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Abstract: This review focuses on how insulin signals to metabolic processes in health, 

why this signaling is frequently deranged in Western/Westernized societies, how these 

derangements lead to, or abet development of, insulin-resistant states of obesity, the 

metabolic syndrome and type 2 diabetes mellitus, and what our options are for restoring 

insulin signaling, and glucose/lipid homeostasis. A central theme in this review is that 

excessive hepatic activity of an archetypal protein kinase enzyme, “atypical” protein  

kinase C (aPKC), plays a critically important role in the development of impaired glucose 

metabolism, systemic insulin resistance, and excessive hepatic production of glucose, 

lipids and proinflammatory factors that underlie clinical problems of glucose intolerance, 

obesity, hepatosteatosis, hyperlipidemia, and, ultimately, type 2 diabetes. The review 

suggests that normally inherited genes, in particular, the aPKC isoforms, that were 

important for survival and longevity in times of food scarcity are now liabilities in times of 

over-nutrition. Fortunately, new knowledge of insulin signaling mechanisms and how an 

aberration of excessive hepatic aPKC activation is induced by over-nutrition puts us in a 

position to target this aberration by diet and/or by specific inhibitors of hepatic aPKC. 
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1. An Overview and Darwinian Perspective of the Problem 

Insulin-resistant syndromes of obesity, the metabolic syndrome and type 2 diabetes mellitus have 

reached pandemic levels in Western/Westernized societies. Although there have been efforts to find a 

genetic defect(s) that underlies this pandemic, given the breadth of the problem, it seems likely that 

humans, collectively, have inherited a set of genes that have been critical for survival, but nevertheless 

predispose us to develop insulin resistance, a key factor in the development of the aforesaid syndromes. 

Here, we propose that this predisposing gene set was critically needed for survival when we and our 

forbearers existed as hunter-gatherers, but now, in times of food surfeit, these genes are a root cause,  

or have abetted development, of the aforesaid insulin-resistant syndromes. We further propose that  

the predisposing nutrition-related survival genes include, perhaps most importantly, three largely 

homologous isoforms of “atypical” protein kinase C (aPKC), PKC-ι which is found only in primates, 

its mouse counterpart, PKC-λ, and the more ubiquitous isoform, PKC-ζ. These archetypal protein 

kinases phosphorylate many proteins that control diverse biological functions, ranging from cell 

growth and differentiation to inflammation and various metabolic and nutritional processes. Indeed, 

total knockout of PKC-λ in the mouse, and presumably PKC-ι in humans, is embryonically lethal. 

As to the role the aPKCs in metabolism and nutrition, in the liver, during feeding, insulin activates 

both PKC-ι/λ and PKC-ζ, which, along with another insulin-activated protein kinase, Akt, increases 

hepatic lipid production from simple dietary precursors. The lipids that are produced in liver are 

released into the circulation for subsequent storage in adipose tissues. This process is critically needed 

for survival when food is scarce and feeding is sporadic. However, as we will discuss, this process 

becomes detrimental if over-utilized by over-nutrition. 

With respect to glucose metabolism, insulin diminishes hepatic gluconeogenesis primarily by 

activating hepatic Akt, and this mechanism is essential for preventing the development of 

hyperglycemia. However, in marked contrast, hepatic aPKC, which is also activated by insulin, 

actually restrains the effects of hepatic Akt on gluconeogenesis. This implies that hepatic aPKC 

increases gluconeogenesis, which function is essential for maintaining brain and muscle function in 

fasting conditions. On the other hand, the activity of hepatic aPKC needs to be limited, i.e., cannot be 

allowed to become excessive when nutrition is over-abundant, if we are to avoid excessive inhibition 

of Akt and subsequent development of glucose intolerance and diabetes mellitus. Unfortunately, 

hepatic aPKC is not only activated by insulin, but also by lipids derived directly from dietary 

carbohydrate and lipid precursors; moreover, as we will discuss, this activation of hepatic aPKC is 

clearly excessive with over-nutrition. Additionally, hepatic aPKC is further activated excessively by 

insulin itself as hyperinsulinemia develops in response to (a) excessive nutrition-dependent increases 

in insulin secretion from pancreatic islets; (b) inordinate increases in hepatic glucose production owing 

to mechanisms described herein; and/or (c) impairments in extrahepatic glucose disposal, particularly 

in muscle. 



