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Abstract: Background: The clinical outcome of patients affected by dilated cardiomyopathy (DCM)
is heterogeneous, since its pathophysiology is only partially understood. Interleukin 1β levels
could predict the mortality and necessity of cardiac transplantation of DCM patients. Objective:
To investigate mechanisms triggering sterile inflammation in dilated cardiomyopathy (DCM).
Methods: Hearts explanted from 62 DCM patients were compared with 30 controls, employing
immunohistochemistry, cellular and molecular biology, as well as metabolomics studies. Results:
Although misfolded protein accumulation and aggresome formation characterize DCM hearts,
aggresomes failed to trigger the autophagy lysosomal pathway (ALP), with consequent accumulation
of both p62SQSTM1 and dysfunctional mitochondria. In line, DCM hearts are characterized by
accumulation of lipoperoxidation products and activation of both redox responsive pathways and
inflammasome. Consistently with the fact that mTOR signaling may impair ALP, we observed,
an increase in DCM activation, together with a reduction in the nuclear localization of Transcription
Factor EB -TFEB- (a master regulator of lysosomal biogenesis). These alterations were coupled with
metabolomic alterations, including accumulation of branched chain amino acids (BCAAs), known
mTOR activators. Consistently, reduced levels of PP2Cm, a phosphatase that regulates the key
catabolic step of BCAAs, coupled with increased levels of miR-22, a regulator of PP2Cm levels that
triggers senescence, characterize DCM hearts. The same molecular defects were present in clinically
relevant cells isolated from DCM hearts, but they could be reverted by downregulating miR-22.
Conclusion: We identified, in human DCM, a complex series of events whose key players are miR-22,
PP2Cm, BCAA, mTOR, and ALP, linking loss of proteostasis with inflammasome activation. These
potential therapeutic targets deserve to be further investigated.
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1. Introduction

Dilated cardiomyopathy (DCM) is a syndrome characterized by cardiac enlargement and impaired
systolic function, with an ejection fraction <45% [1]. Although in 35%–40% of cases DCM is idiopathic
(i.e., detectable causes can be excluded), the screening of first-degree relatives revealed a positive
family history in 20%–35% of cases, suggesting a genetic etiology [2]. Pathogenetic mutations have
been detected in >40 genes [3], but truncating mutations of the titin gene occur in about 25% of familial
cases and in 18% of sporadic cases [4]. Nonetheless, a genetic cause could be identified in just 30%–35%
of familial DCM, and the frequencies of pathogenetic mutations in any single gene ranges from 1% to
25% [2,4].

Genetic DCM can result from mutations affecting cytoskeletal and sarcomeric proteins that may
perturb force generation [3]. However, the genotype/phenotype relationship is not straightforward,
since mutations in the same gene may have completely different clinical outcomes [5]. This
heterogeneity may be explained by disruption of specific protein binding partners, the presence of
comorbidities, differences in penetrance, or genetic resistance to adverse remodeling [2]. However, the
pathophysiologic mechanism of genetic DCM may be much more complex, involving the finely tuned
mechanism of protein synthesis and degradation (i.e., proteostasis) that maintains cell homeostasis [6].
Specifically, the expression and degradation of a mutant or misfolded protein are regulated by
nonsense-mediated mRNA decay [7,8], molecular chaperones [9], the endoplasmic reticulum assisted
degradation (ERAD) via the ubiquitin–proteasome system (UPS) [10], and the autophagy–lysosomal
pathway (ALP), including chaperone-assisted selective autophagy (CASA) [9], to minimize the levels
of toxic proteins or protein aggregates. The emerging role of proteostasis in the pathogenesis of DCM
is shown by the accumulation of amyloid-like substances and polyubiquitinated proteins in patients
affected by DCM [11,12]. Whether UPS and ALP impairment are involved in the pathogenesis of DCM
in humans is less clear [6]. Intriguingly, in conditions of UPS overload, aggregation-prone proteins are
ubiquitinated and segregated by the cells in perinuclear locations, close to the microtubule-organizing
centers, where they are encaged within a net of intermediate filaments (e.g., keratins or vimentin)
that colocalize with histone deacetylase 6 [13]. The latter promotes autophagosome maturation and
macro-autophagy (here referred to as autophagy) [13]. Autophagy is a highly regulated process
that promotes the isolation of long-lived cytosolic proteins, organelles, and part of the cytoplasm
within a transient double membrane (i.e., the phagophore), that expands and closes to become
an autophagosome, which eventually fuses with the lysosome to promote cargo degradation [14].
The unc-51-like autophagy-activating kinase (Ulk) macromolecular complex promotes initiation of the
isolation membrane by activating the Vps34 complex (which comprises Beclin1). The latter complex
plays a critical role in autophagosome expansion, through the formation of phosphatidyl inositol
3-phosphate (PI3P). Indeed, PI3P recruits several Atg proteins, including Atg18, Atg20, Atg21, and
Atg24, promoting phagophore expansion. Maturation and closure of the autophagosome are regulated
by the Atg12–Atg5 complex (whose formation is mediated by Atg3 and Atg7), that eventually leads to the
conjugation of microtubule-associated protein 1 light chain 3 (LC3) to phosphatidylethanolamine [14].

However, when the ALP is impaired, dysfunctional mitochondria can accumulate in cells,
triggering the activation of the inflammasome and the release of inflammatory cytokines, such as
IL1β [15]. Importantly, we recently demonstrated that IL1β levels can predict long-term mortality and
necessity for cardiac transplantation in a cohort of ambulatory patients affected by DCM [16].

In this study, we verified if loss of proteostasis and ALP impairment, coupled with the activation
of the inflammasome, could be associated with the release of proinflammatory cytokines and account
for the clinical heterogeneity of patients affected by idiopathic DCM. Furthermore, we evaluated the
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potential therapeutic impact of downregulating miR-22, an inhibitor of ALP that could be responsible for
the metabolic derangements, accumulation of biologically active metabolites, and increased senescence
rate of cardiac pericytes that characterize DCM hearts.

2. Experimental Section

2.1. Patient Enrollment and Ethics

DCM patients transplanted at our institution were enrolled, and hearts were analyzed by an
expert pathologist, as in [17]. Hearts of patients that died for causes other than cardiovascular disease
were used as controls. Histological studies were conducted on 50 patients and 18 controls, while the
metabolomics study was conducted on another 12 patients and 12 controls. Table S1 summarizes the
clinical features of patients and controls. Western blotting studies, shown in supplementary Figure S1,
were conducted on 7 patients and 7 autoptic controls, whose characteristics are summarized in Table
S1. The study, conducted in accordance with the Declaration of Helsinki, was approved by the Ethics
Committee of Udine (2 August 2011, ref. 47831) and by the Internal Review Board of the University of
Udine (29 August 2017, ref. 10/IRB DAME_BELTRAMI_17). At time of cardiac transplantation, signed
informed consent was collected from patients enrolled in the study.

