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Abstract: Inherited retinal diseases, such as age-related macular degeneration and retinitis 

pigmentosa, are the leading cause of blindness in the developed world. Currently, treatments 

for these conditions are limited. Recently, considerable attention has been given to the 

possibility of using patient-specific induced pluripotent stem cells (iPSCs) as a treatment for 

these conditions. iPSCs reprogrammed from adult somatic cells offer the possibility of 

generating patient-specific cell lines in vitro. In this review, we will discuss the current 

literature pertaining to iPSC modeling of retinal disease, gene therapy of iPSC-derived 

retinal pigmented epithelium (RPE) cells, and retinal transplantation. We will focus on the 

use of iPSCs created from patients with inherited eye diseases for testing the efficacy of gene 

or drug-based therapies, elucidating previously unknown mechanisms and pathways of 

disease, and as a source of autologous cells for cell replacement. 
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1. Introduction  

Human vision is vital for nearly every major activity of daily living, and degeneration of one of the 

responsible cell types, the retinal pigmented epithelium (RPE), leads to severe visual impairment and 
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blindness. RPE cells exist as a monolayer located at the back of the eye between the retina and Bruch’s 

membrane and is essential for photoreceptor function and survival. Retinal diseases such as age-related 

macular degeneration (AMD) and retinitis pigmentosa (RP) result in clinical pathophysiology 

characterized by progressive loss of RPE. The adult retina does not intrinsically regenerate, so RPE 

degeneration may ultimately lead to blindness. Anti-vascular endothelial growth factor (VEGF) therapy 

has been shown to slow the rate of vision loss, but it has no more than a 10% rate of effectiveness in all 

AMD cases [1]. There are no other treatments currently established for RPE degenerative diseases,  

so the disease burden of these conditions are expected to continue to rise. AMD and RP are both leading 

causes of blindness in the developed world, affecting up to one third of people over the age of 75. Among 

the elderly, blindness is feared more than any other illness outside of cancer. Currently, nine million 

Americans have been diagnosed with AMD, and its incidence is expected to double within a decade, 

affecting 20% of Americans between the ages of 65 and 75 years [2].  

Cell transplantation into the human retina has the potential to restore vision and provide treatment in 

diseases like AMD and RP with significant RPE loss. Since these diseases spare the inner retina and 

optic nerve, retinal transplantation has focused on replacement of the photoreceptors and RPE. Retinal 

stem cells have been shown to be efficient at integrating into the degenerative host retina [3]. 

Replacement of damaged RPE in patients with AMD is now being offered [4]. In 2011, the U.S. Food 

and Drug Administration advanced the treatment of macular degenerations by approving clinical trials 

using embryonic stem (ES) cell-derived RPE transplants [5]. 

Induced pluripotent stem (iPS) cells reprogrammed from adult somatic cells offer the possibility of 

generating patient-specific cell lines in vitro. As a platform to study patient-specific targeted disease 

cells, iPS cells (iPSC) have exciting potential in regenerative medicine and human disease modeling. As 

one example, after human embryonic stem cells were shown to be able to produce 3-D optic vesicle-like 

structures displaying a precise apical-basal orientation [6], human iPS cells were used to also create optic 

vesicle-like structures which self-assembled into rudimentary, multilayered retinal tissue [7]. Similarly, 

human iPSCs have been used to model primary open-angle glaucoma (POAG). The optineurin E50K 

mutation is a mutation currently affirmed as causative for POAG, and human iPSCs have been created 

with the E50K mutation to study the molecular and cellular characterization of POAG onset [8]. hiPSC 

modeling has also suggested that normal-tension glaucoma via TBK1 gene duplication is due increased 

levels of LC3-II, a key marker of autophagy [9].  

Specifically, iPS-based therapies holds great promise for treating retinal degenerative diseases, given 

the advantage of ocular immune privilege and the ease of ocular non-invasive imaging. Moreover, iPS 

cell technology facilitates investigations of pathophysiological mechanisms of genetic mutations and 

testing of gene therapy vectors on RPE-based disease models. Indeed, iPS-derived RPE (iPS-RPE) can 

be reproducibly isolated and closely monitored both morphologically and functionally before experiments, 

effectively minimizing variability in the timing of differentiation. In addition, RPE, unlike many other 

human cell types, has a well-described culture standard, which ensures proper controls [4,10]. 