J. Clin. Med. 2014, 3 726 

 

 

To add further insult to the above-described injuries in insulin-resistant hyperinsulinemic states, the 

human PKC-ι gene, unlike PKC-λ and PKC-ζ genes in subprimates, is activated by insulin-induced [1] 

and probably by lipid-induced increases in enzyme activity of aPKC. Accordingly, in insulin-resistant 

hyperinsulinemic conditions in humans, there is operation of a positive feedback loop in which hepatic 

aPKC activation provokes increases in transcription of the hepatic PKC-ι gene and subsequent 

increases in protein levels of hepatic PKC-ι, which, in turn, increase hepatic aPKC activity, and so on, 

to produce an auto-stimulatory vicious cycle. 

Unfortunately, the increased activity of hepatic aPKC leads to excessive increases in transcription 

of a large array of lipogenic enzymes, and activation of factors that increase production of multiple 

proinflammatory cytokines. These liver-derived lipids and proinflammatory cytokines can enter the 

circulation and are most likely major contributors to the subsequent impairment of insulin signaling to 

both Akt and aPKC in muscle, which in turn leads to diminished glucose transport, subsequent 

decreases in whole-body glucose disposal, and a further impairment in glucose tolerance. Our 

experience in mouse obesity models is that treatment with agents that selectively target and  

improve, i.e., normalize, hepatic aPKC leads to restoration of normal insulin signaling and action in 

muscle, even while high fat feeding continues. 

In addition to promoting insulin resistance, excessive production of aPKC-dependent hepatic lipids 

leads to hepatosteatosis, and the excessive release of hepatic lipids leads to abdominal obesity, 

hypertriglyceridemia and hypercholesterolemia. In short, a full-blown metabolic syndrome ensues, and 

this sets the stage for development of type 2 diabetes mellitus. 

To recapitulate, and, as will be discussed in greater detail below, with diet-induced excessive 

activation of hepatic aPKC, there is at first (presumably reflecting an early phase of obesity),  

an impairment in the ability of Akt to regulate (phosphorylate) downstream factors that diminish 

gluconeogenesis, and subsequent development of glucose intolerance, insulin resistance, hyperinsulinemia 

and increases in hepatic production of lipids and proinflammatory factors. As obesity progresses, the 

activation of Akt is itself impaired, causing further increases in hepatic glucose production and glucose 

intolerance. Later, when pancreatic insulin secretion is less able or can no longer compensate for 

impairments in glucose homeostasis, Akt activation diminishes even further and type 2 diabetes worsens. 

2. Current Approaches for Controlling Insulin-Resistant Syndromes 

Insulin-resistant syndromes of obesity, the metabolic syndrome and type 2 diabetes mellitus 

(T2DM) are estimated to be present in approximately 25% of adolescents and 50% of adults over the 

age of 50 in the United States, and their prevalence is on the rise as other populations are Westernized. 

Moreover, these syndromes, with attendant increases in blood pressure and serum levels of triglycerides, 

cholesterol, and proinflammatory cytokines, are responsible for much of the cardiovascular disease 

seen in Western/Westernized populations. 

Unfortunately, to date, preventive measures and treatments for this pandemic have had limited 

success. Although diet and exercise programs, if properly executed, particularly during early stages, 

are effective, safe and economical, this approach is frequently not fruitful. Weight loss induced by 

bariatric surgery is frequently effective, at least in the short run, but this approach requires an 

expensive operative procedure and is not always long-lived. 
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With respect to pharmaceutical approaches, many anti-obesity agents have undesirable properties, 

their usefulness for weight control is frequently limited, and they generally have little impact on 

carbohydrate and lipid metabolism. Thiazolidinediones (TZDs) are true insulin-sensitizers and can 

improve hyperglycemia, but these agents tend to increase adiposity, have minimal effects on 

hyperlipidemia, cause fluid retention, and may increase cardiovascular risk. As a result, TZD usage  

has waned. 