2.2. Tissue Sampling

Explanted hearts were sampled as in [17], fixed in 10% buffered formalin, and embedded in
paraffin (FFPE). For molecular and metabolomics analyses, samples obtained both from atria and
ventricles were snap frozen in liquid nitrogen.

2.3. Histology, Histochemistry, Immunohistochemistry, and Immunofluorescence Assays

Tissue sections (5 µm thick) were cut and processed for further histochemical, immunohistochemistry,
and immunofluorescence analyses. Gomori trichrome staining was performed for fibrosis
assessment, while Congo red staining was employed to detect amyloids. Immunohistochemistry
and immunofluorescence labeling were performed as indicated in Table S2. Images were acquired
employing either a transmitted light microscope (Leica DMD 108, Leica, Wetzlar, Germany), a confocal
microscope (Leica TCS-SP2 or Leica TCS-SP8), or an epifluorescence microscope (Leica DMI 6000B).
Morphometric analyses were carried out by employing ImageJ software (https://imagej.net/Welcome).

2.4. Western Blotting

Frozen cardiac samples were homogenized in Radioimmunoprecipitation assay buffer (RIPA)
buffer added with protease inhibitors (all from Sigma-Aldrich, St. Louis, MI, USA). Protein extracts
were stored at −80 ◦C until they were analyzed. Antibodies are indicated in Table S2.

2.5. NMR Analysis

Frozen samples were homogenized, dried, dissolved in H2O/MeOH (1/20), and stored at −80 ◦C
before NMR analysis. Dry extracts were re-dissolved in D2O phosphate buffer, pH 7.4, and NMR
spectra were acquired on a Bruker Avance 500 MHz spectrometer (Bruker BioSpin, Rheinstetten,
Germany). A data matrix of 24 samples and 451 spectra buckets, or NMR features, was uploaded to the
MetaboAnalyst 3.0 platform [18] for statistical analysis with R v3.2.2 (http://www.R-project.org). Each
bucket was treated as an independent variable of both control and DCM groups and analyzed with an
unpaired t-test. Hierarchical clustering was performed with the “hclust” function of “stat” R package
on normalized data after autoscale feature standardization. Pearson’s correlation was used for distance
measurement parameters, and Ward’s linkage was used as the clustering algorithm. Concentration
tables for 22 identified metabolites were uploaded on the Metabo-Analyst 3.0 platform for pathway
enrichment analysis and analyzed with the global test approach [19]. Pathway topology analysis was
performed by a relative betweenness centrality approach [20].

https://imagej.net/Welcome
http://www.R-project.org
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2.6. Cardiac Pericyte/Mural Cell Culture and in Vitro Characterization

Cardiac pericytes (CPc) were cultured from atrial biopsies collected at the time of cardiac
transplantation, as in [21]. Immunofluorescence assays were conducted on 4% paraformaldehyde-fixed
cells employing antibodies and protocols indicated in Table S2.

2.7. Oxygen Consumption Rate (OCR)

OCR was determined by direct measurement with a SeaHorse Extracellular Flux Analyzer
XpE instrument (Seahorse Bioscience, Agilent Technologies, Santa Clara, CA, USA). OCR for the
mitochondrial stress test was determined following the manufacturer’s instructions. For statistical
analyses, all OCR values were normalized with those of one control CPc line, then the measurements
of the four control CPc lines were averaged, and the same was done with the four CPc lines obtained
from the DCM patients.

2.8. RNA Extraction and Real-Time PCR Analysis of miRNA Expression

Total RNA was extracted from CPc using the mirVana™miRNA Isolation kit (Ambion, Thermo
Fisher, Waltham, MA, USA) and from DCM and control FFPE tissues using the RecoverAll™
(Thermo Fisher). Total Nucleic Acid Isolation kit (Ambion, Thermo Fisher) was used following
the manufacturer’s instructions. miRNA reverse transcription was performed using the TaqMan
MicroRNA Reverse Transcription Kit (Applied Biosystems), using specific primers. A total of 1.3 L of
the RT product were used for the real-time qPCR assay, employing a master mix (TaqMan Universal
PCR Master Mix, with no UNG, Applied Biosystems) and TaqMan probes to evaluate the expression
profiles of miR-22, miR-146a, and miR-146b. miR-16 and miR-92 were employed as endogenous
controls for cells and tissues, respectively. The amplification protocol was carried out using the
LightCycler 480 (Roche, Basel, Switzerland) instrument.

2.9. MiRNA Inhibition

CPc were transfected at 70% confluence with either 50 nM anti-hsa-miR-22-3p or with 50 nM
Negative Control#1 (mirVana miRNA Inhibitor 2.0, Life technologies, Carlsbad, CA, USA) employing
lipofectamine diluted in Opti-MEM (Gibco, Dublin, Ireland), following the manufacturer’s instructions.
Forty-eight hours after transfection, cells were fixed with 4% paraformaldehyde.

2.10. Statistical Analysis

Gaussian distribution was assessed by Kolmogorov–Smirnov tests. Characteristics of the study
population were described using mean ± SD or median (10th and 90th percentiles), as appropriate.
Continuous variables between two groups were compared using t-tests or Mann–Whitney tests,
as appropriate. Comparisons of continuous variables among groups were performed by ANOVA
followed by Bonferroni post-test or by Kruskal–Wallis followed by Dunn’s post-test, as appropriate.
Correlations between two variables were analyzed employing Pearson or Spearman tests, as appropriate.
p values < 0.05 were considered significant. Analyses were conducted with Prism, version 4.0c and
SPSS20 for Macintosh software.

3. Results

3.1. Failing Hearts of DCM Patients Show Accumulation of Misfolded and Ubiquitinated Proteins

Ventricular biopsies of transplanted patients (n = 50) were compared with biopsies of control
hearts (n = 18). Failing hearts were severely dilated and functionally impaired (Table 1).