The in vitro phenotypes of disease-specific iPS-derived cells can be used to bridge the gap between 

the clinical phenotype and molecular or cellular mechanisms, creating new strategies for drug screening, 

and developing novel therapeutic agents [11]. Human iPS cell-based disease models can prove that a 

disease is caused by a genetic mutation, hypothesize potential treatment options before using more expensive 

animal models [12], and assist in the development of novel treatments for clinical trials [13–15]. 
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2. iPSC Disease Modeling 

2.1. Use of iPS-Derived RPE Cells for Cell Therapy 

The eye is an ideal site for stem cell therapies. First, it is considered an immune privileged organ 

since the inflammatory responses of the eye differ significantly from those in other tissues. Second, the 

eye allows for easy accessibility for monitoring and imaging. Third, in the case of serious complications, 

the eye as a unit can be removed, due to its relative isolation from other body systems. Stem cells in turn 

are an appealing option for retinal cell replacement due to their pluripotency and potentially unlimited 

capacity for self-renewal. Currently, there are two leading options for stem cells in retinal 

transplantation: (i) embryonic stem cells (ESCs), which can be isolated from developing embryos four 

to five days after fertilization; and (ii) induced pluripotent stem cells (iPSCs), which can be created from 

adult cells by the viral transduction of transcription factors [16]. However, due to the ethical and 

technical concerns with using ESCs, iPSCs have largely been favored for retinal transplantation. 

iPSCs in particular offer a compelling alternative approach for stem cell therapy. When derived from 

the transplant recipient, autologous iPS-derived cells reduce the risk of post-transplant rejection and 

obviate the need for immunosuppression after transplantation. The well-described iPSC culture 

standards also aid in the development of functional testing and optimization studies. Likewise, RPE 

transplantation into the retina poses fewer challenges than other kinds of cell transplantation since 

routine culture of RPE cells has been well described [17,18]. RPE monolayers exist in an easily 

identifiable hexagonal structure and can be isolated and transferred to a variety of substrates without the 

need for synaptic integration. Subsequently, studies on RPE replacement therapies using pluripotent 

stem cells have progressed rapidly. A multicenter trial focusing on the treatment of dry macular 

degeneration and Stargardt macular dystrophy showed that purified human ESC-derived RPE can be 

subretinally injected into patients with good results [5]. This is also possible since the retina normally 

enjoys relative immune privilege, due to the blood-retinal barrier. This barrier consists of non-fenestrated 

retinal vasculature ensheathed by pericyte and astrocyte processes on the inner aspect and by tight 

junctions between RPE on the outer aspect. In a healthy state, this blood-retinal barrier provides 

protection to transplanted cells beneath the retina from the systemic immune system. However, in a 

diseased RPE state, the monolayer is disrupted due to faulty tight junctions and the retina may also 

become much more pro-inflammatory [19,20]. Therefore, cells transplanted into a diseased retina are 

likely to be at a higher risk for rejection, so autologous iPSC transplantation represents the best stem cell 

approach for curing degenerative retinal diseases. In fact, hiPSC-derived RPE has recently been 

approved in Japan for use in patient safety trials for treatment of AMD [21]. 

Currently, human iPS-derived RPE (iPS-RPE) experiments are largely confined to animal models.  

In 2009, Carr et al. performed subretinal injections of dissociated human iPS-RPE into Royal College 

of Surgeons (RCS) rats and observed restoration of RPE phagocytotic function, as measured by 

intracellular RHO staining, and long-term preservation of visual function, as measured by optokinetic 

head-tracking [22]. Another model is the RPE-specific protein 65 kDA (RPE65) mutant mouse model, 

which is used to study Leber congenital amaurosis (LCA) and RP since the RPE 65 defect leads to a faulty 

isomerase which can no longer convert the chromophore necessary for rhodopsin to detect light [23].  

In 2012, Li et al. injected dissociated human iPS-RPE into the subretinal space of the RPE65 mutant 



J. Clin. Med. 2015, 4 570 

 

 

mouse model and showed integration of the transplant with host RPE, as well as a modest improvement 

of visual function as measured by electroretinogram (ERG) [10]. The Mfrprd6/Mfrprd6 (rd6) mouse, which 

has a deletion in the Membrane Frizzled-Related Protein (Mfrp) gene, is another widely used model. The 

resulting MFRP protein, an RPE-specific membrane receptor of unknown function, is abnormal and the 

mice exhibit progressive retinal degeneration, making the model a preclinical and progressive model of 

RP [24]. In a recent study, subretinal injections of AAV-packaged wild-type Mfrp into rd6 mice showed 

improvement in visual function and RPE cell layer thickness [25]. 

