancer statistics.
Cancer 2018, 124, 2785-2800. [CrossRef] [PubMed]

3. Cerello, P,; Bagnasco, S.; Bottigli, U.; Cheran, S.C.; Delogu, P; Fantacci, M.E.; Fauci, F,; Forni, G.; Lauria, A;
Torres, E.L.; et al. GPCALMA: A Grid-based tool for mammographic screening. Methods Inf. Med. 2005,
44,244-248. [PubMed]

4. Fauci, F; Raso, G.; Magro, R.; Forni, G.; Lauria, A.; Bagnasco, S.; Cerello, P.; Cheran, S.C.; Torres, E.L.;
Bellotti, R.; et al. A massive lesion detection algorithm in mammography. Phys. Med. 2005, 21, 23-30.
[CrossRef]

5. Cheung, Y.C,; Lin, Y.C.; Wan, Y.L.; Yeow, KM.; Huang, P.C.; Lo, Y.E; Tsai, H.P; Ueng, S.H.; Chang, C.J.
Diagnostic performance of dual-energy contrast-enhanced subtracted mammography in dense breasts
compared to mammography alone: Interobserver blind-reading analysis. Eur. Radiol. 2014, 24, 2394-2403.
[CrossRef]

6. Vestito, A.; Lorusso, V.; Faggian, A.; Gaballo, A.; Garasto, E.; Mangieri, FE.; La Forgia, D.; Ancona, A.
Contrast Enhanced Spectral Mammography: la nostra esperienza. Il Giornale Italiano di Radiol. Med. 2014,
24,1002-1008.

7. Masala, G.; Tangaro, S.; Golosio, B.; Oliva, P.; Stumbo, S.; Bellotti, R.; De Carlo, F.; Gargano, G.; Cascio, D.;
Fauci, F; et al. Comparative study of feature classification methods for mass lesion recognition in digitized
mammograms. Image 2007, 7, 8.

8.  Tagliafico, A.S.; Mariscotti, G.; Valdora, F; Durando, M.; Nori, J.; La Forgia, D.; Rosenberg, I.; Caumo, F.;
Gandolfo, N.; Sormani, M.P; et al. A prospective comparative trial of adjunct screening with tomosynthesis
or ultrasound in women with mammography-negative dense breasts (ASTOUND-2). Eur. J. Cancer 2018,
104, 39—-46. [CrossRef]

9.  Fallenberg, E.; Dromain, C.; Diekmann, F.; Engelken, F; Krohn, M.; Singh, J.; Ingold-Heppner, B.; Winzer, K,;
Bick, U.; Renz, D.M. Contrast-enhanced spectral mammography versus MRI: Initial results in the detection
of breast cancer and assessment of tumour size. Eur. Radiol. 2014, 24, 256-264. [CrossRef]

10. Patel, B.K,; Lobbes, M.; Lewin, J. Contrast enhanced spectral mammography: A review. In Seminars in

Ultrasound, CT and MRI; Elsevier: Amsterdam, The Netherlands, 2018; Volume 39, pp. 70-79.


http://dx.doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://dx.doi.org/10.1002/cncr.31551
http://www.ncbi.nlm.nih.gov/pubmed/29786848
http://www.ncbi.nlm.nih.gov/pubmed/15924184
http://dx.doi.org/10.1016/S1120-1797(05)80016-X
http://dx.doi.org/10.1007/s00330-014-3271-1
http://dx.doi.org/10.1016/j.ejca.2018.08.029
http://dx.doi.org/10.1007/s00330-013-3007-7

J. Clin. Med. 2019, 8, 891 17 of 19

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Lalji, U.; Jeukens, C.; Houben, I.; Nelemans, P.; van Engen, R.; van Wylick, E.; Beets-Tan, R.; Wildberger, J.;
Paulis, L.; Lobbes, M. Evaluation of low-energy contrast-enhanced spectral mammography images by
comparing them to full-field digital mammography using EUREF image quality criteria. Eur. Radiol. 2015,
25,2813-2820. [CrossRef]

Fallenberg, E.M.; Dromain, C.; Diekmann, F,; Renz, D.M.; Amer, H.; Ingold-Heppner, B.; Neumann, A.U.;
Winzer, K.J.; Bick, U.; Hamm, B.; et al. Contrast-enhanced spectral mammography: does mammography
provide additional clinical benefits or can some radiation exposure be avoided? Breast Cancer Res. Treat.
2014, 146, 371-381. [CrossRef] [PubMed]

