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Abstract: Exercise-associated hyponatremia (EAH) is dilutional hyponatremia, a variant 

of inappropriate antidiuretic hormone secretion (SIADH), characterized by a plasma 

concentration of sodium lower than 135 mEq/L. The prevalence of EAH is common in 

endurance (<6 hours) and ultra-endurance events (>6 hours in duration), in which both 

athletes and medical providers need to be aware of risk factors, symptom presentation, and 

management. The development of EAH is a combination of excessive water intake, 

inadequate suppression of the secretion of the antidiuretic hormone (ADH) (due to non 

osmotic stimuli), long race duration, and very high or very low ambient temperatures. 

Additional risk factors include female gender, slower race times, and use of nonsteroidal 

anti-inflammatory drugs. Signs and symptoms of EAH include nausea, vomiting, 

confusion, headache and seizures; it may result in severe clinical conditions associated 

with pulmonary and cerebral edema, respiratory failure and death. A rapid diagnosis and 

appropriate treatment with a hypertonic saline solution is essential in the severe form to 

ensure a positive outcome. 

Keywords: hyponatremia; exercise; SIADH; hypertonic saline 

 

OPEN ACCESS



J. Clin. Med. 2014, 3 1259 

 

1. Introduction 

Exercise-associated hyponatremia (EAH) typically occurs during or up to 24 hours after prolonged 

physical activity, and is defined by a serum or plasma sodium concentration below the normal range of 

135 mEq/L [1]. It is also reported to happen in individual physical activities or during organized 

endurance events carried out in austere environments, in which medical care is limited or often not 

available, and patient evacuation to definitive care is often greatly delayed [2]. Rapid recognition and 

appropriate treatment are essential in severe forms to ensure a positive outcome [2]; however, few 

randomized trials concerning EAH treatment have been reported [3]. 

EAH was first described in Durban, South Africa, in 1981; subsequently, Noakes et al. in 1985 

described the occurrence of severe hyponatremia in four athletes who participated in endurance events 

that were longer than 7 hours [4]. EAH has been reported after sustained physical exertion during 

marathons, triathlons, and long-distance hikes, and by trekkers, climbers, and cold climate endurance 

athletes. Furthermore, it is likely that symptomatic or asymptomatic EAH is underreported in  

the literature [5–10]. 

2. Epidemiological Aspects 

The described prevalence of EAH varies widely, in some measure because the diagnosis is based 

solely on abnormal biochemical results in an appropriate clinical setting. Many cases of EAH may be 

asymptomatic and are largely detected from blood samples taken from permitting athletes participating 

in research screening protocols; reported prevalence ranges from 0%–51% [2]. The highest prevalence 

of “asymptomatic” hyponatremia has been noted in ultra-marathon races covering 161 km in North 

America, in which the impact of EAH has ranged between 30% and 51% [7,10,11]. The prevalence of 

“asymptomatic” EAH is greater than that of “symptomatic” EAH; determinations of type rely on 

biochemical diagnosis of EAH in conjunction with clinical symptoms and signs [2]. Severe EAH 

results in a significant mental status change, which is caused by cerebral edema (exercise-associated 

hyponatremic encephalopathy, also defined as EAHE), and is sometimes associated with  

non-cardiogenic pulmonary edema [12]. Many studies confirmed that deaths can be directly attributed 

to complications associated with EAHE [13,14]. The overall prevalence of symptomatic EAH in all 

marathon participants is generally less than 1% [15], but the percentage of EAH observed in all 

symptomatic athletes seeking medical care has been reported to be higher than 23% in an Ironman 

Triathlon [16] and 38% in runners taking part in a marathon and an ultramarathon in Asia [17]. An 

increasing datum is that symptomatic EAH is now reported in much shorter distance events, such as 

half marathons [18] and sprint triathlons taking approximately 90 minutes [19]. Symptomatic cases of 

EAH have been reported with increased frequency in hikers and in the military. The described 

incidence of hyponatremia in Grand Canyon hikers seeking medical care from exercise-associated 

collapse or exhaustion was 16%, with an estimated impact rate between 2 and 4 per 100,000 persons. 