As for insulin secretagogues, sulfonylureas improve hyperglycemia, but can cause serious 

hypoglycemia, have little effect on hyperlipidemia and lipid abnormalities, and may increase 

cardiovascular risk. Incretins, such as glucagon-like peptide-1 (GLP-1) analogues and  

GLP-1/DPP4-peptidase inhibitors, can increase meal-related insulin secretion without increasing risk 

for hypoglycemia, and are useful for diminishing hyperglycemia. GLP-1 analogues may additionally 

improve obesity and hyperlipidemia. On the other hand, increases in effective circulating insulin  

levels in an insulin-resistant state, as discussed below, may have undesirable effects on lipids and 

proinflammatory cytokines, and theoretically may promote cancer progression. 

Presently, the most frequently used agent for treating T2DM is metformin. This agent diminishes 

hepatic gluconeogenesis and thereby improves hyperglycemia. Metformin also improves insulin 

signaling in muscle, and improves glucose disposal therein. The mechanism whereby, metformin 

achieves blood glucose-lowering effects in liver and muscle, is only partly understood. Most salutary 

effects of metformin are attributed to activation of 5′-AMP-dependent protein kinase (AMPK) [2,3]. 

Although AMPK activation in some tissues is elicited solely by activation of liver kinase B1 (LKB1), 

in human hepatocytes, metformin uncouples oxidative phosphorylation, and subsequent increases in 

AMP (generated at the expense of ATP) appear to account for increases in AMPK activity [4].  

AMPK activation by metformin and a substance commonly called AICAR improves insulin effects  

on expression of gluconeogenic enzymes, phosphoenolpyruvate carboxykinase (PEPCK), and  

glucose-6-phosphatase (G6Pase), in hepatocytes of type 2 diabetic humans [5] by a poorly understood 

mechanism. However, metformin and AICAR, apparently via AMPK activation, secondarily activate 

aPKC in human hepatocytes, and this unfortunately increases expression of lipogenic enzymes  

therein [5], presumably limiting improvements in lipids that would otherwise be present with simple 

AMPK activation. As discussed below, the activation of hepatic aPKC by metformin may also limit 

improvements in gluconeogenesis that would otherwise occur in the absence of hepatic aPKC 

activation. In short, co-activation of hepatic aPKC limits effectiveness of metformin; nevertheless, 

metformin is perhaps the best, and most frequently used, insulin-sensitizer that we presently have in 

our armamentarium. 

Clearly, there is an urgent need to develop newer approaches for treating obesity, the metabolic 

syndrome and T2DM. Since insulin resistance owing to impaired glucose homeostasis is at the core of 

these problems, and, since aberrations in insulin signaling underlie these impairments in glucose 

homeostasis, there is a critical need to develop therapeutic options that directly deal with these 

aberrations in signaling. Fortunately, we have developed new insights into insulin signaling mechanisms 

that exist in health and disease, and this has allowed us to: (a) define what we believe is a key  

over-active pathogenetic signaling factor for development of insulin resistance; and (b) develop agents 

that target this factor and thereby improve glucose and lipid metabolism. As alluded to above, this 

potential therapeutic target that we have identified is itself activated by insulin, but, unfortunately, is 
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also activated by certain lipids that are increased by dietary excesses of either carbohydrates or lipids. 

This target is aPKC, which we have found to be excessively activated in the liver in all  

insulin-resistant models that we have examined (see review data [6]). Before focusing on this target as 

a pathogenetic factor, and, thus, as a potential therapeutic option, we will review our understanding of 

how insulin signals to metabolic processes. 

3. General Aspects of Insulin Signaling to aPKC and Akt 

Insulin binds to external cell surface receptors that tyrosine-phosphorylate and thus activate two 

main intracellular substrates referred to as insulin receptor substrates (IRSs), IRS-1 and IRS-2, which 

attach to the inner side of the plasma membrane and activate an enzyme, a lipid/protein kinase, called 

phosphatidylinositol (PI) 3-kinase (PI3K) (see review [6]). PI3K in turn rapidly converts the plasma 

membrane phospholipid, PI-4,5-(PO4)2, to a more highly charged phospholipid, PI-3,4,5-(PO4)3 (PIP3). 