DCM hearts displayed significant degrees of cardiomyocyte fibrosis, hypertrophy, and
accumulation of polyubiquitinated proteins (Figure 1A–C). Protein quality control failure and
intracellular protein fibrillation were shown by the positivity of DCM hearts to Congo red staining
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(Figure 1D). In DCM myocytes, but not in control myocytes, some misfolded proteins were sequestered
by the aggresome (i.e., cytoplasmic inclusions containing ubiquitinated proteins encaged in a net of
vimentin or keratin filaments; Figure 1E) [13].

Table 1. Clinical, demographic, and anatomical parameters of the patients whose hearts were included
in the histology study.

Cardiomyopathy (n = 50) Controls (n = 18) Normal Values p

Age (Yr) 51.6 ± 13.9 40.7 ± 12.4 - 0.0068
Sex (M/F) 40/10 8/10 - 0.0072
Duration of disease (Years) 8.36 ± 6.54 - -
NYHA class (%)
II 9 - - -
III 67 - - -
IV 24 - - -
Echocardiography §
Left ventricular diameter (mm)
Systolic 62.7 ± 12.1 - 21.6–34.8 -
Diastolic 74.0 ± 11.3 - 37.8–52.2 -
Left ventricular Volumes (mL)
End Diastolic 197 ± 75 - 46–106 -
End Systolic 149 ± 60 - 14–42 -
LV Ejection Fraction (%) 23 ± 7 - 54–74 -
Hemodynamics ‡
Pulmonary Artery Pressure (mmHg)
Systolic 41.92 ± 13.59 - 15–25 -
Diastolic 22.15 ± 10.31 - 8–12 -
Mean 29.45 ± 11.18 - 10–20 -
PCWP (mmHg) 21.56 ± 10.42 - 6–12 -
CI (L·min−1

·m−2) 2.37 ± 0.73 - 2.5–4.0 -
Gross Anatomy †
Heart Weight (g) 494 ± 161 334 ± 109 196–516 0.0011
Transverse diameter (mm) 129 ± 16 100 ± 20 - <0.0001
Inner longitudinal diameter (mm) 94 ± 16 73 ± 3 - <0.0001
Wall thickness (mm)
LV 9.5 ± 2.1 13 ± 1.2 - 0.0073
RV 4.1 ± 1.9 3.3 ± 1.5 - n.s.
Septum 11.5 ± 2.4 12.0 ± 2.0 - n.s.
Comorbidities
BMI>30 (%) 7.5
Arrhythmia (%) 75.6
Mitral Insufficiency (%) 82.6
Chronic Kidney Failure (%) 4.5
BPCO (%) 6.8
Smoke 4.5
Hypothyroidism 9.1
Hyperthyroidism 2.3
Hypertension (%) 2.3
Dyslipidemia (%) 20.5
Diabetes (%) 11.4
Pharmacological therapy
ACE-I/ARB (%) 82.5
β-Blockers (%) 58.5
Digitalis (%) 80.5
Dobutamine (%) 30
Amiodarone (%) 56.1
Antialdosteronic (%) 67.5
K Sparing diuretics (%) 12.5
Loop diuretics (%) 97.5
Insulin / Antidiabetics (%) 7.5
Statins (%) 0
Oral Anticoagulants (%) 57.5
Tiroxin (%) 9.8

Legend: NYHA- New York Heart Association Functional Classification; Normal value as in: (§) Lang, R.M.; Badano,
L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova,
T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the
American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J.
Cardiovasc. Imaging. 2015, 16, 233–270. (‡) Bangalore, S.; Bhatt, D.L. Images in cardiovascular medicine. Right heart
catheterization, coronary angiography, and percutaneous coronary intervention. Circulation 2011, 124, e428–433.
(†) Sheppard, M. Practical Cardiovascular Pathology, 2nd ed.; Taylor & Francis: London, UK, 2011.

Therefore, failing DCM hearts are characterized by loss of proteostasis, accumulation of
amyloid-like substances, and the formation of aggresomes in cardiomyocyte cytoplasm.
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polyubiquitinated protein labeled cardiac sections (brown). Normalized integrated optical density 
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Figure 1. Fibrosis, hypertrophy, and loss of proteostasis characterize the hearts of dilated
cardiomyopathy (DCM) patients. (A) Fibrosis. Microimages of trichrome stained control and diseased
hearts, showing interstitial and perivascular fibrosis (blue). Dot plots indicate the volume fraction
occupied by fibrosis; an unpaired t test was employed. (B) Hypertrophy. Confocal images of
cardiac sections showing α-sarcomeric actin (ASA, red) and desmin (green) stained cardiomyocytes.
Cardiomyocyte cross-sectional area and length are shown in dot plots; unpaired t test and Mann–Whitney
test, respectively, were employed. (C–E) Protein misfolding. Microimages of polyubiquitinated protein
labeled cardiac sections (brown). Normalized integrated optical density (IOD) values, obtained dividing
individual IOD values by the mean IOD of controls, of the immunohistochemistry staining are shown
in dot plots; an unpaired t test was employed (C). Confocal images of Congo red (CR) stained cardiac
sections of control, DCM, and AL amyloidosis (AL) patients. CR was excited with a UV laser, while
the fluorescence emission range was set at 596–615 nm employing a monochromator. The integrated
fluorescence intensity (IFI) values of CR, normalized as IOD, are shown in dot plots; a Mann–Whitney
test was employed (D). Confocal images showing the presence of aggresomes. ASA (white) labels
cardiomyocytes, while vimentin decorates both interstitial cells and aggresomes (green), these latter
being characterized by the co-localization of vimentin and p62SQSTM1 (red). Images of either vimentin,
p62SQSTM1, or the combination of the two stainings without ASA are shown in the right portion of
each figure (E). Nuclei of fluorescence images are stained in blue by 4′,6-diamidine-2′-phenylindole
dihydrochloride (DAPI). A total of 18 controls and 50 DCM hearts were analyzed.