In 1993, clinically significant EAH in female hikers trekking through the Grand Canyon was first 

reported [5]. Since that initial case series, three separate case reports of symptomatic hyponatremia 

have been described in wilderness settings: the first involved a man trapped in a cold Alaskan 

environment [20], the second an athletic woman hiking at a low altitude in Nepal [6], and the third 
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describes a physically fit man participating in an 8-day guided trek in New Guinea [21]. More severe 

cases have been reported by Spano et al. [22] in the Sierra Nevada Mountains of California and by 

Severac et al. [9]. 

US military services have reported an increased trend of EAH cases, primarily in the Marine Corps 

and army infantry personnel; there has only been one definite case of death [23–25]. 

Generally, in ultra-endurance athletes, the prevalence of EAH does not exceed 10% [4,26]. The 

prevalence of EAH seems higher in ultra-endurance (>6 hours) than in endurance races [27,28]; 

however, there have been variable results in studies investigating the prevalence of EAH in 

ultramarathons and other ultra-endurance events. 

Knechtle et al. reported that the prevalence of EAH was no higher in ultra-endurance athletes 

compared to existing reports on marathoners and Ironman triathletes [29]. 

A study that investigated the prevalence of EAH in ultra-endurance athletes, such as ultra-mountain 

bikers (ultra-MTBers), ultra-runners, and mountain bikers (MTBers) in four races held in the Czech 

Republic, showed that 5.7% of the finishers developed post-race EAH with post-race plasma sodium 

of <135 mmol/L. The prevalence of EAH was higher in ultra-runners compared to ultra-MTBers [30]. 

Another study showed that EAH occurred in more than 50% of the finishers of a 161 km 

ultramarathon in California. Main outcome measurements of the study were pre-race and post-race 

body mass, total body water (TBW), extracellular fluid (ECF), and plasma sodium. Hyponatremia 

occurred in over half of the 161-km ultramarathon finishers but was not predicted by a change in body 

mass. The combination of pre-race TBW and percentage changes in TBW and ECF explained 87.5% 

of the variation in the incidence of hyponatremia [11]. Studies on EAH in ultra-running events in 

Switzerland [26] and New Zealand [31] reported a prevalence of 0% and 4%, respectively. The 

prevalence of EAH in ultra-MTBers (3.7%) and MTBers (7.1%) was also similar to studies of 

multistage MTB races in South Africa and in the Alps, in which fluid intake correlated negatively to 

race time [32,33]. 

Drinking behavior and the large amount of fluid available at the refreshment stations might give 

insights into why the prevalence of EAH is different in the different various disciplines [34]. It was 

observed that the faster athletes drank more than the slower ones [26,35]. 

Fluid intake was positively related to race performance and post-race plasma [Na+] was negatively 

associated with race performance [30].  

Hyponatremic marathoners consume fluids at a higher rate (0.84 L/h) compared to non-hyponatremic 

runners. In mountain bikers, fluid intake was relatively high compared to marathoners, but this volume 

is within the hourly drinking volume limits of 0.8 L/h recommended for endurance exercise [13]. The 

high intensity of race, the difficult terrain, and the impossibility of drafting may be the main reasons 

that mountain bikers drink rather little compared to other ultra-endurance athletes [33]. The low mean 

fluid intake may explain a lower prevalence of EAH in ultra-MTBers [35].  

A high prevalence of EAH was reported for open-water ultra-distance swimmers due to ingestion of 

water during the race [36] (Table 1). 
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Table 1. Prevalence of exercise-associated hyponatremia (EAH). 

Disciplines Subjects Prevalence of EAH References 

Marathoners  up to 22% [13,15,37,38] 

Ultra-marathoners 
Asymptomatic 30%–51% [7,10,11] 

Athletes seeking medical care 38% [17] 
Mountain bikers   7.1% [32] 

Ultra-mountain bikers  3.7% [33] 
Ironman triathletes   1.8%–28% [16,28,39] 

Hikers  16% [5,6,9,20–22] 

Military  
Indreased trend; one 

case of death 
[23–25] 

Swimmers 
Males 8% 

[36] 
Females 36% 

3. Physiopathology 

Two major mechanisms largely account for the development of EAH: 

- Excessive fluid intake 

- Impaired urinary water excretion, largely as a result of persistent secretion of antidiuretic hormone 

(ADH) (Figure 1). 

