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Abstract: Glioblastoma Multiforme is a deadly cancer of glial cells with very low survival rates.
Current treatment options are invasive and have serious side effects. Single drug treatments make
the tumor refractory after a certain period. Combination therapies have shown improvements
in treatment responses against aggressive forms of cancer and are becoming a mainstay in the
management of cancer. The purpose of this study is to design a combinatorial treatment regimen by
engineering desired ratios of two different small molecule drugs (gefitinib and GSK461364A) in a
single carrier that can reduce off-target effects and increase their bioavailability. Synergistic effects
were observed with our formulation when optimal ratios of gefitinib and GSK461364A were loaded
in poly (lactic-co-glycolic) acid and polyethylene glycol (PLGA-PEG) nanoparticles and tested for
efficacy in U87-malignant glioma (U87-MG) cells. Combination nanoparticles proved to be more
effective compared to single drug encapsulated nanoparticles, free drug combinations, and the
mixture of two single loaded nanoparticles, with statistically significant values at certain ratios and
drug concentrations. We also observed drastically reduced clonogenic potential of the cells that
were treated with free drugs and nanoparticle combinations in a colony forming assay. From our
findings, we conclude that the combination of GSK461364A and higher concentrations of gefitinib
when encapsulated in nanoparticles yield synergistic killing of glioma cells. This study could form
the basis for designing new combination treatments using nanoparticles to deliver multiple drugs to
cancer cells for synergistic effects.

Keywords: combination therapy; cancer; glioblastoma multiforme; polymeric nanoparticles; gefitinib;
GSK461364A; drug resistance; synergistic effect; drug interaction; enhanced permeation and retention

1. Introduction

Glioblastoma Multiforme (GBM) is the cancer of glial cells that rapidly spreads to various areas of
the brain [1]. Of all the known malignant forms of cancers diagnosed in the central nervous system,
GBM has a major share of 81% [2]. This aggressive form of cancer is more often seen in white male
patients above 70 years of age than in women and other ethnicities, while some forms of astrocytomas
are seen in children [3]. The number of anticancer drugs that are clinically approved for GBM
remain low due to the tumor heterogeneity [4]. Novel therapies such as tumor-treating fields (TTF)
have been approved to treat newly diagnosed GBM patients where the alternating electrical signals
eventually block cell division and proliferation [5]. In the EF-14clinical trial, TTF when combined with
temozolomide, and NovoTTF-100A, were proven to show significant improvement in overall survival
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of recurrent GBM patients and also resulted in higher progression free survival [6,7]. Although the
technological advancements claim that there is a decrease in mortality rate among cancer patients, 2018
statistics point out that GBM still remains incurable with a median survival of 15 months [8]. Surgery
proves to be a better solution in those cancers where tissues can be safely resected without affecting
the organ function [9], but in cancers of brain, it may impair the cognitive functions [10]. Although
the tumors are identified using stereotactical biopsies and positron emission tomography (PET) scans,
indicating areas of higher metabolic activity, 35–40% of GBM patients have unresectable tumors that
are deeply embedded in the brain, leaving such patients with chemotherapy and radiotherapy [11,12].

Deeper understanding of molecular pathways is crucial to identify the targets that are derailed
in cancers and therefore helps us choose suitable therapeutic agents. Several targeted agents have
emerged to minimize the toxic effects towards the healthy tissues. Forty percent of GBM cases
report mutations in epidermal growth factor receptor (EGFR) [13], namely EGFR onco-variant III
(EGFR vIII) [14]. EGFRs play a major role in neuronal, epithelial, and mesenchymal tissues in
cellular development, specifically proliferation and differentiation [15]. In EGFR vIII mutation, the
receptor–ligand binding is not required to trigger the pathway downstream as seen in a normal
pathway, but the tyrosines flanking either side of receptors are constitutively autophosphorylated
leading to more cell proliferation. Tyrosine kinase inhibitors (TKIs) have shown promising anti-cancer
effects in treating different cancers [16]. Gefitinib is one such small molecule TKI that was approved
for the treatment of non-small cell lung cancer (NSCLC) [17]. Gefitinib competes with the Adenosine
Triphosphate (ATP) binding site and blocks the ATP driven tyrosine phosphorylation that is crucial for
epidermal growth factor (EGFR) signaling and this action is independent of blocking the receptor [18].
Gefitinib dephosphorylates Bcl-2 associated death promoter (BAD) and triggers cell death via
apoptosis [19].

Cell cycle machinery is deregulated in cancers and Polo-like kinases 1 (PLK-1s) are crucial at
different stages of cell cyle progression such as spindle formation, transition to mitotic phase, and
cytokinesis in a normal cell [20]. Since the cell proliferation is higher in malignant cells, PLK1s
are profoundly expressed in rapidly dividing cells [21]. PLK-1 inhibitors have shown favorable
anti-tumorigenic effects [22]. Of these inhibitors, we chose GSK461364A for our study due to its higher
specificity to PLK-1. GSK461364A induces cell death by causing cell cycle arrest at G2/M phase by
competing with the ATP binding site of PLK-1 thus leading to apoptosis [23].