The most advantageous aspect of iPSC based therapy is the potential of autologous transplantation, 

which intends to address the problem of immune rejection. Despite the assumption that these autologous 

cells should not provoke an immune response in the recipient from whom the cells were derived, there 

have been conflicting reports that raise some concern of the immunogenicity of iPSCs. In a recent study, 

teratomas originating from subcutaneous injection of murine derived iPSCs were found to have 

abnormal gene expression in some cells, which elicited a T-cell dependent immune response in 

syngeneic mice [26]. However, when Guha et al. transplanted various types of murine iPS-derived cells 

to a site under the kidney capsule of B6 mice, they found no evidence of immune response to the iPSCs, 

no increased T cell proliferation in vitro, no rejection of syngeneic iPSC-derived cells after 

transplantation, and no antigen-specific secondary immune response [27]. Findings by Liu et al. in 2013 

suggests that iPSC immunogenicity increases with in vivo differentiation, as the authors observed 

immune responses after transplantation of differentiated iPS-derived cardiomyocytes but no response 

when transplanting undifferentiated iPSCs [28]. In contrast, Morizane et al. performed a direct 

comparison between autologous and allogeneic transplantation of iPS-derived neural cells in brains of 

non-human primates and found that the autologous transplantation of iPS-derived neurons caused only 

a minimal immune response in the brain, while the allografts elicited an acquired immune response [29]. 

Moreover, a higher number of dopaminergic neurons survived in autografted iPS-derived cells, which 

further support their use. Taken together, these findings reveals that different cell types derived from 

iPSCs might have distinctive immunogenicities in their syngeneic hosts. For the development of human 

iPS-based cell therapy, there remains still a challenge to evaluate the immunogenicity of human  

iPS-derived cells in an autologous human immune system. 

2.2. Progress of RPE Disease Modeling Using iPSCs 

Human iPS cells are useful for modeling RPE disorders since they can be isolated, expanded,  

re-seeded, and closely monitored both morphologically and functionally prior to testing [30]. Phenotypes 

of patient-specific iPS cells may differ from those from a mouse model with the same mutation [25], 

underscoring the necessity for multiple models of human genetic diseases. Since differences in 

phenotypic expression can be observed among species with the same genetic mutation, it is important to 

study patient-specific cell lines as a complement to mouse models. 

The first retinal disease modeled with patient-specific iPS cells is Best vitelliform macular dystrophy 

(BVMD) [13]. Caused by a defect in the RPE gene BEST1, which results in the subretinal accumulation 

of photoreceptor waste products, BVMD is characterized by central vision loss due to photoreceptor 

death. Singh et al. created iPS-RPE from affected patients and compared them with those created from 

unaffected siblings. From their model, they concluded that the pathophysiology of the disease included 
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delayed rhodopsin degradation after photoreceptor outer segment feeding, as evidenced by disrupted 

fluid flux and increased accumulation of autofluorescent material [13]. This hiPSC model of BVMD 

possessed functional deficiencies consistent with the clinical features of the disease and was used to 

characterize clinically relevant disease phenotypes for BVMD. 

iPS-derived RPE cells have also recently been used to model and study the pathophysiology of AMD. 

While genome-wide association studies (GWAS) have identified risk alleles for the disease, such as the 

ARMS2 and HTRA1 genes, how these alleles lead to pathology is still unclear. There is currently a lack 

of appropriate models for AMD; autopsy eyes from end-stage patients already possess terminal changes 

and cannot be used to determine how abnormal gene expression can lead to RPE pathology, and mice 

do not have maculae. To bypass these obstacles, Yang et al. created a model for AMD by obtaining 

patient-specific iPS-derived RPE and pharmacologically accelerating the aging process with treatment 

of bisretinoid N-retinylidine-N-ethanolamine (A2E) and blue light [12]. From a proteome screen of 

multiple A2E-aged patient-specific iPS-RPE lines, impaired superoxide dismutase 2 (SOD2) function 

was identified as a high risk factor for developing AMD. Using their iPS model, the researchers 

concluded that the ARMS2/HTRA1 risk alleles decreased SOD2 defense, making RPE more susceptible 

to oxidative damage and thus contributing to AMD pathogenesis. 

3. Personalized Medicine: Patient-Specific iPSC-Based Therapy  

3.1. Development of Gene Therapy on Patient-Specific iPSCs 

Gene-corrected patient specific iPSCs offer a unique approach to autologous therapies, which have 

the potential to treat a wide range of acquired and inherited diseases. However, gene targeting in human 

pluripotent stem cells has been exceedingly difficult [31]. One approach is using recombinant  

adeno-associated virus (AAV) as a gene transfer vector to carry the missing gene into affected cells. 