Figure 1. Physiopathology of EAH. 
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Excessive fluid consumption leading to weight gain is considered the principal cause of reduced 

plasma sodium, and previous studies in ultra-endurance events have shown an association between 

fluid intakes, changes in body mass, and plasma sodium. Over-hydration appears to be the principal 

risk factor for the development of EAH. This occurrence reflects upon the weight gain observed in the 

majority of athletes who become hyponatremic. Evident sodium and fluid loss through sweat occur 

with prolonged exercise, leading to a decrease in extracellular fluid volume (ECFV) and plasma 

volume. The “effective” plasma volume further decreases with the redistribution of blood to the 

exercising muscles (which is caused by metabolic, hydrostatic, and haemodynamic mechanisms) [40]. 

The issue of whether sweat sodium loss contributes to the development of EAH remains 

controversial. The concentration of sodium in sweat varies widely, but it is usually between 15 and  

65 mEq/L, and the volume of sweat varies from 250 mL/h to >2 L/h [41,42]. Although one might 

expect that hypotonic fluid losses from sweat would produce a rise in serum sodium, the development 

of hyponatremia following this occurrence has been attributed to hypotonic fluid replacement greatly 

exceeding fluid loss through sweat. The excessive concern over dehydration and hyperthermia may 

lead to excessive fluid intake among competitors [7,11]. 

This tendency toward aggressive hydration is illustrated by comparing the 1970 study documenting 

a rise in plasma sodium in eight runners who each consumed 500 mL of water to the 1985 study in 

which four runners ingested an average of 9 L of fluid over the same distance and experienced a 

decrease in plasma sodium to below 125 mEq/L [4,43]. Moderate intake of a carbohydrate clearly has 

been demonstrated to improve performance [44]. Although vigorous hypotonic fluid replacement 

blunts the decrease in plasma volume with exercise, a preferential expansion of intracellular fluid 

volume through osmotic equilibration leads to a relative total body water excess despite plasma 

volume depletion [45]. 

The overdrinking behavior seems to be supported by companies selling sports drinks. Moreover, 

these sports drinks (solutions enriched with mineral salts and ions, slightly less hypotonic than mineral 

water) do not prevent EAH [46]. 

Subjects with normal renal function and a regular diet can excrete about 500–1000 mL/h of  

water [47]. With the additional non-renal losses of water due to sweat and insensible fluid losses, 

athletes should be able to consume as much as 1000–1500 mL/h before developing water retention and 

dilutional hyponatremia. Thus, although fluid ingestion is necessary for the occurrence of EAH, it is 

not likely to be the only factor, except in those circumstances in which water intake is excessive  

(i.e., >1500 mL/h) [2]. Under normal circumstances, ingestion of excessive water should suppress 

ADH, leading to the production of diluted and high-volume urine (where urine has an osmolality as 

low as 50 mOsm/kg and a volume of 500–1000 mL/h). The failure to suppress ADH reduces the 

ability of the kidneys to excrete a water load. The available data support the concept that many athletes 

with EAH have submaximal suppression of ADH and an inappropriately high urine osmolality; this is 

similar to SIADH. There are several nonosmotic stimuli that lead to the secretion of ADH that may be 

operable in endurance athletes: intense exercise itself, nausea or vomiting, hypoglycemia, and 

nonspecific stresses, such as pain and emotion. The excess of ADH production is responsible for 

potentially significant hyponatremia and is recognized as a key factor for EAH [48–51]. 