Despite these, there is sufficient evidence in the literature that suggests the malignant cells
becoming refractory to monotherapy in cancer patients [24]. Due to the quagmire of signaling pathways
in cancers, suppression of a single cellular pathway by a single therapeutic agent is not sufficient
as the malignant cells continue to proliferate by deregulating other pathways. Hence combinatorial
regimen is effective by blocking multiple vital components of the cell machinery simultaneously.
Combination treatment is preferred to sequential treatment in the case of aggressive cancers such as
GBM, as the tumor rapidly spreads and needs to be curtailed [25]. Simultaneously interfering with
multiple non-parallel targets in the dysregulated cancer signaling pathways can be more effective than
sequential treatments [26]. Zheng et al. proved a significant reduction in tumor burden with their
dual drug loaded nanoparticles targeting EGFR and MET pathways simultaneously [27]. Synergistic,
additive, or antagonistic effects on the cells in vitro are subject to the ratios and concentrations in
which the therapeutic agents are administered [28]. Certain drug combinations such as temozolomide
and lomustine have increased the overall survival by six months in phase III clinical trials in newly
diagnosed GBM patients with O6-Methylguanine-DNA Methyltransferase (MGMT) methylation [29].

The combination of these small molecule drugs will have a significant impact on at least 40% of
GBM patients post evaluation. The mutated receptors such as EGFR vIII are upregulated in GBM
and hence result in resistance to the therapies that target the ligands that bind to EGFR. Ratiometric
control is crucial for a combinatorial therapy because administration of a mixture of free drugs may
result in exposure of cells to undesirable ratios resulting in poor efficacy due to antagonistic effect.
Simultaneously administering a mixture of free drugs can also compound their off-target toxicities



J. Clin. Med. 2019, 8, 367 3 of 21

due to drug–drug interactions [30]. Nanotechnology offers a novel way for combination treatments
by simultaneously delivering multiple drugs to cancer cells with improved efficacy and reduced
toxicities [31]. Nanotechnology enables designing drug delivery vehicles of required size and surface
charge that are some of the crucial physicochemical properties to be considered for drug delivery across
physical barriers in the body [32]. Nanomedicine enables engineering of drug carriers with sustained
drug release and is important in encapsulating drugs of a set defined ratio, as described in our study.
It provides a leeway in adjusting the composition of the polymers based on the objective of the study.
Nanomedicines are not just specific to studies in cancer research but widely used in diagnostics and
therapeutics pertaining to Parkinson’s [33], cardiovascular [34], chronic kidney disease [35], etc.

Polymeric nanoparticles (NPs) are approved organic nanocarriers that can entrap hydrophobic
drugs in the required ratios and offer controlled drug release under different conditions [36]. In our study,
we engineered NPs to encapsulate precise ratios of two drugs (Figure 1) and tested them at effective
concentrations resulting in synergistic killing of GBM cells. NPs can increase the therapeutic index of
the payloads administered and the basis for this argument stems from the higher cellular uptake as
demonstrated in our previous study [37], and enhanced retention and cytotoxicity observed with the
drug encapsulated nanoparticles as shown in our previous study [37]. The size of the nanoparticles is a
crucial factor for drug delivery systems that are expected to cross the blood brain barrier (bbb). In our
experiments, we ensured the size to be sub 200 nm that is ideal for the entry across bbb [38]. When
tested in vivo, NPs can be designed to provide uniform biodistribution of both the drugs in the tissues.
To enhance the cytotoxicity of the drugs and reduce the survival of GBM cancer cells, we demonstrate
that the combination of gefitinib and GSK461364A, encapsulated in poly (lactic-co-glycolic) acid and
polyethylene glycol (PLGA-PEG) nanoparticles, promotes additive or synergistic effects in U87-MG
cells, containing highly aberrant chromosomes [39]. This co-encapsulation strategy offers ratiometric
control over loading of both the drugs in the desired ratios. PEG enhances the stability of the
formulation in vitro and avoids quicker clearance by the mononuclear phagocytic system (MPS)
in vivo [40]. This robust ratiometric combinatorial approach will be enhanced when encapsulated in
PLGA-PEG NPs that can prevent rapid drug degradation and clearance from the system and thereby
increase the bioavailability of the drugs.

Figure 1 illustrates the mechanism of action of both the drugs when entrapped in polymeric
nanoparticles and their effect when tested in glioma cells (U87-MG). Both the small molecule drugs in
their free form, or when encapsulated in NPs, will bind to the plasma membrane and are internalized
through endocytosis. With two different mechanisms of action, namely tyrosine kinase inhibitory
activity of gefitinib and mitotic arrest at G2/M phase by GSK461364A, an accelerated cell death of
glioma cells is observed with a synergistic effect of the combination. To meet the needs of new and
effective combination therapies, our study adds a vital dimension to the treatment possibilities of GBM.
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Figure 1. Proposed mechanism of action of dual drug loaded poly (lactic-co-glycolic) acid and 
polyethylene glycol (PLGA-PEG) nanoparticles and their effect on U87-MG cells. The chemical 
structure of gefitinib and GSK461364A were obtained from Pubchem. NPs: Polymeric nanoparticles; 
EGFR: epidermal growth factor receptor; BAD: Bcl-2 associated death promoter; MEK: Mitogen 
activated protein kinase kinase; ERK: Mitogen activated protein kinase 