J. Clin. Med. 2019, 8, 1519 7 of 19

3.2. A Defective Autophagy Lysosomal Pathway Characterizes Failing DCM Hearts

Although aggresome formation should promote the removal of unfolded proteins via the ALP
(aggrephagy) [13], DCM hearts were characterized by a significantly reduced expression of Beclin 1,
Atg5, and Atg7 (Figure 2A) and by a significant accumulation of p62SQSTM1, suggesting a discrepancy
between aggresome formation and the ability of DCM hearts to remove aggregates (Figure 2B).
In line, lysosomes in DCM hearts were characterized by rarefaction, pathologic enlargement, and
lysosomal membrane permeabilization (LMP), as demonstrated by galectin 3 punctae formation [22]
(Figure 2C–D). Consistently, nuclear TFEB, a master regulator of the coordinated lysosomal expression
and regulation) (CLEAR) gene network [23], involved in lysosomal biogenesis and function, was
significantly reduced in both DCM cardiomyocytes and interstitial cells (Figure 2E and Figure S2).
Since mTOR activation could account for the observed results, we analyzed the Akt/mTOR axis, and
we observed a trend towards higher levels of phosphoAktSer473 (p = 0.099), associated with a significant
increase in the levels of mTOR phosphorylated in Ser2448, and a trend towards higher levels of mTOR
phosphorylation in Ser2481 (Figure 2F). The activation status of mTOR was further confirmed by
assessing the levels of 4EBP-1, a target of mTORC1 complex, phosphorylated on threonins 37 and 46.
DCM hearts were characterized, with respect to autoptic hearts obtained from patients that died for
causes other than cardiac disease, by increased levels of 4EBP-1 phosphorylation (Figure S1).

These results indicate that, in DCM, mTOR activation is associated with ALP suppression and
accumulation of proteinaceous aggregates in the form of aggresomes.

3.3. Accumulation of Dysfunctional Mitochondria, Oxidative Stress and Inflammasome Activation

ALP is crucial to remove dysfunctional mitochondria [24]. Consistently, dysfunctional
mitochondria positive for Parkin, an E3 ubiquitin ligase stabilized on depolarized mitochondrial
membranes, were detected in DCM cardiomyocytes (Figure 3A). Moreover, the cytoplasmic levels
of both Parkin (Figure 3B) and 4-hydroxynonenal (4HNE), a product of lipoperoxidation of the
mitochondrion-specific phospholipid cardiolipin [25], were significantly incremented in DCM
(Figure 3C). Western blot (WB) analysis of Parkin expression, assessed in DCM hearts and autoptic
controls, corroborated these results (Figure S1). These findings were paralleled by both an incremented
frequency of cardiomyocytes and interstitial cells positive for the DNA damage checkpoint protein
53BP1 (Figure 3D and Figure S2), and an increased expression and nuclear localization of the protein
apurinic/apyrimidinic endonuclease Ref-1-protein (APE/Ref-1, Figure 3E), a multifunctional protein
regulating NFκB in a redox-dependent fashion. Consistently, DCM hearts were characterized by
a significant increase of both NFκB levels and two NFκB target gene products (i.e., miR-146a and
miR-146b), which exert negative feedback on the axis (Figure 3F–G and Figure S2) [26]. In line, IL6
levels were significantly downregulated in DCM hearts (Figure 3H).

Next, we studied the activation status of the inflammasome, a multiprotein platform, activated by
damage-associated molecular patterns (DAMPs) via pattern-recognition receptors (PRR), responsible
for caspase1 activation that, in turn, processes and promotes the secretion of IL1δ. The levels of caspase1
co-localized with the PRR NLRP3 were significantly increased in DCM cardiomyocytes (Figure 3I).

Last, we evaluated whether clinical data in DCM patients were associated with the analyzed
parameters. Indeed, we observed that the duration of the disease was inversely correlated with the
expression of nuclear TFEB in cardiomyocytes (p = −0.415, p = 0.049), while left ventricular ejection
fraction positively correlated with the fraction of interstitial cells expressing nuclear TFEB (p = 0.45,
p = 0.021). Importantly, p62SQSTM1 levels positively correlated with the fraction of 53BP1+ senescent
myocytes and interstitial cells (p = 0.45, p < 0.01; p = 0.37, p = 0.03, respectively), NFpB levels in
non-myocytes (p = 0.58, p < 0.01), and the levels of co-localized NLRP3/caspase1 in myocytes (p =0.56,
p < 0.01). Moreover, in cardiomyocytes, Parkin levels positively correlated with NFκB levels (p =0.34,
p = 0.027).
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Figure 2. Defects of the autophagy lysosomal pathway characterize the hearts of DCM patients.
(A,B) Autophagy. Western blots (WBs) of whole protein extracts of 3 control hearts and 3 DCM
explanted hearts. Blotted proteins were incubated with antibodies against Beclin 1, Atg5, Atg7, and
GAPDH. Densitometric analyses of 6 DCM and 6 controls are shown in dot plots; unpaired t tests (Beclin
1 and Atg 5) and Mann–Whitney tests (Atg 7) were employed (A). Microimages of p62SQSTM1-labeled
cardiac sections (brown, (B)). Quantitative analysis of p62SQSTM1 staining is shown in dot plots;
a Mann–Whitney test was employed. (C–E) Lysosome dysfunction and biogenesis. Confocal images
of LAMP2- (red) and ASA-labeled (white) cardiac sections. Arrows point to enlarged lysosomes.
Normalized IFI values of LAMP2 staining are shown in dot plots; a Mann–Whitney test was employed
(C). Confocal images of Galectin3- (red) and ASA-labeled (white) cardiac sections. Arrow points to a
myocyte with Galectin3 punctae. Dot plots display the fraction of cardiomyocytes showing Galectin3
punctae in their cytoplasm; an unpaired t test was employed (D). Confocal images of TFEB- (red)
and ASA-stained (white) cardiac sections. Box plots illustrate the fraction of cardiomyocytes showing
TFEB nuclear positivity; a Mann–Whitney test was employed (E). In fluorescence images, DAPI labels
nuclei (blue). (F) mTOR activation status. WBs of whole protein extracts of 3 control hearts and
3 DCM explanted hearts. Blotted proteins were incubated with antibodies against Akt, p-AktSer473,
mTOR, p-mTORSer2448, p-mTORSer2481, and GAPDH. Densitometric analyses of 6 DCM and 6 controls
are shown in dot plots; unpaired t tests (Akt, p-AktSer473, p-mTORSer2481 and p-mTORSer2448) and
Mann–Whitney tests (mTOR), as appropriate, were employed. For histology, 18 controls and 50 DCM
hearts were analyzed.
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Figure 3. Evidence of the accumulation of dysfunctional mitochondria, lipoperoxidation products, and
activated inflammasomes in explanted hearts. (A,B) Mitochondrial dysfunction. Confocal images of
cardiac sections immunostained for mitochondria (green) and Parkin (red). Higher magnifications
of the insets are shown, as single channel images of mitochondria and Parkin, in the right portion of
each figure (A). Microimages of Parkin immunohistochemistry stainings of cardiac sections (brown).
Normalized IOD values of Parkin are shown in dot plots; a Mann–Whitney test was employed (B).
(C–E) Oxidative stress and redox signaling. Microimages of 4-hydroxynonenal (4HNE)-labeled cardiac
sections (brown). Normalized IOD values of 4HNE are shown in dot plots; an unpaired t test was
employed (C). Confocal images of cardiac sections immunostained for 53BP1 (red) and ASA (white).
The fraction of cardiomyocytes showing 53BP1 nuclear positivity is shown in dot plots; a Mann–Whitney
test was employed (D). APE/REF immunohistochemistry staining of cardiac sections (brown). Results
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of the quantitative assessment of the nuclear expression of APE/REF are shown in the right panel as
normalized IOD; a Mann–Whitney test was employed (E). (F–I) Inflammatory pathways. Confocal
images of p65 NFκB- (red) and ASA-labeled (white) cardiac sections. Higher magnifications of the
insets are shown in the right portion of each figure. Normalized IFI values of NFκB staining are
shown in plots (F). Dot plots showing the expression of miR-146a and miR-146b in controls and
DCM hearts, as assessed by RT-PCR. Data were normalized employing the 2−∆∆Ct method, using
miR-92a as housekeeping gene; Mann–Whitney tests were employed (G). IL6 immunohistochemistry
staining of cardiac sections (brown). Normalized IOD values of IL6 staining are shown in dot plots;
a Mann–Whitney test was employed (H). Epifluorescence images of NLRP3- (green), caspase1- (red),
and ASA-labeled (white) cardiac sections. Higher magnifications of the insets are shown in the right
portion of each figure. Normalized IFI values of caspase1 staining colocalized with NLRP3 positivity
are shown in dot plots; a Mann–Whitney test was employed (I). In fluorescence images, DAPI-labeled
nuclei are shown in blue. A total of 18 controls and 50 DCM hearts were analyzed for histology and
RT-PCR experiments.