Moreover, it has been suggested that cytokine release (IL-6) during muscular glycogen depletion 

could also be involved in the nonosmotic stimulation of ADH. The hypothesis that IL-6 is involved in 
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the pathogenesis of EAH has been confirmed in multiple studies [52]. In a rat sepsis model, IL-6 has 

been shown to reduce the expression of aquaporin-2, the target of ADH and ultimate regulator of water 

diuresis. A genetic predisposition to EAH, or severity of expression, may be related to single 

nucleotide polymorphisms of the promoter region for the IL-6 gene, as postulated in other 

inflammatory diseases [53]. Furthermore, prolonged endurance exercise induces an immune response, 

inflammatory and oxidative stress, as suggested by the evidence of an increase in levels of GSSG 

(oxidized glutathione) [54]. In marathon runners, 24 hours after the race, there is an increase in their 

white blood cell count with neutrophilia; these runners experience an increase of approximately  

30 times normal levels of IL-6 and about 20 times normal levels of CRP. The levels of IL-6 increase 

exponentially with the intensity and duration of exercise; as does rhabdomyolysis and the consequent 

increase in serum CK levels correlated with IL-6 levels [55]. 

Other factors may lead to hyponatremia in endurance athletes. In a study of endurance athletes 

running for an average of 6 hours with ad libitum fluid intake, it was noted that even with a mass loss 

of 3.8 kg, plasma sodium maintained its normal levels [46]. Despite the loss in plasma volume in these 

subjects, there were significant increases in brain natriuretic peptide levels (NT-BNP). These 

elevations may lead to excessive losses of urine sodium and raise the risk of hyponatremia [56]. 

A possible mechanism for the maintenance of a normal serum sodium level despite weight gain is 

the release of sodium from internal stores [49]. Up to 25% of the body’s sodium is bound in bone and, 

although not osmotically active, is potentially recruitable into an osmotically active form [57]. Thus, 

this pool could minimize the decrease in plasma sodium induced by over-hydration or, if not 

mobilized, exacerbate hyponatremia [58]. 

The absorption of water retained in the gastrointestinal tract at the end of a race has been suggested 

as a cause for an acute drop in plasma sodium concentration. This may account for a transient lucid 

period after finishing a race followed by the acute development of cerebral edema within about  

30 minutes after the competition [14]. 

In a study that reviewed medical records from marathoners (all participants in the 1998 Suzuki 

Rock “N” Roll Marathon), hyponatremic patients were compared to other runners with regard to race 

time, gender, clinical signs of dehydration, and use of NSAIDs. The study showed that hyponatremic 

runners reported drinking “as much as possible” during and after the race; they were less likely to have 

clinical signs of dehydration. An inverse relationship between initial plasma sodium and time of 

presentation was found, with a late presentation that predicts lower plasma sodium [45]. 

The breakdown of glycogen into smaller, more osmotically active molecules, such as lactate, during 

exercise initially increases cellular osmolality and shifts water into cells, leading to a rise in serum 

sodium. This may then be reversed within 5 minutes after the cessation of exercise, leading to a 

transient reduction in plasma sodium [59]. Variations in potassium balances that serve as effective 

osmoles may also affect the plasma sodium so that hypokalemia will lead to exacerbating 

hyponatremia [60]. Although the major risk factor for developing EAH is excessive water intake 

beyond the capacity for renal water excretion, risk factors for EAH also include low pace racing, 

prolonged exercise with a duration of more than four hours, low or high body mass, pre-exercise 

hyperhydration, the use of non-steroidal anti-inflammatory drugs (NSAIDs), and extremely hot or  

cold environments [16]. 
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In marathoners, Mettler et al. noted an association between change in body mass and change in 

post-race plasma sodium [37]. In 161 km ultra-marathoners, however, Lebus et al. [11] did not find 

any association between changes in body mass and changes in plasma sodium. Also, in these  

ultra-marathon runners, the change in body mass showed no association with post-race plasma sodium 

or with a change in plasma sodium. This finding is not in agreement with the recent findings in 

marathoners reported by Mettler et al. [37]. These authors demonstrated an association between  

post-race plasma sodium and post-race plasma osmolality, and they supposed that the increased plasma 

osmolality might be due to the increased activity of ADH [61]. 