2. Experimental Section 

Poly(lactide-co-glycolide) (PLGA) (MW: 10,000–15,000 Da), Methoxy poly(ethylene glycol)-b-
poly(lactide-co-glycolide) (mPEG-PLGA) (MW: 2–15 k.Da) were purchased from PolySciTech® (West 
Lafayette, IN, USA). Gefitinib was purchased from Cayman Chemicals (Ann Arbor, MI, USA) and 
reconstituted in methanol; GSK461364A was purchased from APExBIO (Houston, TX, USA) and was 
dissolved in ethanol; (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium) MTSassay kit was purchased from Promega Corporation® (Madison, WI, USA), 
Triton-X and other HPLC grade organic solvents were obtained from Fisher Scientific™ (Agawam, 
MA, USA). Human GBM cell line, U87-MG was bought from ATCC® (Manassas, VA, USA). Eagle’s 
minimum essential (MEM) alpha modification media with L-glutamine (Genclone™) with 10% fetal 
bovine serum (FBS) (Genclone™, San Diego, CA, USA) and 1% PenStrep (Gibco™, Fisher Scientific) 
was used to culture and maintain the cells at 37 °C, 5% CO2. Crystal Violet was purchased from 
Sigma-Aldrich (St. Louis, MO, USA).  

2.1. Ratiometric Synthesis and Characterization of Co-Loaded PLGA-PEG Nanoparticles 

Amphiphilic co-polymers of PLGA and PEG were used to prepare PLGA-PEG NPs with a blend 
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synthesized by adding gefitinib:GSK461364A in the molar ratio of 4.54:1. This ratio was determined 
based on the results from cytotoxicity assays with the free drug combinations tested in U87-MG cells 
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Figure 1. Proposed mechanism of action of dual drug loaded poly (lactic-co-glycolic) acid and
polyethylene glycol (PLGA-PEG) nanoparticles and their effect on U87-MG cells. The chemical structure
of gefitinib and GSK461364A were obtained from Pubchem. NPs: Polymeric nanoparticles; EGFR:
epidermal growth factor receptor; BAD: Bcl-2 associated death promoter; MEK: Mitogen activated
protein kinase kinase; ERK: Mitogen activated protein kinase.

2. Experimental Section

Poly(lactide-co-glycolide) (PLGA) (MW: 10,000–15,000 Da), Methoxy poly(ethylene glycol)-b-
poly(lactide-co-glycolide) (mPEG-PLGA) (MW: 2–15 k.Da) were purchased from PolySciTech®

(West Lafayette, IN, USA). Gefitinib was purchased from Cayman Chemicals (Ann Arbor, MI,
USA) and reconstituted in methanol; GSK461364A was purchased from APExBIO (Houston, TX,
USA) and was dissolved in ethanol; (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium) MTSassay kit was purchased from Promega Corporation® (Madison,
WI, USA), Triton-X and other HPLC grade organic solvents were obtained from Fisher Scientific™
(Agawam, MA, USA). Human GBM cell line, U87-MG was bought from ATCC® (Manassas, VA, USA).
Eagle’s minimum essential (MEM) alpha modification media with L-glutamine (Genclone™) with
10% fetal bovine serum (FBS) (Genclone™, San Diego, CA, USA) and 1% PenStrep (Gibco™, Fisher
Scientific) was used to culture and maintain the cells at 37 ◦C, 5% CO2. Crystal Violet was purchased
from Sigma-Aldrich (St. Louis, MO, USA).

2.1. Ratiometric Synthesis and Characterization of Co-Loaded PLGA-PEG Nanoparticles

Amphiphilic co-polymers of PLGA and PEG were used to prepare PLGA-PEG NPs with a blend
of 75:25 of PLGA and PLGA-PEG based on our previous study [37]. Dual drug loaded NPs were
synthesized by adding gefitinib:GSK461364A in the molar ratio of 4.54:1. This ratio was determined
based on the results from cytotoxicity assays with the free drug combinations tested in U87-MG cells
as shown in Supplementary Figure S1 and explained in Section 2.5. The absorbance of gefitinib was
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measured at 331 nm and GSK461364A at 272 and 305 nm using Nanodrop™ 2000c Ultraviolet-Visible
(UV-Vis) spectrophotometer (Thermo Fisher Scientific, Delaware City, DE, USA). Both the drugs
were ratiometrically added and these combination NPs were synthesized using the nanoprecipitation
method [41]. Similarly, empty NPs (without the drugs), only gefitinib (gef NP) or only GSK461364A
(GSK461364A NP) with the same concentration as the combination NPs containing gefitinib and
GSK461364A (combo NP) were prepared.

2.1.1. Characterization of Co-Encapsulated Nanocarriers

Once the organic solvent evaporated, the nanoparticles formed as a result of self-assembly were
purified via centrifugation at 800× g for 10 min at 25 ◦C using 30KDa Amicon centrifugal tubes
purchased from Millipore Sigma (Burlington, MA, USA). These nanoparticles were characterized
for their size, surface charge, and polydispersity index (PDI) using Malvern Zetasizer Nano ZS90
purchased from Malvern Analytical Inc. (Westborough, MA, USA). The graphic output of the size
distribution and the zeta potential are shown in Supplementary Figure S3A–C.

2.1.2. Morphological Characterization

The morphology of combo NPs was examined by 120 kV transmission electron microscope (TEM)
(Philips EM-400T). A sample volume of 2–3 µL of diluted nanoparticles were added on carbon 200
mesh, copper (Electron microscopy sciences), air dried for 48 h and observed using TEM.

Surface information of NPs was obtained by performing field emission scanning electron
microscopy (SEM) (JEOL JSM 7401F), where a similar volume of sample was added on a silicon
wafer. The sample was allowed to air dry for 48 h and sputter coated with gold using vacuum sputter
coater (Denton Vacuum Desk IV, Moorestown, NJ, USA) for good electron conductivity and observed
under SEM.