In summary, in DCM, autophagic arrest and p62SQSTM1 accumulation, coupled with mitochondrial
dysfunction, are associated with inflammasome activation. Additionally, lysosomal dysfunction
correlates with both disease duration and systolic dysfunction.

3.4. Metabolic Alterations in DCM Hearts

Next, we evaluated if mitochondrial dysfunction was coupled with alterations of cardiac
metabolism, as occurs in a mouse model of DCM that evolves to heart failure [27].

1D 1H-NMR and 2D 1H-13C-HMQC and 1H-1H-TOCSY spectra of hydrophilic metabolites
extracted from myocardial samples of DCM patients and controls (n = 12 each; Table 2) were acquired.

A total of 451 spectra buckets (i.e., NMR features) were detected (Figure 4A). By employing the
top 25 buckets, evidenced by univariate statistical analysis, hierarchical clustering analysis correctly
discriminated DCM from controls (Figure 4B). Within the 22 metabolites that were unambiguously
identified by 1D NMR, 10 compounds were significantly affected by pathology (Table S3). Lactate,
pyruvate, and fumarate, as well as the amino acids valine, leucine, phenylalanine, and taurine, were
the most enriched metabolites in DCM hearts, while 4-aminobenzoate (alias PABA or vitamin B10),
6-phosphogluconate, and creatine were the less enriched ones. Pathway enrichment and pathway
topology analyses showed that alterations in glycolysis, pyruvate metabolism, CoA synthesis, and
citrate cycle are consistent with the metabolome of DCM (Table S4). Branched chain amino acid
(valine, leucine, and isoleucine) metabolism is also possibly altered in DCM. Since BCAAs are potent
activators of mTOR and may disrupt cardiac glucose metabolism [28], we analyzed the expression of
PP2Cm, a protein phosphatase regulating the function of the rate-limiting enzyme of BCAA catabolism.
PP2Cm levels were significantly reduced in DCM samples (Figure 4C). Conversely, the levels of miR-22,
an inhibitor of PP2Cm expression [29] that is upregulated by hypertrophic stimuli [30] and suppresses
cardiomyocyte autophagy [31], was highly enriched in DCM samples. Importantly, miR-22 expression
was significantly correlated with the nuclear expression of the redox sensitive transcriptional regulator
APE/Ref (p = 0.46, p = 0.009).

Altogether, these results suggest that miR-22 overexpression is coupled with complex alterations
of cardiac metabolism, leading to the accumulation of BCAA, and is possibly linked to alteration of
glucose utilization and suppression of autophagy.



J. Clin. Med. 2019, 8, 1519 11 of 19

Table 2. Clinical, demographic, and anatomical parameters of the patients whose hearts were included
in the metabolomic study.

Cardiomyopathy (n = 12) Controls (n = 12) Normal Values p

Age (Yr) 57.9 ± 6.1 46.9 ± 15.9 - 0.04
Sex (M/F) 11/1 6/6 - n.s.
Duration of disease (Years) 23.9 ± 32.1 - -
NYHA class (%)
III 75 - - -
IV 25 - - -
Echocardiography §
Left ventricular diameter (mm)
Systolic 61.6 ± 11.9 27.1 ± 5.0 21.6–34.8 <0.0001
Diastolic 71.0 ± 7.9 45.4 ± 4.5 37.8–52.2 <0.0001
Left ventricular Volumes (mL)
End Diastolic 220.2 ± 112.4 92.0 ± 50.4 46–106 0.047
End Systolic 170.6 ± 98.9 40.7 ± 23.1 14–42 0.012
LV Ejection Fraction (%) 22.8 ± 8.4 63.4 ± 5.8 54–74 <0.0001
Hemodynamics ‡
Pulmonary Artery Pressure (mmHg)
Systolic 45.9 ± 15.2 - 15–25
Diastolic 20.7 ± 11.6 - 8–12
Mean 30.0 ± 13.8 - 10–20
PCWP (mmHg) 18.5 ± 11.4 - 6–12
CI (L·min−1

·m−2) 1.9 ± 0.36 - 2.5–4.0
Gross Anatomy †
Heart Weight (g) 555.4 ± 194.5 - 196–516
Transverse diameter (mm) 125 ± 12 - -
Inner longitudinal diameter (mm) 93 ± 13 - -
Wall thickness (mm)
LV 11.6±1.8 - -
RV 7.2±3.5 - -
Septum 13.9±3.5 - -
Comorbidities
BMI>30 (%) 8 -
Arrhythmia (%) 90 -
Mitral Insufficiency (%) 88 -
Chronic Kidney Failure 40 -
BPCO (%) 10 -
Smoke 0 -
Hypothyroidism 10 -
Hyperthyroidism 20 -
Hypertension (%) 30 -
Dyslipidemia (%) 40 -
Diabetes (%) 20 -
Pharmacological therapy
ACE-I/ARB (%) 66.7 -
β-Blockers (%) 80 -
Digitalis (%) 60 -
Dobutamine (%) 10 -
Amiodarone (%) 30 -
Antialdosteronic (%) 40 -
K Sparing diuretics (%) 50 -
Loop diuretics (%) 80 -
Insulin / Antidiabetics (%) 10 -
Statins (%) 30 -
Oral Anticoagulants (%) 70 -
Tiroxin (%) 20 -