James, J.; Tennant, S. Contrast-enhanced spectral mammography (CESM). Clin. Radiol. 2018, 24, 256-264.
[CrossRef] [PubMed]

Luczynska, E.; Heinze-Paluchowska, S.; Hendrick, E.; Dyczek, S.; RyS, J.; Herman, K.; Blecharz, P;
Jakubowicz, J. Comparison between breast MRI and contrast-enhanced spectral mammography. Med. Sci.
Monit. Int. Med. ]. Exp. Clin. Res. 2015, 21, 1358.

Prionas, N.D.; Lindfors, KK, Ray, S.; Huang, S.Y., Beckett, L.A.; Monsky, W.L.; Boone, ].M.
Contrast-enhanced dedicated breast CT: Initial clinical experience. Radiology 2010, 256, 714-723. [CrossRef]
[PubMed]

Onega, T.; Tosteson, A.N.; Weiss, J.; Alford-Teaster, J.; Hubbard, R.A.; Henderson, L.M.; Kerlikowske, K.;
Goodrich, M.E.; O’Donoghue, C.; Wernli, K.J.; et al. Costs of diagnostic and preoperative workup with
and without breast MRI in older women with a breast cancer diagnosis. BMC Health Serv. Res. 2016, 16, 76.
[CrossRef] [PubMed]

Sankatsing, V.D.; Heijnsdijk, E.A.; van Luijt, PA.; van Ravesteyn, N.T.; Fracheboud, J.; de Koning, H.J.
Cost-effectiveness of digital mammography screening before the age of 50 in T he N etherlands. Int. ]. Cancer
2015, 137, 1990-1999. [CrossRef]

Gocgun, Y.; Banjevic, D.; Taghipour, S.; Montgomery, N.; Harvey, B.; Jardine, A.; Miller, A. Cost-effectiveness
of breast cancer screening policies using simulation. Breast 2015, 24, 440-448. [CrossRef] [PubMed]
Losurdo, L.; Basile, T.M.A.; Fanizzi, A.; Bellotti, R.; Bottigli, U.; Carbonara, R.; Dentamaro, R.; Diacono, D.;
Didonna, V.; Lombardi, A.; et al. A Gradient-Based Approach for Breast DCE-MRI Analysis. BioMed Res. Int.
2018, 2018, 10. [CrossRef]

Morris, E.A.; Comstock, C.E.; Lee, C.H.; Lehman, C.D.; Ikeda, D.M.; Newstead, G.M. ACR BI-RADS
Magnetic Resonance Imaging. In ACR BI-RADS, Breast Imaging Reporting and Data System; American College
of Radiology: Reston, VA, USA, 2013.

Savaridas, S.; Taylor, D.; Gunawardana, D.; Phillips, M. Could parenchymal enhancement on
contrast-enhanced spectral mammography (CESM) represent a new breast cancer risk factor? Correlation
with known radiology risk factors. Clin. Radiol. 2017, 72, 1085-e1. [CrossRef]

King, V.; Brooks, J.D.; Bernstein, J.L.; Reiner, A.S.; Pike, M.C.; Morris, E.A. Background parenchymal
enhancement at breast MR imaging and breast cancer risk. Radiology 2011, 260, 50-60. [CrossRef]

Sogani, J.; Morris, E.A.; Kaplan, ]J.B.; D’Alessio, D.; Goldman, D.; Moskowitz, C.S.; Jochelson, M.S.
Comparison of background parenchymal enhancement at contrast-enhanced spectral mammography and
breast MR imaging. Radiology 2016, 282, 63-73. [CrossRef] [PubMed]

Patel, B.K.; Ranjbar, S.; Wu, T.; Pockaj, B.A.; Li, J.; Zhang, N.; Lobbes, M.; Zhang, B.; Mitchell, J.R.
Computer-aided diagnosis of contrast-enhanced spectral mammography: A feasibility study. Eur. J.
Radiol. 2018, 98, 207-213. [CrossRef] [PubMed]

Steinwart, I.; Christmann, A. Support Vector Machines; Springer Science & Business Media: Berlin,
Germany, 2008.