2.1.3. Determination of Encapsulation Efficiency

To determine the amount of drug encapsulated in single drug loaded NPs, empty nanoparticles
containing 1% Triton-x was used as blank. The concentration of gef NPs was calculated by measuring
the absorbance of gefitinib at 331 nm using Nanodrop™ 2000c UV-Vis spectrophotometer (Thermo
Fisher Scientific, Delaware City, DE, USA). Likewise, the concentration of GSK461364A NPs was
calculated by their absorbance at 311 nm. To determine the amount of both the drugs encapsulated in
the combo NPs, we used the following method. The concentration of GSK461364A in combo NPs was
determined by blanking with gef NPs and similarly the concentration of gefitinib in combo NPs was
measured by blanking with GSK461364A NPs. The absorbance peaks of the combo NPs are shown
in Supplementary Figure S2A,B. Although the wavelengths of both the drugs are not far apart, the
absorbance values were confirmed using High Performance Liquid Chromatography (HPLC) (Agilent
1100) as explained in the Section 2.4.1. Percentage of encapsulation of drugs was calculated as follows.

% Drug encapsulation efficiency = (Amount of drug in mg upon characterization/
Amount of drug added during synthesis) × 100

(1)

2.2. In Vitro Stability of Co-Loaded PLGA-PEG Nanoparticles

In vitro stability of combo NPs was investigated by storing the formulation at 4 ◦C and in
media containing 10% FBS at 37 ◦C to monitor their stability for shelf life and at a physiologically
relevant temperature.

2.3. Stability of Free vs. Nano Drug in Media Containing Fetal Bovine Serum

In vitro stability of gefitinib in free form (free gef), GSK461364A in free form (free GSK461364A)
was compared against the stability of gef NPs, GSK461364A NPs (of same concentrations as free drugs)
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and combo NPs by incubating the same concentration of each of the drugs in MEM alpha media
containing 10% FBS. The absorbance readings were measured at different time intervals until 48 h and
the decrease in concentration of drugs was plotted against time.

2.4. Measurement of In Vitro Drug Release from the Combination Nanoparticles

In vitro drug release of both the drugs from PLGA-PEG NPs was evaluated by performing the
dialysis bag diffusion method. Well characterized sample was added to a regenerated cellulose dialysis
bag with a MWCO of 20 k.Da (Spectra Max®, Chicago, IL, USA). This dialysis bag was placed in a
beaker containing 800 mL of 1X PBS and maintained at 37 ◦C, 150 rpm. Samples from the dialysis bag
were collected from the beaker periodically. To clearly understand the release profiles of both the drugs,
the samples were analyzed using reverse phase high performance liquid chromatography (HPLC).

2.4.1. Peak Separation Using Reverse Phase HPLC

Samples were added with 1% Triton-x to break open the nanoparticles and 50 µL of this mixture
was injected into Agilent 1100 High Performance Liquid Chromatography (Waldbronn, Germany)
with C18 reverse phase column as stationary phase and 0.1% TFA in acetonitrile as mobile phase.
Samples were injected with a flow rate of 1 mL/min with a total run time of 16 min. Peak eluents of
the signals detected at 331 nm, 226 nm, 295 nm, and 311 nm at different time points were collected.

2.4.2. Peak Confirmation Using Mass Spectrometer

Shimadzu 8040 Triple Quadrupole Liquid chromatograph mass spectrometer (LC/MS) (Columbia,
MD, USA) was used to confirm the molecular weights of the peak eluents and clearly distinguish the
peaks arising due to either gefitinib or GSK461364A thereby determining the amount of drug present
in the sample at different intervals. Once the samples were confirmed, the drug release profiles were
plotted using DDSolver [42].

2.5. EC50 Determination of Gefitinib and GSK461364A

Effective concentration (EC50) of both the drugs were determined by treating 10,000 U87-MG cells
per well in a 96-well plate with a wide range of concentrations of free gefitinib and half the wells in the
plate with GSK461364A. Cell viability was assessed by performing standard MTS assay. Appropriate
live and dead controls were used for this study. EC50 of GSK461364A was clearly explained in our
previous study [37]. EC50 curve for gefitinib is 65.9 µM as shown in Supplementary Figure S4.

2.6. Estimation of the Drug Concentrations in the Ratiometric Study from the Free Drug Combination-
Cytotoxicity Study

After determining EC50 values of each of the drugs, various combinations of different concentrations
of gefitinib and GSK461364A were tested in U87-MG cells and the cell viabilities were determined as
shown in Supplementary Figure S1. The results from this experiment helped us to determine the ratios
of the drugs that we used in the synthesis process.

2.7. Measurement of Cytotoxicity-Evaluation of the Treatment for Synergy in Monolayer Cultures of U87-MG

Cells were seeded with cell density of 10,000 cells per well in a 96-well cell culture plate. Once the
cells were well adhered to the dish, they were dosed with various concentrations of free gef, nano
gef, free GSK461364A, nano GSK461364A, a combination of free gef and free GSK461364A (free
combo), combination of nano gefitinib and nano GSK461364A, and combo NPs containing gefitinib
and GSK461364A in the same carrier. Controls for this experiment included cells that received no
treatment and dead control (cells added with deionized water to induce osmotic shock). Once the cells
were incubated with these formulations for 72 h at 37 ◦C, 5% CO2, they were added with 20 µL of
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activated MTS reagent to a final volume of 100 µL. After 90 min, the absorbance was read at 490 nm
using spectrophotometer (Spectramax M2e, Molecular Devices).