It seems that females are more susceptible to developing EAH, in particular severe hyponatremia, 

and they may be more symptomatic with equivalent levels of hyponatremia [12,62,63]. 

In rats, estrogen blunts the drive to consume sodium, with salt deprivation, and it induces renal 

oxytocin receptor mRNA synthesis and affects osmoregulation. Estrogen and progesterone inhibit the 

function of the Na+-K+ ATPase [64–66].  

In humans, pregnancy hormones lower the thirst threshold, contributing to hypotonic volume 

expansion, while estrogen increases ADH secretion in post-menopausal females [67].  

The gender effect may also produce a different behavior, such as more pressing adherence to 

hydration advice, during exercise or during longer exercise times. Although the incidence of women 

with symptomatic hyponatremia seems to be greater than that of men, when adjusted for BMI and 

racing time, the gender difference has not been shown to be statistically significant [38].  

Along with other nonosmotic stimuli to ADH secretion, NSAIDs have been implicated as a risk 

factor in the development of EAH by potentiating the water retention effects of ADH in the  

kidney [39,68]. Inhibition of renal prostaglandin synthesis due to NSAIDs has deleterious effects on 

hemodynamic and renal function. Prostaglandins actually antagonize the effect of ADH and modulate 

renal salt and water excretion [14,69,70]. However, there is conflicting data, and further investigation 

is necessary to determine whether NSAID treatment, with respect to both classification and dosages, is 

a sure risk factor for the development of EAH. Other drugs associated with SIADH, such as selective 

serotonin reuptake inhibitors, may also increase the risk of EAH, but up to now, the data is  

not conclusive [2].  

Exercise may also lead to rhabdomyolysis. This event has been associated with the use of diuretics, 

psychogenic polydipsia, and extreme exercise with water intoxication [71,72]. Subjects with cystic 

fibrosis may be at increased risk of rhabdomyolysis during exercise, considering their propensity for 

dehydration and hyponatremia by sodium loss via sweat through a defective chloride ion transport 

channel, the CF transmembrane conductance regulator (CFTR) [73]; in a recent study, CFTR 

mutations were found not to be associated with the development of EAH [74]. 

4. Clinical Aspects 

Signs and symptoms of EAH include nausea, vomiting, confusion, headache, seizures, and it may 

result progressively, together with severe clinical conditions associated with cerebral edema, in 

brainstem compression, pulmonary edema, respiratory failure, and even death. Symptomatic EAH 

should be defined qualitatively in two subgroups: “mild” or “severe” differentiated by the presence or 

absence of neurologic manifestations. Although the early symptoms of EAH may be nonspecific, the 
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presence of altered mental states, comas, seizures or respiratory distress indicates exercise-associated 

hyponatremic encephalopathy (EAHE) and should be promptly recognized. An interesting report 

underlined the importance of maintaining a broad differential diagnosis when evaluating a subject with 

altered mental status in an alpine setting. Despite an initial presumed diagnosis of altitude sickness, 

after an exact diagnostic evaluation, the symptoms appeared to be related to symptomatic hypotonic 

hyponatremia [22]. Symptomatic EAH in an endurance athlete may be confounded with profound 

dehydration, necessitating intravenous rehydration. The severity of EAH establishes fluid choices; the 

two categories reflect different intravenous fluid treatment options. Bennett reasonably points out that 

dehydration may be misdiagnosed as EAH. The Wilderness Medical Society practice guidelines affirm 

that administration of isotonic fluids could be “disastrous” in athletes with EAH; it may actually 

worsen hyponatremia, and may have potentially “devastating” consequences [2]. 