Normal value as in: (§) Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf,
F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification
by echocardiography in adults: An update from the American Society of Echocardiography and the European
Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging. 2015, 16, 233–270. (‡) Bangalore, S.; Bhatt,
D.L. Images in cardiovascular medicine. Right heart catheterization, coronary angiography, and percutaneous
coronary intervention. Circulation 2011, 124, e428–433. (†) Sheppard, M. Practical Cardiovascular Pathology, 2nd ed.;
Taylor & Francis: London, UK, 2011.
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and 6-phosphogluconic acid (A). Heatmap summarizing the results of the hierarchical clustering analysis 
generated employing the top 25 features ranked by t tests. Each colored cell on the map corresponds to a 
concentration value in the data table, with samples in columns and features/compounds in rows (B). (C) 
WB and real-time PCR analyses. Representative WB of whole-protein extracts of 3 control hearts and 3 
DCM explanted hearts. Blotted proteins were incubated with antibodies against PP2Cm and GAPDH. 
Results of the densitometric analyses (n = 6 controls and 6 DCM) are reported in the bottom-left panel; a 
Mann–Whitney test was employed. The bottom-right panel summarizes the results of the RT-PCR analysis 
of miR-22 expression in control (n = 12) and DCM (n = 37) hearts; a Mann–Whitney test was employed. 
Fold change was computed using miR-92a as a housekeeping gene. 
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NG2+PDGFRβ+PDGFRα−/lowTbx18+ cardiac pericytes and were obtained both from atria of explanted 
DCM hearts (EDCM-CPc) and from normal, donor hearts (D-CPc); Figure 5A. In vivo, PDGFRβ+ cells 
display both a mural/perivascular and interstitial location (Figure 5B). 

With respect to D-CPc, EDCM-CPc were more senescent (either p16+ or γH2AX+Ki67- Figure 5C–
D) and less proliferative (Ki67+, Figure 5D). Importantly, EDCM-CPc accumulated lipofuscins in the 
cytoplasm, showed evidence of LMP (Figure 5E–F), and possessed very elongated and branched 
mitochondria (Figure 5G). These morphological differences were paralleled by functional differences 
in mitochondrial respiration; EDCM-CPc cell lines presented a significantly lower basal OCR, a 
significantly reduced ATP production and coupling efficiency, and a significantly increased proton 

Figure 4. DCM is associated with alterations of amino acid metabolism. (A,B) Metabolomic analysis.
1D NMR spectra of 12 control (green lines) and 12 DCM hearts (red lines). The full spectra are shown in
the bottom panel, while the top panel shows the 3.75–4.45 ppm region and the peaks assigned to lactic
acid and 6-phosphogluconic acid (A). Heatmap summarizing the results of the hierarchical clustering
analysis generated employing the top 25 features ranked by t tests. Each colored cell on the map
corresponds to a concentration value in the data table, with samples in columns and features/compounds
in rows (B). (C) WB and real-time PCR analyses. Representative WB of whole-protein extracts of
3 control hearts and 3 DCM explanted hearts. Blotted proteins were incubated with antibodies against
PP2Cm and GAPDH. Results of the densitometric analyses (n = 6 controls and 6 DCM) are reported
in the bottom-left panel; a Mann–Whitney test was employed. The bottom-right panel summarizes
the results of the RT-PCR analysis of miR-22 expression in control (n = 12) and DCM (n = 37) hearts;
a Mann–Whitney test was employed. Fold change was computed using miR-92a as a housekeeping gene.

3.5. Alterations of the Autophagic Process and Mitochondrial Function are Coupled with Accelerated
Senescence of Cardiac Pericytes in DCM

Last, since many of the crucial alterations observed in myocytes could also be observed in
interstitial stromal cells (Figure S2), we isolated and cultured these cells in order to support
histological findings with functional data. Cultured stromal cells were characterized as being
NG2+PDGFRβ+PDGFRα−/lowTbx18+ cardiac pericytes and were obtained both from atria of explanted
DCM hearts (EDCM-CPc) and from normal, donor hearts (D-CPc); Figure 5A. In vivo, PDGFRβ+ cells
display both a mural/perivascular and interstitial location (Figure 5B).

With respect to D-CPc, EDCM-CPc were more senescent (either p16+ orγH2AX+Ki67− Figure 5C–D)
and less proliferative (Ki67+, Figure 5D). Importantly, EDCM-CPc accumulated lipofuscins in the
cytoplasm, showed evidence of LMP (Figure 5E–F), and possessed very elongated and branched
mitochondria (Figure 5G). These morphological differences were paralleled by functional differences in
mitochondrial respiration; EDCM-CPc cell lines presented a significantly lower basal OCR, a significantly
reduced ATP production and coupling efficiency, and a significantly increased proton leak (Figure 5H).
Furthermore, increased miR22 expression (Figure 5I) and increased IL1β secretion (Figure 5J)
characterized EDCM-CPC.
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ASA is shown in white (B). (C–G) Senescence and ALP dysfunction of EDCM-CPc. Epifluorescence images 
of CPc isolated from normal (D-CPc; n = 5) and pathologic hearts (EDCM-CPc; n = 4) show positivity to 
p16INK4A (green, C), γH2A.X (green) and Ki67 (red, D), lipofuscins (green, €), Galectin 3 (red) and LAMP2 
(green, (F)), and mitochondria (green, (G)). Nuclei are labeled by DAPI in blue. Dot plots in C–G indicate 
the results of the quantitative analysis; Mann–Whitney tests were employed. (H) Profiles of 
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Figure 5. Cardiac pericytes isolated from diseased hearts are senescent and accumulate dysfunctional
mitochondria. (A,B) In vitro and in vivo characterizations of CPc. Confocal images of cultured CPc
(n = 5 D-CPc and n = 5 EDCM-CPc) stained for NG2 (green, left panel), PDGFRα and PDGFRβ (green and
red, central panel), and Tbx18 (red, right panel; (A)). Confocal images showing that mostly PDGFRβ+