2.8. Clonogenic Assay

To evaluate the clonogenic potential of the cells post treatment, U87-MG cells were plated at a
density of 1000 cells per well in a six well plate. Once the cells were adhered, they were dosed with
free gef, free GSK461364A, nano gef, nano GSK461364A, free combo, combination of nano gefitinib and
nano GSK461364A, combo NPs. Control for this experiment included cells that received no treatment.
The cells were allowed to grow for 10 days and the protocol by Yang et al. [43] was used to process the
plates. Colonies were counted using an inverted digital light microscope (EVOS™ XL Core Imaging
System) with colony defined as a group of cells of 50 or more. The colonies thus formed were quantified
using the formula

% Cell survival rate = (Number of colonies in treated plates/
Number of colonies in No treatment (control)) × 100

(2)

3. Results

3.1. Synthesis Optimization and Characterization of Dual Drug Loaded PLGA-PEG NPs

Combo NPs, gef NPs, GSK461364A NPs, and empty NPs were synthesized and characterized
for their size, PDI and zeta potential using the Zetasizer Dynamic Light Scattering instrument.
Combination NP as shown in Table 1, were synthesized initially with a final concentration of polymer
of 2.5 mg/mL.

Table 1. Characterization of empty, single drug, and dual drug loaded PLGA-PEG NPs.

Nanoparticle Type
Mean

Hydrodynamic
Size (nm)

PDI Zeta Potential
(mV)

Molar Ratio
of Gefitinib:
GSK461364A

% Encapsulation Efficiency

PLGA-PEG (empty NPs) 127.0 ± 0.3464 0.097 ± 0.005 −35.5 ± 5.90 N/A N/A

Gef NPs 116.8 ± 1.62 0.120 ± 0.6576 −23.4 ± 0.707 N/A 68.34 ± 6.438

GSK461364A NPs 120.5 ± 2.483 0.115 ± 0.004 −25.6 ± 0.451 N/A 56.29 ± 4.319 [37]

Combo NPs 101.29 ± 2.412 0.102 ± 0.034 −24.65 ± 1.943 1:1 26 ± 8.98
gefitinib

35 ± 5.34
GSK461364A

PLGA-PEG: poly (lactic-co-glycolic) acid and polyethylene glycol; NPs: Polymeric nanoparticles; PDI: polydispersity
index.N/A: Not applicable.

As shown in Table 1, we found that the encapsulation efficiency of the drugs in the combination
NP was poor and we further optimized the polymer concentration to accommodate and entrap
required concentration of each of the drugs based on the cytotoxicity test results with the free drug
combinations. We synthesized the combination NPs by adding gefitinib and GSK461364A in the ratio
of 4.54:1 and characterized them as shown in Table 2.

Table 2. Polymer concentration optimization for successful synthesis and encapsulation of gefitinib
and GSK461364A in PLGA-PEG NPs.

Final Polymer
Concentration (mg/mL)

Mean Hydrodynamic
Size (nm)

PDI
Average Zeta

Potential (mV)
% Encapsulation Efficiency

Gefitinib GSK461364A

2.5 Synthesis Unsuccessful

5 408.25 ± 48.98 0.239 −24.5 ± 0.458 6.65 ± 4.45 None

10 101.29 ± 2.412 0.133 −29.6 ± 0.777 70.11± 6.33 65.74 ± 10.85

Successful encapsulation of gefitinib and GSK461364A with higher concentrations were achieved
with 10 mg/mL concentration of polymer. We obtained different molar ratios of drugs encapsulated in
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the NPs upon characterization across various batches. Higher ratios of gefitinib: GSK461364A were
obtained when multiple batches of synthesis were combined and characterized. We classified these
into different groups as tabulated in Table 3.

Table 3. Characterization features of engineered NPs using ratiometric control.

Molar Ratio of Gefitinib:GSK461364A (2.16–3):1 (3.6–4.35):1 7:1 9:1

Encapsulated gefitinib (µM) 1146.88 1959.26 1294.79 590.51
Encapsulated GSK461364A (µM) 386.28 508.18 184.27 66.38

Size (nm) 160 ± 21.385 141.04 ± 25.156 142.8 ± 14.153 129.75 ± 22.69
PDI 0.15 ± 0.0487 0.146 ± 0.052 0.168 ± 0.044 0.154 ± 0.045

Zeta potential (mV) −20.44 ± 3.069 −20.867 ± 4.055 −19.78 ± 2.252 −20.25 ± 7.848

Morphological Characterization

Combo NPs were characterized for their size and shape using TEM. In our previous study,
we found the GSK461364A NPs to be spherical in TEM and scanning electron micrographs showed
that the NPs were distinct and not clustered. As shown in Figure 2, we observed that gef NPs were
spherical and the clustered when observed under SEM, with the size comparable to that measured
using dynamic light scattering (DLS). Combo NPs were spherical and non-aggregated, and the particle
size was similar to the sizes observed by DLS. Typically, sizes obtained by electron microscopy are
smaller than that observed by DLS since DLS measures hydrodynamic size while electron microscopes
give a snapshot of particles under dry conditions.
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Figure 2. Transmission and scanning electron micrographs of drug encapsulated PLGA-PEG nanoparticles.
(A) Transmission electron microscopy (TEM) of gefitinib in PLGA-PEG NPs. HV: High Voltage.
(B) Scanning electron microscopy (SEM) of gefitinib in PLGA-PEG NPs (C) TEM of combination
nanoparticles (NPs) (D) SEM of combination NPs. Also seen in the background are the gold particles
(small raised structures) that are sputter coated on the silicon wafer.