Perek, S.; Kiryati, N.; Zimmerman-Moreno, G.; Sklair-Levy, M.; Konen, E.; Mayer, A. Classification of
contrast-enhanced spectral mammography (CESM) images. Int. J. Comput. Assist. Radiol. Surgery 2018,
14, 1-9. [CrossRef] [PubMed]

Lobbes, M.B.; Lalji, U.C.; Nelemans, P.J.; Houben, I.; Smidt, M.L.; Heuts, E.; De Vries, B.; Wildberger, ].E.;
Beets-Tan, R.G. The quality of tumor size assessment by contrast-enhanced spectral mammography and the
benefit of additional breast MRI. ]. Cancer 2015, 6, 144. [CrossRef] [PubMed]

Sardanelli, E; Boetes, C.; Borisch, B.; Decker, T.; Federico, M.; Gilbert, FJ.; Helbich, T.; Heywang-Kébrunner, S.H.;
Kaiser, W.A.; Kerin, M.].; et al. Magnetic resonance imaging of the breast: Recommendations from the EUSOMA
working group. Eur. J. Cancer 2010, 46, 1296-1316. [CrossRef] [PubMed]


http://dx.doi.org/10.1007/s00330-015-3695-2
http://dx.doi.org/10.1007/s10549-014-3023-6
http://www.ncbi.nlm.nih.gov/pubmed/24986697
http://dx.doi.org/10.1016/j.crad.2018.05.005
http://www.ncbi.nlm.nih.gov/pubmed/29937340
http://dx.doi.org/10.1148/radiol.10092311
http://www.ncbi.nlm.nih.gov/pubmed/20720067
http://dx.doi.org/10.1186/s12913-016-1317-6
http://www.ncbi.nlm.nih.gov/pubmed/26920552
http://dx.doi.org/10.1002/ijc.29572
http://dx.doi.org/10.1016/j.breast.2015.03.012
http://www.ncbi.nlm.nih.gov/pubmed/25866350
http://dx.doi.org/10.1155/2018/9032408
http://dx.doi.org/10.1016/j.crad.2017.07.017
http://dx.doi.org/10.1148/radiol.11102156
http://dx.doi.org/10.1148/radiol.2016160284
http://www.ncbi.nlm.nih.gov/pubmed/27379544
http://dx.doi.org/10.1016/j.ejrad.2017.11.024
http://www.ncbi.nlm.nih.gov/pubmed/29279165
http://dx.doi.org/10.1007/s11548-018-1876-6
http://www.ncbi.nlm.nih.gov/pubmed/30367322
http://dx.doi.org/10.7150/jca.10705
http://www.ncbi.nlm.nih.gov/pubmed/25561979
http://dx.doi.org/10.1016/j.ejca.2010.02.015
http://www.ncbi.nlm.nih.gov/pubmed/20304629

J. Clin. Med. 2019, 8, 891 18 of 19

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51.

Sardanelli, F,; Fallenberg, E.M.; Clauser, P.; Trimboli, R.M.; Camps-Herrero, ]J.; Helbich, T.H.; Forrai, G.
Mammography: An update of the EUSOBI recommendations on information for women. Insights Imaging
2017, 8, 11-18. [CrossRef] [PubMed]

D’Orsi, C,; Sickles, E.; Mendelson, E.; Morris, E. 2013 ACR BI-RADS Atlas: Breast Imaging Reporting and Data
System; American College of Radiology: Reston, VA, USA, 2014.

Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32. [CrossRef]

Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, Corfu, Greece, 2025 September 1999; IEEE Computer Society:
Washington, DC, USA, 1999; Volume 2, pp. 1150-1157.

Lindeberg, T. Scale invariant feature transform. Scholarpedia 2012, 7, 10491. [CrossRef]

Shi, J.; Tomasi, C. Good features to track. In Proceedings of the Ninth IEEE Conference on Computer Vision
and Pattern Recognition, Seattle, WA, USA, 21-23 June 1994; pp. 593-600.

Rosten, E.; Drummond, T. Fusing points and lines for high performance tracking. In Proceedings of the
Tenth IEEE International Conference on Computer Vision, Beijing, China, 17-20 October 2005; pp. 1508-1515.
Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In European Conference on
Computer Vision; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3951, pp. 430-443.

