Article

New Targeted Gold Nanorods for the Treatment of Glioblastoma by Photodynamic Therapy

Zahraa Youssef ¹, Yesmurzayeva Nurlykyz ^{1,2}, Ludivine Larue ¹, Jouan-Hureaux Valérie ³, Colombeau Ludovic ¹, Arnoux Philippe ¹, Acherar Samir ⁴, Régis Vanderesse ⁴ and Céline Frochot ^{1,*}

Supporting Materials

Content:

Figure S1. Calibration curves for HS-PEG2K-NH² and fluorescamine-based assay at pH = 10. This graph shows a linear relationship between the fluorescence intensity recoded at 480 nm and the concentration of PEG.

Figure S2. Calibration curves for HS-PEG2K-NH² and ninhydrin-based assay. This graph shows a linear relationship between the UV-vis absorption recoded at 565 nm and the concentration of PEG.

Figure S3. HRMS of (Pyro)-NHS

Figure S4. HRMS of Fmoc-(Pyro)-Lys-OH

Figure S5. 1H NMR (300 MHz, DMSO-d6) of Fmoc-(Pyro)-Lys-OH

Figure S6. COSY and TOCSY spectra of Fmoc-(Pyro)-Lys-OH (300 MHz, DMSO-d6)

Figure S7. HRMS of Fmoc-K(Pyro)DKPPR-OH

Figure S8. 1H NMR (300 MHz, DMSO-d6) of Fmoc-K(Pyro)DKPPR-OH

Figure S9. COSY and TOCSY spectra of Fmoc-K(Pyro)DKPPR-OH (300 MHz, DMSO-d6)

Figure S10. HRMS of MI-K(Pyro)DKPPR-OH

Figure S11. ¹H NMR (300 MHz, DMSO-d₆, δ) of MI-K(Pyro)DKPPR-OH

Figure S12. COSY and TOCSY spectra of MI-K(Pyro)DKPPR-OH (300 MHz, DMSO-d6)

Table S1. Concentrations of HS-PEG2K-NH² taken from the original solution, from the supernatant after incubation and that onto the AuNRs derived by subtraction.

Table S2. ¹H NMR (300 MHz, DMSO-d₆, δ) of H-DKPPR-OH

Table S3. ¹H NMR (300 MHz, DMSO-d₆, δ) of H-K(Pyro)DKPPR-OH

Table S4. ¹H NMR (300 MHz, DMSO-d₆, δ) of MI-K(Pyro)DKPPR-OH

1. Calibration Curves

Figure S1. Calibration curves for HS-PEG2K-NH² and fluorescamine-based assay at pH = 10. This graph shows a linear relationship between the fluorescence intensity recorded at 480 nm and the concentration of PEG.

Figure S2. Calibration curves for HS-PEG2K-NH² and ninhydrin-based assay. This graph shows a linear relationship between the UV-vis absorption recorded at 565 nm and the concentration of PEG.

	HS-PEG-NH2 (Dalton)	Concentration in the Original Solution (mM)	Concentration Taken from the Supernatant after Incubation (mM)	Concentration of PEG on AuNRs (mM)
Measured by the		1.6	0.0096	1.587
fluorescamine- based assay	2000		0.0038	1.593
Measured by the			0.1497	1.446
ninhydrin-based	2000	1.6	0.1004	1 491
assay			0.1094	1.171

Table S1. Concentrations of HS-PEG2K-NH² taken from the original solution, from the supernatant after incubation and that onto the AuNRs derived by subtraction.

2. Characterizations

2.1. (Pyro)-NHS

Data: Rf = 0.70 (CH₂Cl₂/EtOH = 97/3, v/v). ¹**H NMR** (300 MHz, DMSO-d₆, δ): -1.96 and 0.25 (each s, 1H, <u>NH</u> pyrrole), 1.61 (t, J = 7.5 Hz, 3H, <u>CH₃</u>CH₂C=), 1.76 (d, J = 7.2 Hz, 3H, <u>CH₃</u>CH-), 2.70-2.80 (m, 4H, -<u>CH₂CH₂COO-), 2.85 (s, 4H, -<u>CH₂-), 3.20</u>, 3,42 and 3,59 (each s, 3H, <u>CH₃C=</u>), 3.68 (m, 2H, CH₃<u>CH₂</u>C=), 4.39 (d, J = 12 Hz, 1H, <u>CH</u>CH₂CH₂COO), 4.68 (m, 1H, CH₃<u>CH-</u>), 5.08 and 5.21 (each d, J = 20.1 Hz, 1H, =<u>CH</u>-CH₂CO), 6.20 (d, J = 11.7 Hz, 1H, H₂C=<u>CH-</u>, cis), 6.37 (d, J = 17.7 Hz, 1H, H₂C=<u>CH-</u>, trans), 8.2 (dd, J = 18 Hz and J = 11.7 Hz, 1H, H₂C=<u>CH-</u>), 8.87, 9.42 and 9.70 (each s, 1H, β-H, -C-<u>CH</u>=C-). **HRMS** (ESI): m/z calcd. for C₃₇H₃₇N₅O₅ [M + H]⁺632.2867; found [M + H]⁺632.2822. **UV/Vis** (EtOH): $\lambda_{max}(\log \varepsilon) = 410$ (4.61), 510 (3.63), 539 (3.61), 607 (3.57), 666 nm (4.28).</u>