3.2. In Vitro Stability Study

In vitro stability of combo NPs was evaluated by storing the samples at 4 ◦C and 37 ◦C. As shown
in Figure 3, we found that the samples stored at physiologically relevant temperature had a gradual
increase in size over seven days with a total increase of ~110 nm. PDI increase follows the size pattern,
with a drastic increase from day 1 to day 2 with an overall increase of 0.175. Zeta potential was
maintained around −20 mV and the surface charge did not become neutral until day 7, meaning that
the formulation is stable at 37 ◦C, without drastic changes in the physicochemical properties.
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Samples stored at 4 ◦C were much more stable as expected from our previous study, with minimal
increase in size, PDI, and zeta potential thus increasing the shelf life. This proves that the formulation
is stable at 4 ◦C and 37 ◦C.

3.3. Stability of Free vs. Nano Drug in Media Containing Fetal Bovine Serum

The stability of drugs in serum containing media was monitored over 48 h by measuring drug
absorbances in free form as well as in encapsulated forms and the decrease in concentrations were
plotted against time as shown in Figure 4.

As shown in Figure 4A, free gef exhibited a drastic degradation in media while nano gefitinib was
much more stable at the end of 48 h with a statistical significance of p < 0.001. When the samples were
observed after 24 h, free gefitinib precipitated while gef NPs remained stable. Figure 4B shows that
free GSK461364A maintained a steady absorbance till the end of the study while nano GSK461364A
exhibited increase in absorbance, which is explained by the drug release from the polymeric nano
carrier. Figure 4C suggests that gefitinib and GSK461364A were released from combo NPs causing an
increase in drug absorbance until 2 h and gradual decrease until 48 h. The formulation was found to
be stable until 48 h. PEG increases the steric stabilization of NPs and reduces the protein adsorption
present in the media [44]. This is backed by several studies that have proved PEG to drastically
minimize the adsorption to proteins or even opsonization in vivo [45,46].

Overall, this experiment suggests that the nanoparticles prevent rapid drug degradation in serum
causing an increase in bioavailability of the drugs and helps in preserving the structure and activity of
the small molecules.
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3.4. Measurement of In Vitro Drug Release from the Combination Nanoparticles

In vitro drug release of gefitinib and GSK461364A were evaluated by performing the dialysis bag
diffusion technique under sink conditions [47]. The samples were periodically collected and since
the wavelengths of the absorbances of both the drugs were close, reverse phase HPLC was used to
separate the peaks based on polarity. As shown in Figure 5, we obtained three peaks at 8.309 min,
8.722 min, and 14.935 min. Based on our control (empty NPs), we established that the peak seen at
14.935 min in the chromatogram was due to the polymer.

To further evaluate and confirm each of the peaks arising from gefitinib or GSK461364A,
peak eluents were fed into LC-MS system. As shown in Figure 6, peak at 8.309 min (A) had a
molecular weight of 447 k.Da confirming the presence of gefitinib. The peak at 8.722 min (B) had a
molecular weight of 544 k.Da confirming GSK461364A and the peak at 14.93 min (C) had various
peaks as a representation of various components of co-polymers.
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From this study, we confirmed that the signal from gefitinib does not interfere with the neighboring
peak of GSK461364A. Once the molecular weights were confirmed, we used the area under the curve
values to determine the rate of drug release with time.
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As shown in Figure 7A, 94% of gefitinib was released from combination NPs within 7 h, with 50%
of release at ~75 min and 80% of drug release at 4 h. The best fit curve for the release profile follows
Weibull data dissolution model with the coefficient of determination of 0.9966 and is represented by
the equation
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F = Fmax × {1 − Exp[−(tˆβ)/α]} (3)

with values of the scale parameter (α) as 1.304, the shape parameter (β) as 0.595, and Fmax as 100.737.
α represents the time interval that it takes for 63.2% of the drug to be released [48]. F represents
dissolution of drug as a function of time whereas Fmax is the total amount of drug released [49]. β < 1
shows that the shape of the curve is steep, as shown in Figure 7A.
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Figure 7. In vitro release profile of (A) gefitinib and (B) GSK461364A from dual drug loaded PLGA-PEG
nanoparticles (combo NPs) at 37 ◦C, 1X PBS, pH 7.4.

Figure 7B represents the release profile of GSK461364A from combo NPs. As seen, 91% of
GSK461364A was released within 7 h with a 50% of drug release at 57 min and 80% release at 4 h.
The best fit curve of this release profile follows Makoid-banakar model with an R2 value of 0.999 and
is represented by the equation

F = kMB × (t − Tlag)ˆn × Exp[−k × (t − Tlag)] (4)

where the values of empirical parameters are: kMB = 56.859, n = 0.308, k = 0.018 and Tlag = 0.190.
n value is less than 0.5 showing that the mechanism behind the drug release was purely diffusion [48].

Both the models are a good fit for gefitinib and GSK461364A with R2 value > 0.995.