By virtue of its acidic D3-PO4 group, PIP3 binds directly to basic amino acids in several factors, 

including, Akt, aPKCs and phosphoinositide-dependent kinase-1 (PDK1). This co-localization 

facilitates PDK1-dependent phosphorylation of activation loop sites of both aPKC and Akt, e.g., 

threonine-308 in Akt and threonine-403 in PKC-λ. These initial phosphorylations then  

enable secondary phosphorylations at downstream sites, which, for aPKCs, occurs at the 

auto(trans)phosphorylation site, e.g., threonine-555 for PKC-ι, and, for Akt, occurs on serine-473, 

which is phosphorylated by a “PDK2”, now identified as mammalian target of rapamycin-C2 

(mTORC2). Activation of aPKC additionally involves, perhaps most importantly, binding of PIP3 to 

basic arginine residues in an auto-inhibitory pseudosubstrate sequence in the regulatory domain of all 

aPKCs, and this causes dissociation of the pseudosubstrate sequence from the substrate-binding site in 

the catalytic domain [7]. This dissociation causes molecular unfolding and allows substrates to gain 

access to the active catalytic/kinase sites of the aPKCs. In effect, PIP3 is the main “second messenger” 

for insulin and mediates most of its metabolic actions. 

4. Insulin Signaling to aPKC and Akt in Muscle 

In muscle, both aPKC and Akt are required for insulin stimulation of glucose transport (see  

review [6]), and both kinases are activated by insulin through the activation of IRS-1/PI3K  

(the function of IRS-2/PI3K in muscle is unknown). Thus, as muscle IRS-1/PI3K is generally 

downregulated in obesity and T2DM, the activation of both Akt and aPKC in muscle is frequently 

diminished in these disorders. As to why muscle IRS-1/PI3K is downregulated in obesity will be 

discussed below in greater detail, but we recently found in early phases of experimental obesity 

induced by high fat feeding, that an abnormality in hepatic glucose production appears to be more 

primary than, and seems to account for, impairments in insulin signaling in muscle. 

On the other hand, it is also clear that a primary defect in insulin action specifically in muscle,  

as has been produced experimentally by muscle-specific knockout of either the insulin receptor [8] or 

PKC-λ [9] can cause systemic insulin resistance, hyperinsulinemia and secondary increases in hepatic 

aPKC activity, that in turn lead to increases in lipogenic and gluconeogenic enzymes, and, thus, 

initially, to development of metabolic syndrome features of abdominal obesity, hepatosteatosis and 

hyperlipidemia, and, later, to development of overt T2DM [10]. In this regard, moreover, it appears 
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that first-degree relatives of type 2 diabetic humans have an abnormality (? inborn) in insulin signaling  

and action in muscle that: (a) is unrelated to obesity; (b) does not involve signaling to and through Akt 

to a major substrate, AS160 [11]; and (c) may set the stage for development of T2DM, perhaps with 

another insult, such as caloric excess. However, whether muscle aPKC activation is disturbed in these 

muscles, or whether a defect unrelated to either aPKC or Akt is involved in these muscles of  

first-degree relatives of type 2 diabetic humans is still unsettled. In any case, given the fact that  

simple over-nutrition can trigger experimental obesity-diabetes, and, given the apparent importance of 

over-nutrition as a causative agent in the present pandemic of human obesity and T2DM, it seems 

likely that the over-nutrition mechanisms postulated herein for development of obesity and T2DM play 

a pre-eminent role in fueling the present obesity-diabetes pandemic. 

5. Insulin Signaling to aPKC and Akt in Liver 

In liver, although Akt is activated primarily by IRS-1/PI3K and to a lesser, but significant, extent by 

IRS-2/PI3K, aPKCs, in contrast, are activated exclusively by IRS-2/PI3K during insulin action [6]. 

Accordingly, and importantly, in livers of type 2 diabetic rodents [12] and in isolated hepatocytes of 

type 2 diabetic humans [1], whereas IRS-1 levels and IRS-1/PI3K activation are generally diminished, 

IRS-2 levels and IRS-2/PI3K activation are fully or better maintained, or, in many cases, excessive. 

Thus, insulin signaling in liver bifurcates in insulin-resistant states, and this bifurcation at least partly 

explains how insulin activation of aPKC is conserved or excessive at the same time that insulin 

activation of hepatic Akt is impaired in diabetic liver [1,6,12]. In turn, these decreases in Akt 

activation can account for increases in hepatic gluconeogenesis in T2DM, despite the fact that there are 

“paradoxical” increases in hepatic lipogenic and proinflammatory pathways owing to continued or 

heightened activation of hepatic aPKC, and possibly other PKCs that are elevated in livers of type 2 

diabetic humans. In addition to the decreases in hepatic Akt activity that are seen in overt T2DM, we 

recently found [13] that there are decreases in the ability of fully activated Akt to specifically regulate 

gluconeogenesis in experimental diet-induced obesity in mice, as discussed further below. 