cells (green) are localized in and around arterioles and capillaries and coexpress smooth muscle actin
(red). ASA is shown in white (B). (C–G) Senescence and ALP dysfunction of EDCM-CPc. Epifluorescence
images of CPc isolated from normal (D-CPc; n = 5) and pathologic hearts (EDCM-CPc; n = 4) show
positivity to p16INK4A (green, C), γH2A.X (green) and Ki67 (red, D), lipofuscins (green, €), Galectin
3 (red) and LAMP2 (green, (F)), and mitochondria (green, (G)). Nuclei are labeled by DAPI in blue.
Dot plots in C–G indicate the results of the quantitative analysis; Mann–Whitney tests were employed.
(H) Profiles of mitochondria bioenergetics measurements. Plots in (i) display average (±S.D.) OCR of
4 D- and 4 EDCM-CPc, measured at baseline and after the addition of the stressors oligomycin, FCCP,
rotenone, and antimycin A. Time and type of stressor administration are indicated by dashed lines.
Parameters quantified from the experiment were normalized employing the respective average value
of D-CPc and are shown in dot plots in (ii); Mann–Whitney tests were employed. (I,J) Real-time PCR
and ELISA analyses of CPc. Results of RT-PCR analysis of miR22 expression in 6 D- and 6 EDCM-CPc
(I). IL1β concentration in CPc culture supernatant (J); Mann–Whitney tests were employed.
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To directly assess the impact of miR-22 in CPc biology, we first inhibited it in patient-derived
CPc, employing an anti-miR for 3 d (Figure 6A). By down-regulating miR22, we significantly reduced
the frequency of senescent EDCM-CPc (Figure 6B,C) and increased the frequency of proliferating
EDCM-CPc (Figure 6C). These changes were associated with a significant reduction of the frequency of
EDCM-CPc showing evidence of LMP, lipofuscin accumulation (Figure 6D), and elongated mitochondria
(Figure 6E). Moreover, anti-miR22 treatment increased the frequency of EDCM-CPc showing nuclear
localization of TFEB (Figure 6F). These functional modifications of EDCM-CPc were associated with a
trend to reduced 4EBP-1 levels (p = 0.10), coupled with significantly increased levels of both PP2Cm
and lipidated LC3, and decreased levels of p62SQSTM1 (Figure 6G), supporting the relevant role played
by miR-22 in autophagy inhibition. Importantly, by inhibiting miR22 in EDCM-CPc, we were able to
reduce the levels of IL1β released in their culture supernatant (Figure 6H).J. Clin. Med. 2019, 8, x FOR PEER REVIEW 15 of 20 

 

 
Figure 6. Inhibition of miR-22 reverses EDCM-CPc senescence. Results of RT-PCR analysis of EDCM-CPc 
treated with either anti-miR22 or a negative control (NC; (A)). (B–F) Reversal of EDCM-CPc senescence 
and ALP dysfunction by miR-22 inhibition. Confocal images of EDCM-CPc treated with either anti-
miR22 or NC showing positivity to p16INK4A (green, (B)), γH2A.X (green) and Ki67 (red, (C)), 
lipofuscins (green) and Galectin 3 (red, D), mitochondria (green, (E)), and TFEB (yellow, (F)). Nuclei 
are labeled by DAPI in blue. (G) Effects of miR-22 inhibition on mTOR targets, PP2Cm, and 
autophagy. Representative WB of whole protein extracts of 6–7 EDCM-CPc treated with either anti-
miR22 or NC (G). Blotted proteins were incubated with antibodies against 4EBP1, p-4EBP1Thr37/46, 
PP2Cm, LC3A/B or p62SQSTM1. Results of the quantitative analyses are reported in the right panels. (H) 
Effects of miR-22 inhibition on IL1β secretion. ELISA assay was used for the detection of IL1β released 
in the culture supernatant of 7 EDCM-CPc treated with either anti-miR22 or NC (H). Dot plots indicate 
the results of quantitative analyses; paired t tests (p16INK4A, Ki67, lipofuscin, mitochondria, TFEB, 
4EBP1, p-4EBP1Thr37/46, PP2Cm, and LC3A/B) or Wilcoxon tests (Ki67-γH2A.X+, Galectin 3, p62SQSTM1, 

and IL1β) were employed, as appropriate. 

4. Discussion 

Since IL1β plasma levels can predict long-term prognosis of ambulatory patients affected by 
DCM [16], understanding the mechanisms leading to inflammation is critical to dissect the clinical 
variability of DCM patients. To be secreted, IL1β needs to be transcribed (mostly in a NFκB-
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expressed in DCM hearts. Pro-IL1β is subsequently processed by active caspase1, which is activated 
by the inflammasome and is required for IL1β and IL18 secretion [33]. Inflammasomes are activated 
by sensor proteins (e.g., NLRP3), which are triggered by DAMPs (e.g., mitochondrial ROS and DNA 
or cathepsin release following LMP) leading to sterile inflammation [33]. 

To verify how DAMPs could accumulate in DCM, we focused on proteostasis, a network of 
molecular (e.g., chaperones, and the UPS), organelle (i.e., the ALP), intercellular (i.e., exosomes and 
tunneling nanotubes), and (possibly) interorgan pathways preventing the accumulation of unwanted 

Figure 6. Inhibition of miR-22 reverses EDCM-CPc senescence. Results of RT-PCR analysis of EDCM-CPc
treated with either anti-miR22 or a negative control (NC; (A)). (B–F) Reversal of EDCM-CPc senescence
and ALP dysfunction by miR-22 inhibition. Confocal images of EDCM-CPc treated with either anti-miR22
or NC showing positivity to p16INK4A (green, (B)), γH2A.X (green) and Ki67 (red, (C)), lipofuscins
(green) and Galectin 3 (red, D), mitochondria (green, (E)), and TFEB (yellow, (F)). Nuclei are labeled by
DAPI in blue. (G) Effects of miR-22 inhibition on mTOR targets, PP2Cm, and autophagy. Representative
WB of whole protein extracts of 6–7 EDCM-CPc treated with either anti-miR22 or NC (G). Blotted
proteins were incubated with antibodies against 4EBP1, p-4EBP1Thr37/46, PP2Cm, LC3A/B or p62SQSTM1.
Results of the quantitative analyses are reported in the right panels. (H) Effects of miR-22 inhibition on
IL1β secretion. ELISA assay was used for the detection of IL1β released in the culture supernatant of
7 EDCM-CPc treated with either anti-miR22 or NC (H). Dot plots indicate the results of quantitative
analyses; paired t tests (p16INK4A, Ki67, lipofuscin, mitochondria, TFEB, 4EBP1, p-4EBP1Thr37/46, PP2Cm,
and LC3A/B) or Wilcoxon tests (Ki67−γH2A.X+, Galectin 3, p62SQSTM1, and IL1β) were employed,
as appropriate.
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Intriguingly, when we exposed CPc derived from normal hearts to a short (3 d) treatment with a
miR-22 mimic, we were able to recapitulate only marginally the alterations observed in CPc isolated
from failing DCM hearts. Specifically, although we did not observe a clear effect on proliferation and
senescence, we documented a significant reduction in cell density, which is suggestive of ongoing cell
death, associated with an alteration of mitochondrial morphology, TFEB nuclear translocation, and
lipofuscin accumulation (Figure S3).