Vasireddy et al. published the first study which successfully transduced iPSCs developed from a patient 

with choroideremia with AAV subtype 2 (AAV2) [32]. Choroideremia is an inherited disorder due to 

loss of the CHM gene and the resulting Rab Escort Protein 1 (REP-1), which leading to degeneration of 

the choroid and retina and blindness by the 2nd decade of life. Research moving towards clinical trials 

has been stymied due to a lack of an animal model with similar functional and morphological features 

as the human retina, since the knockout of the murine Chm is lethal. The authors developed a preclinical 

model of choroideremia using iPSCs and successfully transduced wildtype human Chm cDNA into these 

cells using AAV2 mediated therapy. They observed a functional restoration of REP-1 enzymatic activity 

and protein trafficking, showing that their gene therapy was successful and that iPSCs can be used as a 

preclinical model for choroideremia [32]. 

The development of genome editing tools such as zinc finger nucleases (ZFNs), transcription 

activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic 

repeats (CRISPR)-Cas system have facilitated gene targeting in human iPSCs [33]. These tools use 

double strand break induction and subsequent homology-directed repair to edit the mutations in the 

patients’ genomic DNA, so that the corrected gene will remain under the normal endogenous promoters 

and enhancers. Thus, compared to conventional viral-mediated gene replacement, gene editing using 
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ZFNs, TALENs, or the CRISPR system can avoid genetic expression in inappropriate cell types as well 

as incorrect levels of expression [34]. 

The CRISPR-Cas system has several advantages over ZFNs and TALENs for enhancing gene 

targeting efficiency. Most CRISPR-Cas subtypes target DNA directly, suggesting the possibility of 

engineered, RNA-directed gene editing systems. This usage of easily generated RNA guides avoid the 

need for repeated protein design, which sets CRISPR-Cas apart from ZFNs and TALENs, which use 

protein-based DNA targeting motifs. Using the CRISPR-Cas9 system, Mali et al. targeted the 

endogenous AAVS1 locus in human iPSCs to achieve homology-directed repair of fibroblast-derived 

iPSCs [35]. Recently, Hou et al. developed a CRISPR-Cas system from N. meningitides to generate 

accurately targeted clones in human iPSCs with increased efficiency as compared to TALENs [36]. 

There several concerns with CRISPR-Cas technology in human genome editing, primarily off-target 

DNA cleavage [37]. However, recent experiments showed that “nickases”, or enzymes that cleave only 

a single strand of DNA in DNA repair, can increase the specificity and safety of the CRISPR-Cas9 

system [38]. 

3.2. Gene Therapy on Patient-Specific iPSC-Derived RPE Cells 

With the aim of correcting genetic defects, gene therapy has been attempted not only on  

patient-specific iPS cells, but also RPE cells derived from these cell lines. A proof of concept study was 

performed by Cereso et al. which used a hybrid vector comprised of AAV2 and AAV5 (AAV2/5) to 

mediate gene therapy to the RPE derived from iPS created from a choroideremia patient [39]. The 

authors successfully developed a human iPS-derived retinal cell model of choroideremia, performed 

gene therapy on the iPS-RPE, and showed that AAV2/5-mediated therapy could potentially restore RPE 

phenotype. Working with MFRP, Li et al. also showed that patient-specific iPS-RPE could be a recipient 

for gene therapy [25]. The researchers applied the AAV8 vector expressing human MFRP to iPS-RPE 

from patients with MFRP mutations and confirmed that gene therapy led to restoration of RPE 

phenotype, specifically with regards to actin organization. These studies suggest that gene therapy using 

AAV vectors can be applied to RPE created from patient-specific iPS for retinal diseases without 

previous models, and that these diseases may be potential targets for additional gene therapy trials. 

3.3. Transplantation of iPSC-Derived RPE Cells 

Considerable attention has been paid to the potential of human iPSCs as a source for regenerative 

medicine, disease modeling, and drug testing. In particular, the limitations in existing treatments for 

AMD have led to attention being given to alternative approaches in which damaged RPE is replaced by 

healthy RPE. In a recent landmark trial in Japan, patient specific iPSC-derived RPE cells were 

transplanted for the first time into a human patient with AMD. Clearance for a human trial was given 

after Takahashi et al. showed that transplantation of iPSC-derived RPE did not provoke an immune 

reaction nor lead to tumor growth in monkeys or mice [40]. Autologous iPSCs were created from the 

patient’s skin cells and then differentiated into RPE so that they would grow in a monolayer without the 

use of synthetic scaffolds or matrices. To achieve this, iPSC-RPE were seeded onto type I collagen gel 

on a Transwell insert. After the RPE reached confluence, collagenase was applied to dissolve the 
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collagen gel and leave a sheet of RPE. A 1.3 millimeter by 3.0 millimeter cut of this sheet was then 

grafted into the patient’s retina following excision of her existing damaged RPE.  