Insulin signaling downstream of Akt and aPKC in liver is particularly important for understanding 

how metabolic abnormalities arise in obesity and T2DM. To begin with, it should be recalled that 

insulin diminishes gluconeogenesis at least partly if not largely by decreasing expression of 

phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), which increase 

hepatic glucose production and subsequent release from the liver, respectively. Insulin decreases 

transcription of these genes by phosphorylating the forkhead box O1 factor (FoxO1) (which interestingly 

promotes or longevity or survival in lower organisms), thereby diminishing the import of FoxO1 into 

the nucleus, where FoxO1 would otherwise facilitate (among other things) glucagon-dependent 

increases in transcription of gluconeogenic enzymes, PEPCK and G6Pase [14,15]. This inhibitory 

action of insulin on hepatic FoxO1, PEPCK, and G6Pase appears to be mediated solely by Akt [16]. 

Moreover, it appears that the action of hepatic Akt on FoxO1 phosphorylation is actually opposed by 

hepatic aPKC [1,5,10,13,17]. Indeed, we recently studied two experimental murine obesity models, 

viz., diet-induced obesity wherein in high-fat-feeding increases hepatic ceramide levels and thereby 

causes excessive activation of hepatic aPKC [13], and hereditarily obese ob/ob mice [18], wherein, the 

congenital absence of leptin leads to (a) increases in appetite and food intake, and (b) decreases in 
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energy expenditure. In both obesity models, we found that hepatic Akt activity is in fact increased, 

presumably by hyperinsulinemia owing to increased hepatic gluconeogenesis and resultant glucose 

intolerance, and hepatic aPKC activity is increased, apparently owing to both hyperinsulinemia and 

dietary lipid-induced increases in hepatic ceramides that directly activate aPKC [13,18]. Most 

interestingly, despite increased hepatic Akt activity in these obesity models, the effect of Akt on 

FoxO1 phosphorylation and therefore gluconeogenic enzyme expression is compromised, and this 

leads to increases in hepatic glucose production, secondary increases in pancreatic insulin secretion, 

further increases in hepatic aPKC activity, and activation of aPKC-dependent lipogenic and 

proinflammatory factors. Furthermore, insulin signaling to IRS-1/PI3K, Akt and aPKC in muscle is 

secondarily downregulated, most likely through release of inhibitory lipids and proinflammatory 

substances, e.g., nuclear factor kappa-B(NFκB)-dependent tumor necrosis factor-alpha (TNF-α) and 

interleukin-1beta (IL-1β) [1,10,12,13,17] from the liver; as a result, muscle glucose transport is 

diminished, and glucose intolerance worsens. 

Remarkably, in the above-described obesity models, inhibitors of hepatic aPKC (used in doses  

that only partially reduce hepatic aPKC activity) fully or largely restore: (a) the impairment in hepatic 

Akt-dependent FoxO1 phosphorylation; (b) excessive hepatic expression of gluconeogenic enzymes, 

PEPCK and G6Pase; and (c) insulin signaling to both Akt and aPKC in muscle [13,18]. As a result of 

these biochemical improvements, there are improvements in clinical abnormalities, including, glucose 

intolerance, obesity, hepatosteatosis, and hyperlipidemia (note that reversibility is more complete in 

the high fat fed model, and continued resistance in ob/ob mice may reflect persistence of the 

impairment in energy expenditure caused by leptin deficiency). Thus, as all of these abnormalities in 

the high fat model can be fully or largely reversed by either of two low molecular-weight agents that 

selectively target hepatic aPKC, this speaks strongly to the importance and primacy of hepatic aPKC in 

causing the impairment in hepatic Akt-dependent FoxO1 phosphorylation. The fact that muscle signaling 

to aPKC and Akt improve after use of liver-specific aPKC inhibitors also suggests that muscle defects 

follow hepatic defects in both obesity models. However, as to therapeusis, it should be emphasized 

that, in both obesity models, caloric intake is increased and diet is a major initiating factor for 

abnormalities in hepatic aPKC. Accordingly, dietary treatments should be similarly efficacious. 