3.5. Measurement of Cytotoxicity -Evaluation of the Treatment for Synergy in Monolayer Cultures of U87-MG

The percentages of viable cells were evaluated by treating the cells with different combination
NPs with varied ratios of gefitinib:GSK461364A. To evaluate the effect of combinations on cell viability,
the concentrations of the two drugs were chosen so that neither of the drugs showed a lot of cytotoxicity
by themselves. As shown in Figure 8, the combination of free drugs always had a higher cytotoxicity
in U87-MG compared to any of the single drugs across all concentrations. With increasing ratios of
gefitinib, we observed higher cytotoxicity compared to the free drug combination. With multiple
repeats and different cocktail mixtures of both the small molecules in a single nanocarrier, we concluded
a crucial finding that higher ratios of gefitinib:GSK461364A are required to observe synergistic killing
of U87-MG cells. The co-encapsulation strategy always worked better than combination of two single
drug loaded NPs, sometimes resulting in a statistically significant killing (p < 0.05, p < 0.005) as
observed in 7:1 and 9:1 ratiometric batches. Student’s t-test was used to determine the statistically
significant values.
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In addition to the Student’s t-test, we performed ANOVA single factor test to evaluate statistically
significant values among free drug combination, nano gefitinib + nano GSK461364A, and combo
NPs. We obtained F-value > F critical for combination NPs of ratios 7:1 and 9:1 suggesting statistical
significance. This confirms the statistical results from the Student’s t-test.

The second crucial finding from this experiment is that the drugs when in combination and
encapsulated in the same carrier (combo NPs), exhibited higher cytotoxicity compared to each of
the drugs in two different NPs such as gef NP and GSK461364A NP. This is due to the delivery of
both the drugs from a single nanoparticle to the same site and paralyzing the cell survival, instead
of non-uniform distribution of the drugs when loaded in two different drug carriers. Due to the
parallel and uncoupled targeting of two drugs to two different cellular sites that trigger apoptosis,
cell death is accelerated leading to a superior cytotoxic effect. We further evaluated the coefficient of
drug interaction and its effect on malignant glial cells as shown in Figure 9 using the formula,

Coefficient of drug interaction (CDI) = Ratio of combination treatment to the control/
((Ratio of gefitinib to control) × (Ratio of GSK461364A to control))

(5)
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Across all the ratios, as previously mentioned, we observed that with free drug combinations and
combo NPs, we observed synergistic values (CDI < 1). As the ratio of gefitinib: GSK461364A increased,
CDI values were less than 1 for combination of two single loaded NPs (gef NPs + GSK461364A
NPs). Overall, we found that a strong synergism was achieved with combo NPs compared to free
gef/GSK461364A and gef NPs/GSK461364A NPs. The cytotoxicity assay confirmed that with higher
ratios of gefitinib, a strong synergistic activity was accomplished with combo NPs compared to the
rest of the treatment arms.

3.6. Clonogenic Assay

Clonogenic assay was performed to estimate the clonogenic potential of the cells post combination
treatment and compare this to that of the free drug and the single free drug/NP treatment. It is an
assay that can assess the effects of the treatment for a longer period than the cytotoxicity assay and
also helps evaluate the tumor initiating ability of the cell post treatment [50]. As shown in Figure 10A,
the same number of colonies were observed in cells treated with empty NPs as no treatment, implying
that the PLGA-PEG carrier did not cause any cytotoxicity to the cells.
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in those treated with 5 µM of free GSK461364A and GSK461364A NPs. This reinforces the trend 
observed in cytotoxicity assay, that GSK461364A is cytotoxic at chosen concentrations with no 
clonogenic stimulating potential. As expected, no colonies were found in the combo NPs and their 
free equivalents. In the cells treated with ratiometric combo NP containing 45 µM gefitinib and 5 µM 
GSK461364A, no colonies were found as shown in Figure 10C. Gefitinib treatment at 45 µM in free 
and nano form, resulted in slightly higher cell survival rate than 35 µM treatment.  

Figure 10. Colonies formed by U87-MG cells post treatment with combination NPs of different
concentrations, single drug loaded NPs, respective free drug equivalents and control (A,C); Quantified
cell colony formation data with the error bars indicating standard deviation of three repeats (B,D).
NT: No Treatment.

Fewer colonies were observed in those treated with 35 µM of free gef and gef NP while no
colonies in those treated with 5 µM of free GSK461364A and GSK461364A NPs. This reinforces the
trend observed in cytotoxicity assay, that GSK461364A is cytotoxic at chosen concentrations with no
clonogenic stimulating potential. As expected, no colonies were found in the combo NPs and their
free equivalents. In the cells treated with ratiometric combo NP containing 45 µM gefitinib and 5 µM
GSK461364A, no colonies were found as shown in Figure 10C. Gefitinib treatment at 45 µM in free and
nano form, resulted in slightly higher cell survival rate than 35 µM treatment.
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4. Discussion

Numerous studies have reported different ratiometric approaches such as conjugating two drugs
using a spacer [51], codelivery of multiple drugs that are loaded by conjugating to a co-polymer
bound to cyclodextrins [52] etc. In our study, we have demonstrated a successful ratiometric synthesis
and encapsulation of several different desired ratios of gefitinib and GSK461364A in PLGA-PEG
nanoparticles and observed their synergistic effect on glioma cells. Nanoparticles have been chosen
as efficient drug delivery carriers for the combination treatment using ratiometric control to treat
various cancers such as bladder cancer [53], prostate cancer [54], breast cancer [55], lung carcinoma, and
melanoma [56]. Research studies pertaining to GBM, have demonstrated various forms of nanoparticles
as those encapsulating single chemotherapeutic agent or non-viral gene delivery vectors, conjugating
the surface of the particles with a monoclonal antibody, conjugating a drug to the nanoparticles or
using a photodynamic therapy (PDT) [57]. Current research also includes free drug combinations
such as gefitinib and 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) inhibitor [58], All-trans
retinoic acid (ATRA) and interferon-γ [59], β-elemene and gefitinib [60], and nanoparticle based drug
combinations such as temozolomide and bromodomain inhibitor (JQ-1) [61] for the treatment of GBM.