This marks the first clinical trial on humans using iPSCs. The safety and feasibility of using iPSCs 

from patients to treat their blindness is still being established, but this trial holds great potential for the 

advancement of translational medicine in retinal disease.  

4. Future Directions 

Patient-specific iPSCs have been shown to not only complement animal models of human disease, 

but also function as an excellent model in their own right. Patient-specific cell lines created from somatic 

cells from patients with inherited eye diseases can: (i) provide a window for testing the efficacy of gene 

or drug-based therapies; (ii) elucidate previously unknown mechanisms and pathways of disease;  

(iii) demonstrate the pathogenicity of unusual mutations in individual patients; and (iv) enable 

researchers to optimize parameters for successful cell replacement therapy in vitro. Skin-derived iPSCs 

can be used to investigate the function or dysfunction of a mutant gene product in tissues such as retina 

that are inaccessible to molecular analysis in living patients [41]. Finally, gene therapy tools such as 

ZFNs, TALENs, and the CRISPR-Cas system are rapidly improving the prospects of restoring the 

function of diseased RPE from patients with inherited retinal diseases. These patient-specific iPS-RPE, 

after undergoing gene therapy, can be optimized to become transplantable retinal cells, with the goal of 

restoring sight to patients with no other therapeutic options. 

However, despite these advances, improvements still must be made in reprogramming, 

differentiation, and cell characterization protocols before employing this technology in clinical 

transplantation trials. In moving from animal models to human trials, potential safety issues must be 

carefully addressed. The use of potent oncogenic transgenes such as c-myc and Klf4 in the 

reprogramming process as outlined by Yamanaka is one area of concern [16]. If these transgenes are not 

silenced or are reactivated after reprogramming, genomic instability may result and not only confound 

results of disease modeling studies but also cause tumor formation after transplantation. To this end, iPS 

reprogramming protocols are still being optimized. An alternative reprogramming protocol by Yu et al. 

obviates the use of oncogenic transgenes by using a combination of Oct4, Sox2, Nanog, and Lin28 [42]. 

The methodology for generating iPSCs has markedly improved and now integration-free iPSCs, without 

transgene insertion in the host genome, can be obtained using plasmid vectors, RNA viruses, or mature 

microRNAs [43–47]. Integration-free iPSCs appear ideal since exogenous genes integrated in the host 

genome may affect the genetic properties of the iPSCs generated and thus modify the resulting cellular 

phenotypes of differentiated progeny. Additional studies are also required to ensure that the risk of 

rejection is significantly reduced in patient-specific iPSCs, given that immune rejection when certain 

tissues derived from iPSCs were transplanted into syngeneic murine hosts have been reported [26]. 

ESCs are still the gold standard for in vitro pluripotency. A significant concern of using iPSCs in 

development of therapies is still whether they are truly equivalent to ESCs. For example, key differences 

between iPSCs and ESCs in transcribed genes, epigenetic landscape, differentiation potential, mutational 

load, and premature senescence has been described [48]. If iPSCs cannot closely replicate ESCs, the 

results from studies using iPSCs must be interpreted with this in mind. Significant differences between 
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iPSCs and ESCs may hinder the translation of study results from an in vitro iPSC-based disease model 

to human disease. 

A further step likely to accelerate the integration of iPS technology in regenerative medicine is the 

development of industry and biotechnology collaboration in order to develop large-scale stem cell 

production [49]. In this way, availability of iPS-based technology will increase, making them more 

widespread in investigative and translational studies in the future. Patient-specific iPS-derived cells offer 

the hope of slowing progression or improving visual function for patients with currently untreatable 

retinal diseases. In addition to curing blindness, stem cell transplantation in the eye can also be seen as 

a model system for investigating cell-based treatments for other degenerative disorders of the CNS. 

5. Conclusions 

Stem cells have revolutionized the field of human cell culture because they provide an immortal 

population of pluripotent cells which can theoretically differentiate into any cell type in the body. This 

technology, when applied to retinal cells, has the promise to make significant contributions to our 

understanding of the most pressing blinding diseases of our time. Stem cells also allow for the 

development of therapies for exceedingly rare retinal conditions which currently have little to no funding 

for research. In particular, patient-specific iPSCs represent an excellent tool for modeling retinal disease 

since they can be generated from adult somatic cells, thus avoiding the ethical considerations involved 

with using embryonic stem cells. iPSCs will continue to be a sustainable method to model disease as 

gene therapies, drug therapies, and transplantable retinal cells continue to be developed for inherited 

retinal disorders. 
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