Leutenegger, S.; Chli, M.; Siegwart, R.Y. BRISK: Binary robust invariant scalable keypoints. In Proceedings of
the 2011 IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 6-13 November 2011;
pp- 2548-2555.

Matas, J.; Chum, O.; Urban, M.; Pajdla, T. Robust wide-baseline stereo from maximally stable extremal
regions. Image Vis. Comput. 2004, 22, 761-767. [CrossRef]

Losurdo, L.; Fanizzi, A.; Basile, T.M.; Bellotti, R.; Bottigli, U.; Dentamaro, R.; Didonna, V.; Fausto, A.;
Massafra, R.; Monaco, A.; et al. A Combined Approach of Multiscale Texture Analysis and Interest
Point/Corner Detectors for Microcalcifications Diagnosis. In International Conference on Bioinformatics and
Biomedical Engineering; Springer: Cham, Switzerland, 2018; pp. 302-313.

Tagliafico, A.S.; Valdora, F; Mariscotti, G.; Durando, M.; Nori, J.; La Forgia, D.; Rosenberg, I.; Caumo, F.;
Gandolfo, N.; Houssami, N.; et al. An exploratory radiomics analysis on digital breast tomosynthesis in
women with mammographically negative dense breasts. Breast 2018, 40, 92-96. [CrossRef]

Gonzalez, R.C.; Woods, R.E. Image processing. In Digital Image Processing; Gonzalez, R.C., Woods, R.E., Eds.;
Prebtice Hall: Upper Saddle River, NJ, USA, 2007.

Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans.
Pattern Anal. Mach. Intell. 1989, 11, 674—693. [CrossRef]

Haralick, R.M.; Shanmugam, K. Textural features for image classification. IEEE Trans. Syst. Man Cybern.
1973, 6, 610-621. [CrossRef]

Pathak, B.; Barooah, D. Texture analysis based on the gray-level co-occurrence matrix considering possible
orientations. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2013, 2, 4206-4212.

Mohanaiah, P; Sathyanarayana, P.; GuruKumar, L. Image texture feature extraction using GLCM approach.
Int. J. Sci. Res. Publ. 2013, 3, 1.

Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the
other. Ann. Math. Stat. 1947, 18, 50-60. [CrossRef]

Aha, D.W,; Bankert, R.L. A comparative evaluation of sequential feature selection algorithms. In Learning
from Data; Springer: Berlin, Germany, 1996; pp. 199-206.

Youden, W. Index for rating diagnostic tests. Cancer 1950, 3, 32-35. [CrossRef]

Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.
Biochim. Biophys. Acta Protein Struct. 1975, 405, 442-451. [CrossRef]

Boughorbel, S.; Jarray, E; El-Anbari, M. Optimal classifier for imbalanced data using Matthews Correlation
Coefficient metric. PLoS ONE 2017, 12, e0177678. [CrossRef]

Lobbes, M.B.; Lalji, U.; Houwers, J.; Nijssen, E.C.; Nelemans, PJ.; van Roozendaal, L.; Smidt, M.L.; Heuts, E.;
Wildberger, ].E. Contrast-enhanced spectral mammography in patients referred from the breast cancer
screening programme. Eur. Radiol. 2014, 24, 1668-1676. [CrossRef]


http://dx.doi.org/10.1007/s13244-016-0531-4
http://www.ncbi.nlm.nih.gov/pubmed/27854006
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.4249/scholarpedia.10491
http://dx.doi.org/10.1016/j.imavis.2004.02.006
http://dx.doi.org/10.1016/j.breast.2018.04.016
http://dx.doi.org/10.1109/34.192463
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1214/aoms/1177730491
http://dx.doi.org/10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
http://dx.doi.org/10.1016/0005-2795(75)90109-9
http://dx.doi.org/10.1371/journal.pone.0177678
http://dx.doi.org/10.1007/s00330-014-3154-5

J. Clin. Med. 2019, 8, 891 19 of 19

52.

53.

54.

55.

56.

57.

58.

59.

60.