The specific combination of the two drugs used in this study has never been reported earlier
for treating GBM or even other forms of cancer. With our experimental results, we proved that the
combination therapy is better than the monotherapy in terms of cytotoxicity as well as the clonogenic
potential of glioma cells. Successful encapsulation of the drugs at various ratios were obtained and
these ratiometric particles were tested for their therapeutic efficacy against GBM cells. Synthesized
combination NPs were sub-200 nm in size with a zeta potential of around −20 mV, making the
formulation stable and suitable for in vivo testing. The stability tests also proved that the particles
were stable at body temperatures in serum until day 7, and in vitro release experiments proved that
both the drugs were released from the nano carrier within 7 h. The release profiles of both the drugs
from PLGA-PEG NPs are similar making it a desired drug delivery system that is taken up by the
cells after which the NPs release the drugs at the same time resulting in simultaneous cytotoxic effects
in glioma cells. The synthesized nano carriers proved very effective in demonstrating that they can
safeguard each of the drugs from precipitating or losing its therapeutic activity when it interacts with
serum. In vitro cytotoxicity studies show that higher concentrations of gefitinib in free or nano form
along with GSK461364A led to strong synergistic action, while at lower concentrations of gefitinib,
the cytotoxic effect of combination NP was almost the same as the free formulation as well as the
cocktail mixtures of two single drug loaded PLGA-PEG NPs. The synergistic effect observed with the
combination was due to the parallel action of each of the drugs that resulted in enhanced cytotoxicity.
This nanoparticle mediated co-encapsulation strategy will be a great way to alter the ratio of drugs
and encapsulate required doses of drugs and avoid the toxicity issues often seen in free combination
or single drug treatment in sequential therapies in the clinic [25].

Co-encapsulated NPs have exhibited significantly higher cytotoxicity (p < 0.05, p < 0.005) in
U87-MG compared to two different single drug containing NPs. This is due to the release and
distribution of both drugs from the same carrier to the tumor site. If this effect was seen in monolayer
cell killing, we expect to see a drastic difference when tested in vivo, due to higher entrapment of
NPs in the tumor vasculature and release of the drugs. We observed a higher number of viable cells
subjected to free and nano gefitinib, since the action of gefitinib is cytostatic. We noticed little to no
effect of gefitinib on cell viability when assessing its cytotoxicity. However, using nano constructs
will prevent the rapid metabolism of gefitinib by CYP3A4 in GBM patients [62] and increase the drug
bioavailability. When in combination, due to the cytotoxic action of GSK461364A and the cytostatic
action of gefitinib, we observed no viable cells in the dish. Whereas in the cells that were dosed with
cocktail mixtures of single drug loaded NPs, we consistently observed a few viable cells, but no colonies.
This means that a few tumor cells survived despite the exposure to both the drugs, with a possibility
to form colonies after a few days. Simultaneous delivery of two drugs using polymeric nanoparticles
has shown improved treatment responses especially when compared to free and individually loaded
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nano combinations [54,63]. The drug combinations in nanoparticles have been tested in various
treatment strategies in different types of cancers such as a combination of photothermal therapy and
anti-CTLA4 (cytotoxic T-lymphocyte-associated antigen 4) encapsulated in PLGA nanoparticle for
immunotherapy [64], lipid/calcium/phosphate nanoparticles containing Vascular endothelial growth
factor (VEGF) small interfering RNA (siRNA) and gemcitabine monophosphate to treat NSCLC [65],
combination of Avastin and BPD (Verteporfin) in liposomes to treat pancreatic cancer [66].

The results from this study set a strong basis for future testing of formulations in 3D tumor
models and in vivo. Future work will include testing the formulation in non-malignant cells and
comparing the efficacy of nano formulations to their free equivalents. Assays to evaluate the effect of
hepatic enzymes (ex: CYP3A4) on these formulations and assess their cytotoxic profiles in U87-MG
can be done to prove that nanoparticles prevent rapid degradation of the drugs and also predict the
in vivo pharmacokinetics [67]. In vivo work will provide a better understanding of how NPs can
circumvent the toxicity issues usually seen with the free drugs and improvement in circulation half-life.
This in vitro success will be effective in clinical models when the pharmacokinetics of both the drugs
are carefully studied while escalating it to a clinically-relevant dose [68].

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/8/3/367/s1,
Supplementary Figure S1: Evaluation of cell viability post treatment with different sets of combination of free
gefitinib and free GSK461364A. Supplementary Figure S2A: Peak absorbance of gefitinib at 331 nm dissolved in 1%
Triton-x, with GSK461364A as blank (2B) GSK461364A at 311 nm with gefitinib as blank. Supplementary Figure S3:
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