In contrast to gluconeogenesis, which insulin controls (i.e., diminishes) through Akt, rather  

than aPKC, insulin effects on hepatic lipogenesis are mediated by both Akt [19,20] and  

aPKC [1,5,10,12,16,17,21,22] through proteolytic activation and subsequent increases in expression of 

sterol receptor element binding protein-1c (SREBP-1c) itself and 44 lipogenic enzymes. Akt activates 

this pathway through phosphorylation of mTOR1 and S6 kinase [20], but how these factors operate 

distally is uncertain. It is also uncertain how aPKC activates the lipogenic pathway. In any case, 

activation of SREBP-1c by either or both aPKC and Akt most likely involves direct or indirect 

phosphorylation of SREBP-1c, subsequent proteolysis, nuclear import of the active proteolytic 

fragment of SREBP-1c, and trans-activation of an array of lipogenic genes. Thus, in the above-described 

obesity models wherein hepatic activities of both Akt and aPKC are increased, both kinases may 

contribute to increases in hepatic lipogenesis and subsequent development of abdominal obesity, 

hepatosteatosis and hyperlipidemia. 

However, as discussed above, as obesity advances and T2DM develops in response to a reversible 

or irreversible downturn in insulin secretion, the activation of hepatic IRS-1/PI3K, and thus of hepatic 
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Akt, diminishes. Accordingly, whereas this downturn in Akt activity would contribute to further 

decreases in FoxO1 phosphorylation and increases in hepatic gluconeogenesis, the progression of  

the diabetic state may diminish the contribution of Akt to hepatic lipogenic enzyme expression. 

Nevertheless, any remaining increases in hepatic lipogenesis may continue to be supported by 

elevations in activities of hepatic IRS-2/PI3K and aPKC, which we found to be well maintained, even 

when diabetes is produced by experimental destruction of insulin-producing pancreatic islet  

cells [12,22] Whether other factors, e.g., conventional or novel PKCs (cPKCs or nPKCs), that activate 

S6 kinase are needed to substitute for Akt in maintaining hepatic lipogenesis in later stages of T2DM 

is uncertain. In any case, we found in hepatocytes of type 2 diabetic humans, dependence of hepatic 

lipogenesis on aPKC continues, and inhibitors of hepatic aPKC correct or improve the excessive 

expression of hepatic lipogenic enzymes and proinflammatory factors [1]. 

6. Activation of aPKCs by Diet-Derived Lipids 

As alluded to, ceramide, a complex lipid that can be synthesized de novo from fatty acyl-CoA and 

sphingosine, or produced by breakdown of sphingomyelin, directly activates aPKC [23]. Moreover, 

hepatic ceramide is increased in the mouse model of diet-induced obesity in which dietary fat is 

increased from supplying 10% to either 40% or 60% of calories, and increases in hepatic ceramide are 

accompanied by increases in hepatic aPKC activity [13,24–26]. 

Increased ceramide levels in muscle have also been imputed as a cause of diminished insulin 

signaling to Akt and impaired glucose transport in obesity and T2DM. However, it should be noted 

that aPKC activity is also markedly suppressed in these muscles, and this is opposite to the fact that 

ceramide activates aPKC [23]. Thus, the impairment of insulin activation of aPKC that is ubiquitously 

seen in muscles of obese or diabetic animals or humans [6] cannot be ascribed to increases in muscle 

ceramide. On the other hand, increases in muscle ceramide may contribute to impairments in muscle 

IRS-1/PI3K and Akt activation in obesity and diabetes. 

7. Insulin Signaling to Other PKCs through the de Novo Pathway 

Insulin also activates cPKCs and nPKCs, particularly in liver and adipose tissues, by activating 

glycerol-3-phosphate/acyltransferase, which generates phosphatidic acid (PA) from glucose-derived 

glycerol-phosphate and fatty acyl-CoA, i.e., the “de novo” phospholipid synthesis pathway [27,28].  