Figure S3. HRMS of (Pyro)-NHS

2.2. Fmoc-(Pyro)-Lys-OH

Data: Rf = 0.40 (CH₂Cl₂/EtOH = 90/10, v/v). ¹**H NMR** (300 MHz, DMSO-d₆, δ): -2.01 and 0.19 (each s, 1H, N*H* pyrrole), 1.27 (m, 2H, γ -<u>CH₂</u> Lys), 1.54 (m, 4H, β and δ-<u>CH₂</u> Lys), 1.61 (t, *J* = 7.2 Hz, 3H, <u>CH₃</u>CH₂C=), 1.77 (d, *J* = 7.2 Hz, 3H, <u>CH₃</u>CH-), 2.09 (m, 2H, -CH<u>CH₂</u>CH₂COO-), 2.30 and 2.58 (each m, 1H, -CHCH₂<u>CH₂</u>COO-), 2.97 (m, 2H, ε-CH₂ Lys), 3.19, 3.42 and 3.58 (each s, 3H, <u>CH₃</u>C=), 3.67 (q, *J* =

7.2 Hz, 2H, CH₃<u>CH₂</u>C=), 3.79 (m, 2H, α-<u>CH</u>Lys), 3.99 (m, 1H, <u>CH</u>Fmoc), 4.07 (m, 2H, <u>CH₂</u>Fmoc), 4.25 (d, *J* = 8.1 Hz, 1H, <u>CH</u>CH₂CH₂COO), 4.53 (q, *J* = 6.9 Hz, 1H, CH₃<u>CH</u>-), 5.07 and 5.21 (each d, *J* = 20.1 Hz, 1H, =C-<u>CH₂</u>CO), 6.18 (d, *J* = 11.4 Hz, 1H, <u>H₂C</u>=CH-, *cis*), 6.37 (d, *J* = 18.0 Hz, 1H, <u>H₂C</u>=CH-, *trans*), 7.20 and 7.60 (m, 8H, <u>CH</u> phenyl-Fmoc), 7.30 (m, 1H, ε -NH Lys), 7.77 (t, 1H, <u>NH</u> Lys), 8.18 (dd, *J* = 17.7 Hz and *J* = 11.4 Hz, 1H, H₂C=<u>CH</u>-), 8.84, 9.40 and 9.67 (each s, 1H, β-H, -C-<u>CH</u>=C-), 12.52 (s, 1H, -COO<u>H</u>). **HRMS** (ESI): *m*/*z* calcd. for C₅₄H₅₆N₆O₆ [M + H]⁺885.4334; found [M + H]⁺885.4269. **UV/Vis** (EtOH): $\lambda_{max}(\log \varepsilon) = 413$ (4.92), 512 (3.92), 543 (3.86), 612 (3.87), 669 nm (4.59).

Figure S4. HRMS of Fmoc-(Pyro)-Lys-OH

Figure S5. 1H NMR (300 MHz, DMSO-d6) of Fmoc-(Pyro)-Lys-OH

Figure S6. COSY and TOCSY spectra of Fmoc-(Pyro)-Lys-OH (300 MHz, DMSO-d6)

2.3. H-DKPPR-OH

			``	,	. ,	
	NH	α-Н	β-Н	ү-Н	δ-Н	Others
Asp		4.12	2.54, 2.58			
Lys	8.23	4.12	1.70	1.25	1.60	ε-NH ₃ ⁺ = 8.00; ε-CH ₂ =
						3.09
Pro		4.55	1.70, 1.90	1.84	3.55, 3.65	
Pro		4.48	1.68, 1.89	1.90	3.52, 3.55	
Arg	8.76	4.44	1.51, 1.60	1.52	3.22	ϵ -NH = 8.58

Table S2. ¹H NMR (300 MHz, DMSO-d₆, δ) of H-DKPPR-OH

2.4. Fmoc-K(Pyro)DKPPR-OH

Figure S7. HRMS of Fmoc-K(Pyro)DKPPR-OH

Figure S8. 1H NMR (300 MHz, DMSO-d6) of Fmoc-K(Pyro)DKPPR-OH

Figure S9. COSY and TOCSY spectra of Fmoc-K(Pyro)DKPPR-OH (300 MHz, DMSO-d6)

2.5. H-K(Pyro)DKPPR-OH

Data: HRMS (ESI): m/z calcd. for C₆₅H₈₉N₁₅O₁₁ [M + H]+1256.6939, [M + 2H]²⁺628.8506 ; found [M + H]+1256.6986, [M + 2H]²⁺628.8562. UV/Vis (EtOH): $\lambda_{max}(\log \varepsilon) = 410$ (4.54), 510 (3.54), 539 (3.51), 609 (3.48), 667 nm (4.21).