5. Prevention and Treatment 

The primary strategy in preventing EAH is to avoid overdrinking during a race. Fluid ingestion, 

based on the sensation of thirst, during a race seems to be a prevention strategy because it reduces the 

risk of dehydration and over-hydration. Another strategy that has been shown to reduce the incidence 

of hyponatremia during endurance events is to reduce the availability of fluids along the routes of races 

(>3 km apart) [2]. In athletes who drink beyond thirst or fully replace 100% of body weight losses 

during a race, supplemental sodium may attenuate the reduction in plasma sodium concentration,  

but will not prevent the development of hyponatremia if overdrinking continues [75]. The monitoring 

of body weight change is a strategy commonly used in 161 km ultramarathons to prevent 

overhydration [7]. EAH has been reported with substantial weight loss in some environments, so 

weight loss should not exclude the diagnosis of EAH. Body weight can be monitored in organized 

events, and in the presence of weight gain during racing, fluid and sodium intake should be reduced 

until weight returns to between 2% and 4% of body weight loss from the baseline level [2].  

The ingestion of sodium during exercise may be useful to performance by maintaining the plasma 

volume and/or by attenuating reduction in blood sodium. However, until now, the influence of sodium 

ingestion during a race or performance seems inconclusive [76]. 

Vrijens and Rehrer [77] showed improved time to exhaustion and attenuated plasma sodium drops 

with the ingestion of 61 mmol sodium (18 mmol L−1 solution), compared to a placebo drink (distilled 

water), during 3 hours of cycling in the heat. Anastaiou et al. showed that even small amounts of 

sodium (19.9 mmol/L; 39.8 mmol in total) ingested during three hours of racing in the heat were 

sufficient to attenuate the decrease in plasma sodium [78]. Similar findings were observed by 

Twerenbold et al. [79] during a four hour running time trial in temperatures ranging from 5–19 °C. 

Again, sodium ingestion (25 mmol h−1, 100 mmol total) resulted in a smaller decrease in the plasma 

sodium concentration from pre- to post-run measurements in female athletes. Conversely, Barr et al. 

reported no differences in the plasma sodium concentration at the end of 6 hours of racing in the heat, 

when either a water or saline solution was ingested. They therefore postulated that the reasons for the 

lack of differences between the two trials were due to changes in extracellular/intracellular fluid 

volumes or to the incomplete absorption of sodium by the intestine [80].  
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Two studies have also investigated sodium supplementation during Ironman races and both  

reported no differences between those taking sodium supplements and those without sodium 

supplementation [75,81]. A recent study aimed at investigating the effect of a sodium supplement on 

endurance performance during a 72 km road cycling time-trial in cool conditions did not show any 

effect on time-trial performance or plasma sodium. However, plasma sodium is influenced by  

fluid intake [82]. 

Appropriate management of EAH depends firstly on correctly diagnosing the condition. In fact, 

EAH can be mistaken for dehydration, heat illness, or acute altitude illnesses (Table 2). When EAH is 

considered in the differential diagnosis of a collapsed athlete and a point of care sodium concentration 

analysis is available, the field diagnosis of EAH becomes straightforward [2]. On-site analysis of 

plasma sodium concentration is not widely available, and large and established events often have no 

capacity for on-site blood analysis. If EAH is clinically suspected, an assessment of volume  

status should be considered before the treatment with intravenous fluids is carried out. An 

inappropriate intravenous fluid administration could result in worsening hyponatremia with potentially 

devastating consequences [2].  

Table 2. Signs and symptoms of differential diagnosis (adapted from [2]). 

Signs and symptoms EAH Heat illness AMS HACE or HAPE

Fatigue/weakness +/− +/− + + 
Increased thirst +/− + +/− +/− 

Temperature elevated +/− +++ − − 
Tachycardia +/− + +/− +/− 

Nausea/vomiting +/− +/− +/− +/− 
Headache/dizzines +/− +/− +++ +++ 

Blurred vision +/− +/− +/− +/− 
Confusion/disorientation +/− +/− +/− +/− 

Obtundation +/− +/− +/− +/− 
Seizure +/− +/− +/− +/− 
Coma +/− +/− +/− +/− 

Respiratory distress +/− − +/− +/− 
Oliguria +/− + +/− +/− 

EAH, exercise-associated hyponatremia; AMS, acute mountain sickness; HACE, high altitude cerebral 

edema; HAPE, high altitude pulmonary edema; +/−, Possible; +, likely; +++, present; −, not present;  

The clinical signs that justify transfer to an emergency unit are in bold. 