Altogether, these results point to the central role of miR-22 overexpression in dictating EDCM-CPC
cell senescence, loss of proteostasis, and mitochondrial dysfunction.

4. Discussion

Since IL1β plasma levels can predict long-term prognosis of ambulatory patients affected by
DCM [16], understanding the mechanisms leading to inflammation is critical to dissect the clinical
variability of DCM patients. To be secreted, IL1β needs to be transcribed (mostly in a NFκB-dependent
fashion) [32]. Consistently, we observed that NFκB, miR-146a, and miR-146b are more expressed
in DCM hearts. Pro-IL1β is subsequently processed by active caspase1, which is activated by the
inflammasome and is required for IL1β and IL18 secretion [33]. Inflammasomes are activated by sensor
proteins (e.g., NLRP3), which are triggered by DAMPs (e.g., mitochondrial ROS and DNA or cathepsin
release following LMP) leading to sterile inflammation [33].

To verify how DAMPs could accumulate in DCM, we focused on proteostasis, a network of
molecular (e.g., chaperones, and the UPS), organelle (i.e., the ALP), intercellular (i.e., exosomes and
tunneling nanotubes), and (possibly) interorgan pathways preventing the accumulation of unwanted
proteomic changes [34]. Consistently with literature data [11], we observed that amyloid-like substances
and poly-ubiquitinated proteins accumulated in DCM hearts. These alterations were coupled with
ALP impairment and aggresome accumulation [13], in analogy with results obtained by experimentally
inhibited autophagy [35]. Mitophagy and ALP are crucial for mitochondrial quality control [36].
Consistently, we showed that dysfunctional, Parkin-labeled mitochondria [36] and 4HNE (a product of
cardiolipin peroxidation), which are potent NLRP3 triggers [33], accumulated in DCM.

Concerning ALP impairment, we observed both reduced Beclin1 expression and nuclear
translocation of TFEB, coupled with evidence of LMP, in DCM hearts. Notably, the presence of
an active mTOR Complex1 (mTORC1) in DCM samples could account for many of the above reported
alterations, since it suppresses lysosomal biogenesis, promoting the exclusion of TFEB from the
nucleus [23], and inhibits autophagy, promoting both ULK1 phosphorylation [37] and inhibition of
TFEB-dependent transcription of autophagy genes [38,39]. Since mTOR is sensitive to the availability
of nutrients [37], and DCM that evolves to heart failure is characterized by a pathologic alteration
of cardiac metabolism [27], we analyzed the metabolome of normal and DCM hearts. In explanted
hearts, we observed both a shift from oxidative to glycolytic metabolism and the accumulation of the
BCAAs leucine and valine, two of the best characterized activators of mTORC1 [37], which can alter
glucose metabolism too [28]. This was coupled with a reduced expression of PP2Cm, a mitochondrial
targeted phosphatase that inhibits the enzymatic complex catalyzing the rate-limiting step of BCAA
catabolism [40]. Consistently, patients affected by DCM display alterations of BCAA catabolism, while
PP2Cm gene deletion exerts a negative impact on mouse heart function [41]. Importantly, miR22,
a strong inhibitor of the autophagic process [31] whose ability to downregulate PP2Cm levels has been
validated [29], is upregulated in DCM samples.

Finally, we analyzed cardiac pericytes, since they are the second most common cell type in the
heart [42], whose involvement in cardiac pathology is emerging. Indeed, pericytes are important
regulators of the cardiac microvascular blood flow [43], whose dysfunction also characterizes DCM [44],
plays a role in fibrosis [45], and are possible sentinels of the innate immunity [46]. We observed that
EDCM-CPc are characterized by increased senescence rates, lysosomal dysfunction, and lipofuscin
accumulation, coupled with mitochondrial dysfunction, miR22 upregulation, and IL1β secretion.
To directly prove the involvement of miR22 in modulating CPc biology, we first silenced its expression in
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EDCM-CPc. Consistently with our hypothesis, miR22 downregulation was associated with a significant
upregulation of PP2Cm expression, confirming literature data [29] in this specific cell type. We also
observed a trend to attenuate mTOR signaling and a significant reprise of autophagy, as shown by the
increased nuclear localization of TFEB, the increase in LC3-II levels, and decrease in p62SQSTM1 levels.
These modifications were coupled with a decrease in the frequency of cells showing evidence of LMP
and accumulation of elongated mitochondria and lipofuscins. Most importantly, miR22 inhibition
reduced the secretion of IL1β in EDCM-CPc culture supernatant. Conversely, an acute overexpression
of miR22 in healthy CPc mainly resulted in an alteration of mitochondrial dynamics. We could
speculate that, given the important role of PP2Cm in regulating the mitochondrial permeability
transition pore opening and cell survival [47], those healthy cells that survived miR22 overexpression
mainly responded to this acute stimulus by increasing mitochondrial fragmentation and, as a response,
promoting TFEB nuclear localization, which is consistent with literature data [48]. The accumulation
of lipofuscins in miR22-overexpressing cells may be considered additional indirect evidence of altered
mitochondrial dynamics, as in [49].

5. Conclusions

A complex series of events, linking alterations of proteostasis with inflammation (Figure 7),
characterizes DCM. miR22 overexpression, PP2Cm downregulation, BCAA accumulation, mTOR
hyperactivation, and ALP suppression are key actors of this process. The significant correlation
between TFEB expression and both disease duration and left ventricular ejection fraction further
support the idea that interfering with this process could modify the clinical history of DCM.J. Clin. Med. 2019, 8, x FOR PEER REVIEW 17 of 20 
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