	NH	α-H	β - Η	γ-H	δ-Н	Others
Pyro	-	-	-	-	-	-1.93 and 0.29 (s, 2H, NH pyrrole), 1.64 (m,
						3H, <u>CH3</u> CH2C=), 1.80 (m, 3H, <u>CH3</u> CH-), 2.05
						(m, 2H, - <u>CH2</u> CH2COO-), 2.39 and 2.62 (m,
						2H, - <u>CH2CH2</u> COO-), 3.23, 3.45 and 3.63
						(each s, 3H, <u>CH</u> ₃ C=), 3.76 (m, 2H,
						CH ₃ <u>CH₂</u> C=), 4.31 (m,
						1H, - <u>CH</u> CH ₂ CH ₂ COO), 4.60 (m, 1H,
						CH ₃ <u>CH</u> -), 5.12 and 5.24 (each d, J = 20.1 Hz,
						1H, =C- <u>CH</u> 2CO), 6.21 (d, J = 11.7 Hz, 1H,
						<u><i>H</i></u> ₂ C =CH-, cis) and 6.42 (d, J = 18.3 Hz, 1H,
						<u>H₂C</u> =CH-, trans), 8.23 (m, 1H, H ₂ C= <u>CH</u> -),
						8.90, 9.46 and 9.74 (each s, 1H,
						β-H, -C- <u>CH</u> =C-)
Lys1	8.08	4.41	1.63	1.27	1.34	ε-CH2= 3.03
Asp	8.66	4.55	2.50, 2.68	-	-	
Lys	7.75	4.41	1.58	1.31	1.45	ε-CH2= 2.72
Pro	-	4.31	1.97, 2.16	1.86	3.45, 3.52	
Pro	-	4.48	1.77, 2.03	1.83	3.41, 3.60	
Arg	7.98	4.13	1.60, 1.73	1.51	3.09	ε-NH= 7.69

Table S3. 1H NMR (300 MHz, DMSO-d₆, δ) of H-K(Pyro)DKPPR-OH

2.6. MI-K(Pyro)DKPPR-OH

Data: HRMS (ESI): m/z calcd. for C₇₅H₁₀₁N₁₆O₁₄ [M + H]⁺1449.76; found [M + H]⁺1449.7569, [M + 2H]²⁺ 725.3914. UV/Vis (EtOH): $\lambda_{max}(\log \varepsilon) = 412$ (4.80), 508 (3.74), 539 (3.70), 610 (3.70), 667 (4.47)

Figure S10. HRMS of MI-K(Pyro)DKPPR-OH

	NH	α-Н	β-Н	γ - Η	δ-Н	Others
MI	-	-	-	-	-	1.02 (m, 2H, -NCH2CH2CH2CH2CONH-), 1.34 (m, 4H, -NCH2CH2CH2CH2- and -CH2CH2CH2CONH-), 2.00 (m, 2H, -CH2CH2CH2CONH-), 3.21 (m, 2H, -NCH2CH2-), 6.90 (s, 2H, OC-CH=CH-CO) $-CH2$ CON $-CH2$ CON $-CH2$ CON $-CH2$ CH2-
Pyro	-	-	-	-	-	-2.00 and 0.20 (s, 2H, NH pyrrole), 1.59 (m, 3H, <u>CH₃</u> CH ₂ C=), 1.81 (m, 3H, <u>CH₃</u> CH-), 2.13 (m, 2H, - <u>CH₂CH₂COO-), 2.39 and 2.63 (m, 2H, -<u>CH₂CH₂COO-), 3.18, 3.44</u> and 3.60 (each s, 3H, <u>CH₃C=), 3.68 (m, 2H, CH₃CH₂C=), 4.29 (m, 1H, -<u>CH</u>CH₂CH₂CH₂COO), 4.60 (m, 1H, CH₃<u>CH-</u>), 5.10 and 5.24 (each d, <i>J</i> = 20.1 Hz, 1H, =C-<u>CH₂</u>CO), 6.20 (d, <i>J</i> = 11.4 Hz, 1H, <u>H₂C</u>=CH-, <i>cis</i>) et 6.37 (d, <i>J</i> = 18.0 Hz, 1H, <u>H₂C</u>=CH-, <i>trans</i>), 8.20 (m, 1H, H₂C=CH-), 8.87, 9.38 and 9.64 (each s, 1H, β-H, -C-<u>CH</u>=C-)</u></u>
Lys1	7.86	4.10	1.74	1.22	1.52	ε-CH ₂ = 2.99
Asp	8.10	4.48	2.50, 2.66	-	-	
Lys	7.68	4.42	1.71	1.30,	1.52	ε-CH2= 2.73
Pro	-	4.34	1.84, 2.01	1.91	3.49, 3.57	
Pro	-	4.51	1.78, 2.08	1.85	3.43, 3.61	
Arg	7.98	4.15	1.61, 1.74	1.50	3.11	ε-NH=7.70

Table S4. ¹H NMR (300 MHz, DMSO-d₆, δ) of MI-K(Pyro)DKPPR-OH

Figure S11. ¹H NMR (300 MHz, DMSO-d₆, δ) of MI-K(Pyro)DKPPR-OH

Figure S12. COSY and TOCSY spectra of MI-K(Pyro)DKPPR-OH (300 MHz, DMSO-d6)