The perception that heat exhaustion is caused by dehydration and that the levels of dehydration 

observed in endurance sports must be treated immediately with intravenous fluids has been termed the 

“dehydration myth” and has endured for over a decade. Nevertheless, in endurance athletes, there have 

been observed body mass losses of 8% or greater without clinical symptomatology or adverse 

consequences [7]. In most cases, such levels of dehydration are not dangerous and rarely require 

intravenous rehydration, if oral fluids can be tolerated. Furthermore, transient postural hypotension is 

common in endurance athletes receiving post-event medical therapy [83]. This is caused by lower 

extremity blood pooling (once the athlete stops moving) and the consequent impairment of cardiac 
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baroreceptor reflexes. These athletes show lightheadedness, dizziness, or syncope, and have been 

managed for dehydration or hyperthermia by race event medical providers [83].  

A high clinical supposition of EAH requires fluid restriction and salt supplementation. However, 

fluid restriction is contraindicated in the case of dehydration and rhabdomyolysis (with impending 

acute kidney injury). Intravenous hypertonic saline (HTS) is an appropriate approach in suspected 

EAH with neurological deterioration, whereas an oral hypertonic saline solution would be an 

appropriate approach in suspected mild EAH. When possible, urine analysis for sodium and 

osmolality, and blood analysis for osmolality, should be obtained before the start of treatment [2]. 

Subjects with EAH who are neurologically stable can be advised to limit fluid intake and consume 

salty snacks, soups, or a small volume of hypertonic fluid until the onset of diuresis. Oral hypertonic 

saline solutions are an appropriate intervention in subjects with EAH when oral intake is possible. If 

the subject is unable to tolerate oral intake, or when there is no improvement, or when symptoms 

worsen with this therapy, the recommended treatment is a 100 mL bolus of 3% hypertonic saline 

infused through a peripheral vein in less than 60 seconds. If the initial treatment does not improve the 

patient’s condition, sodium level and clinical assessments should be performed to identify signs of 

cerebral and/or non-cardiogenic pulmonary edema. These are the key factors that will determine 

whether a transfer to an emergency unit for urgent treatment is required. Organized endurance races 

that do not have an on-site opportunity for the measurement of plasma sodium concentration and 

treatment with hypertonic saline should prearrange an appropriate emergency transport system [2].  

In subjects with suspected EAH, and especially in those with an altered mental state, sodium 

estimation should be obtained as rapidly as possible after arriving at the hospital. The intent of field 

management is to stabilize the subject until their management can be transferred to a definitive care 

medical center [12]. Treatment of serious EAH involves the administration of a 3% HTS at 1 mL/kg/h, 

that is subsequently adjusted according to the sodium status. Increases of sodium to 1 mmol/L/h during 

the first 6 hours, 9 mmol/L during the first 24 hours, and 18 mmol/L during the first 48 hours  

are acceptable. Ideally, sodium levels should not exceed 20–25 mmol/L during the first  

48 hours [84] (Figure 2). 

Small-volume boluses of intravenous HTS are the recommended therapy for exercise-associated 

hyponatremic encephalopathy (EAHE). Failure to properly diagnose and treat EAHE has been 

associated with significant morbidity and death. Current consensus statement guidelines recommend 

up to three 100/mL boluses of 3% HTS spaced at 10 minutes intervals to correct symptoms [2]. Advice 

is unclear regarding the maximal volume that can be safely administered in a given time period beyond 

these initial boluses. Data from previous literature suggest that the majority of subjects showed 

symptom resolution with these initial boluses [51]. However, use of large volumes of 3% HTS, from 

600–950 mL, have produced no reported adverse outcomes [85,86].  