Lalji, U.; Houben, L; Prevos, R.; Gommers, S.; van Goethem, M.; Vanwetswinkel, S.; Pijnappel, R.; Steeman, R.;
Frotscher, C.; Mok, W,; et al. Contrast-enhanced spectral mammography in recalls from the Dutch breast
cancer screening program: Validation of results in a large multireader, multicase study. Eur. Radiol. 2016,
26,4371-4379. [CrossRef]

Jochelson, M.; Lobbes, M.B.; Bernard-Davila, B. Reply to Tagliafico AS, Bignotti B, Rossi F, et al. Breast 2017,
32,267. [CrossRef] [PubMed]

Tagliafico, A.S.; Bignotti, B.; Rossi, F.; Signori, A.; Sormani, M.P,; Valdora, F.; Calabrese, M.; Houssami, N.
Diagnostic performance of contrast-enhanced spectral mammography: Systematic review and meta-analysis.
Breast 2016, 28, 13-19. [CrossRef] [PubMed]

Zhu, X,; Huang, ] M.; Zhang, K; Xia, L.J.; Feng, L.; Yang, P.; Zhang, M.Y,; Xiao, W.; Lin, H.X.; Yu, Y.H.
Diagnostic value of Contrast-enhanced Spectral Mammography for screening Breast Cancer: A Systematic
Review and Meta analysis. Clin. Breast Cancer 2018, 18, e985-€995. [CrossRef] [PubMed]

Luczyniska, E.; Heinze-Paluchowska, S.; Dyczek, S.; Blecharz, P.; Rys, ].; Reinfuss, M. Contrast-enhanced
spectral mammography: Comparison with conventional mammography and histopathology in 152 women.
Korean |. Radiol. 2014, 15, 689-696. [CrossRef] [PubMed]

Li, L.; Roth, R.; Germaine, P; Ren, S.; Lee, M.; Hunter, K; Tinney, E.; Liao, L. Contrast-enhanced spectral
mammography (CESM) versus breast magnetic resonance imaging (MRI): A retrospective comparison in
66 breast lesions. Diagn. Interv. Imaging 2017, 98, 113-123. [CrossRef] [PubMed]

Hobbs, M.M.; Taylor, D.B.; Buzynski, S.; Peake, R.E. Contrast-enhanced spectral mammography (CESM)
and contrast enhanced MRI (CEMRI): Patient preferences and tolerance. J. Med. Imaging Radiat. Oncol. 2015,
59, 300-305. [CrossRef]

Phillips, J.; Miller, M.M.; Mehta, T.S.; Fein-Zachary, V.; Nathanson, A.; Hori, W.; Monahan-Earley, R.;
Slanetz, PJ. Contrast-enhanced spectral mammography (CESM) versus MRI in the high-risk screening
setting: Patient preferences and attitudes. Clin. Imaging 2017, 42, 193-197. [CrossRef]

Houben, I; Van de Voorde, P; Jeukens, C.; Wildberger, J.; Kooreman, L.; Smidt, M.; Lobbes, M.
Contrast-enhanced spectral mammography as work-up tool in patients recalled from breast cancer screening
has low risks and might hold clinical benefits. Eur. ]. Radiol. 2017, 94, 31-37. [CrossRef]

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1007/s00330-016-4336-0
http://dx.doi.org/10.1016/j.breast.2016.10.017
http://www.ncbi.nlm.nih.gov/pubmed/28029493
http://dx.doi.org/10.1016/j.breast.2016.04.008
http://www.ncbi.nlm.nih.gov/pubmed/27161411
http://dx.doi.org/10.1016/j.clbc.2018.06.003
http://www.ncbi.nlm.nih.gov/pubmed/29983379
http://dx.doi.org/10.3348/kjr.2014.15.6.689
http://www.ncbi.nlm.nih.gov/pubmed/25469079
http://dx.doi.org/10.1016/j.diii.2016.08.013
http://www.ncbi.nlm.nih.gov/pubmed/27687829
http://dx.doi.org/10.1111/1754-9485.12296
http://dx.doi.org/10.1016/j.clinimag.2016.12.011
http://dx.doi.org/10.1016/j.ejrad.2017.07.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods-6pt 
	Materials-6pt
	CESM Examination
	Inclusion and Exclusion Criteria
	Experimental Dataset

	Methods
	Feature Extraction
	Classification Model


	Results
	Human-Reader Diagnostic Accuracy
	Prediction Accuracy of Benign and Malignant ROIs
	Prediction Accuracy of Normal and Abnormal ROIs Characterized by Mild/High BPE

	Discussion
	Conclusions
	References