Several reports demonstrated the potential adverse consequences of intravenous, normotonic 

solution hydration and the benefits of HTS for athletes with EAH. Another case report provides further 

support for our concern about the potential dangers of intravenous normotonic solution hydration in 

EAH [4]. In a report [87] regarding two overhydrated ultramarathon runners with symptomatic EAH, 

one received an intravenous normotonic solution and was hospitalized for 5 days, including for  

36 hours in a semicomatose state. The other received intravenous 3% HTS and was fully alert within  

3 hours and discharged after 8 hours. Davis et al. [45] describe a retrospective and prospective analysis 
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of EAH treatment. The retrospective analysis involved 11 overhydrated marathon runners with severe 

EAH treated initially with intravenous normotonic solution; five of these runners (plasma sodium 

concentration range of 119–121 mEq/L) required hospitalization and three required intubation as well. 

Two of these subjects ultimately received HTS in the intensive care unit. The prospective trial 

involved four cases of overhydrated marathon runners with severe EAH (plasma sodium concentration 

range of 117–123 mEq/L) treated with 3% HTS; none required hospitalization, and the rate of plasma 

sodium correction with HTS was shown to be more rapid than for those runners who were treated with 

a normotonic solution [45]. Siegel et al. describes four marathon runners who became unresponsive, as 

if suffering from EAH; the two subjects that were treated with intravenous normotonic saline died with 

evidence of cerebral edema on postmortem examination. In contrast, in the two runners who received 

3% HTS, the treatment caused a rapid neurologic improvement without adverse effects [48]. 

Figure 2. Algorithm for treatment of EAH. EAH, exercise-associated hyponatremia; HTS, 

hypertonic saline. 
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If neurologic impairment is present, HTS is the most effective agent and NS should be avoided. 

Subjects with EAH encephalopathy have been shown to recover more quickly when treated with  

3% HTS versus isotonic saline and have a significantly reduced morbidity and mortality rate [48]. 

Furthermore, there is little data concerning oral hypertonic saline solutions. Considering whether or 

not it is useful to “asymptomatic” cases of EAH, the decision seems to be complicated by evidence 

that in clinical settings, the percentage of athletes with biochemical hyponatremia at the race finish 

who later progress to life-threatening hyponatremic encephalopathy and non-cardiogenic pulmonary 

edema is currently unknown. The efficacy of oral and intravenous 3% saline solution for treatment of 

“asymptomatic” clinical conditions needs further critical investigation. The clinical efficacy of an oral 

hypertonic solution in the treatment of EAH-induced delirium has been documented in three marathon 

runners [88]. In a large, randomized controlled trial set up to compare the efficacy of oral versus 

intravenous 3% HTS, in biochemical (non-neurological) cases of EAH, both oral and intravenous 

administration of a 100 mL bolus of 3% HTS are associated with a similar increase in plasma sodium 

without adverse consequences. The main physiological difference between the routes of administration 

was a significant plasma volume expansion with the intravenous (9%), but not the oral (1%) 

administration of HTS. It has been previously documented that intravenous 3% HTS elicits a greater 

plasma volume expansion compared to intravenous isotonic saline solution. Oral HTS is the 

intermediate treatment of choice for athletes diagnosed with EAH without significant symptoms [89]. 

6. Conclusions  

Exercise-associated hyponatremia is still an underdiagnosed complication of endurance sports. 

EAH has a complex pathogenesis and a multifactorial etiology. Although hyponatremia is often mild 

and corrects itself without significant intervention, the development of neurologic sequelae suggests 

EAHE (altered mental status, seizures, coma, and death). Failure to rapidly diagnose and properly treat 

EAHE or pulmonary edema has resulted in death in otherwise young, healthy individuals. 

Preventing EAH is the key factor in protecting participants in endurance events and other 

wilderness activities. There is a need to develop more rational fluid replacement strategies and 

education to optimize, rather than maximize, fluid intake during extreme exercise. Currently, there is 

no one recommendation that fits all individuals for fluid and salt consumption during endurance 

events, although prudent general guidelines include drinking to thirst and specifically avoiding 

excessively high fluid intake and monitoring body weight to avoid weight gain during a race. The 

serum sodium level and a rapid clinical assessment for signs of cerebral edema are the key factors that 

will determine urgent treatment with hypertonic saline solution. 
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