PA is then rapidly converted to diacylglycerol (DAG), which activates cPKCs and nPKCs. This effect 

of insulin on de novo PA synthesis is not dependent on PI3K in some tissues [28], and it is unclear if 

this pathway is conserved in human diabetic liver. PA can also be increased by phospholipase D 

action, which insulin reportedly activates in liver [29]. In addition, note that increases in hepatic PA 

may also increase hepatic aPKC activity, as PA, like PIP3, is an acidic phospholipid that directly 

activates aPKC [6], albeit at reduced efficiency as compared to PIP3. Further, as discussed above, 

DAG-activated cPKCs and nPKCs, which are activated in livers of type 2 diabetic humans [30], may 

participate in maintaining the lipogenic pathway [31], perhaps by activating S6 kinase, and the 

proinflammatory pathway [32], in diabetic liver. 
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8. Activation of cPKCs and nPKCs by Diet-Derived Carbohydrates and Lipids 

As with insulin, the de novo synthesis of PA and DAG can also be increased by increases in  

glucose [33] or carbohydrates that are metabolized to glucose, and by increases in lipids that increase 

availability of fatty acids. Increases in DAG induced either by insulin, glucose and/or fatty acids  

may then activate cPKCs and nPKCs, which are known to phosphorylate and diminish activity of  

the insulin receptor, and perhaps other insulin signaling factors. The cPKCs and nPKCs also appear  

to contribute importantly to development of glucose-dependent microvascular abnormalities in 

diabetes mellitus. 

9. Levels of aPKCs in Tissues of Type 2 Diabetic Humans 

As alluded to, we [34] and others [35] have found that aPKC levels, in particular PKC-ι [1], are 

diminished by approximately 50% in muscles of humans who have type 2 diabetes mellitus. However, 

in striking contrast to muscle, levels of PKC-ι are increased in hepatocytes of humans who have type 2 

diabetes [1]. This difference in levels of PKC-ι in muscle and liver most likely reflects that:  

(a) expression (i.e., mRNA production) of PKC-ι, but not other aPKCs, is stimulated by insulin-induced 

increases in aPKC enzyme activity [1], i.e., there is a forward-feed, positive feedback mechanism that 

is operative and excessive in hyperinsulinemic conditions; and (b) whereas IRS-1/PI3K and thus aPKC 

activities in muscle are diminished in type 2 diabetes, IRS-2/PI3K and aPKC activities are elevated in 

hepatocytes of type 2 diabetic humans [1]. Thus, the differential control of aPKC activity in muscle 

and liver by upstream activators seems to account for observed differences in levels of PKC-ι mRNA 

and PKC-ι protein in these tissues of type 2 diabetic humans. 

It is important to note that: (a) alterations in aPKC levels in both muscle and liver are not seen in 

rodent models of diabetes, as PKC-λ and PKC-ζ are not subject to positive feedback regulation;  

(b) human muscle contains primarily PKC-ι and a small amount of PKC-ζ [1,6]; (c) human liver 

contains substantial amounts of both PKC-ι and PKC-ζ [1,6]; (d) deficiency of aPKC in muscle and 

excess of aPKC in liver that are seen in human T2DM are not seen in human obesity [36]; and (e) the 

deficiency of aPKC in muscle and the excess of aPKC in liver greatly compound metabolic problems 

of T2DM in that both aberrations increase blood glucose levels and therefore increase plasma insulin 

levels, hepatic aPKC activity and expression of hepatic lipogenic, gluconeogenic, and proinflammatory 

factors; in turn, hepatic abnormalities downregulates insulin signaling in muscle, and vice versa, and 

so on, in another vicious cycle. 

10. Use of Inhibitors of Hepatic aPKC for Treatment of Obesity and T2DM 

As stated above, the vicious cycle of excessive hepatic aPKC activation that exists in obesity and 

T2DM can be broken by selective inhibition of hepatic aPKC following either: (a) by dietary measures 

that diminish aPKC-stimulating effects of certain lipids and hyperinsulinemia; and (b) by treatment 

with liver-selective inhibitors of aPKC. To the latter end, in our initial studies of rodent models of 

obesity (viz., high fat fed mice and heterozygous muscle-specific PKC-λ knockout mice) [17] and 

T2DM (viz., Goto-Kakizaki rats and obese-diabetic ob/ob mice) [12], we used intravenous injection of 

an adenovirus expressing kinase-inactive aPKC, which rapidly (within 5 days) and selectively 



J. Clin. Med. 2014, 3 733 

 

 

(because of adenoviral localization to liver) diminished hepatic aPKC activity by approximately 50%. 

With this partial decrease in hepatic aPKC activity, the heightened expression/activation of  

hepatic SREBP-1c and NFκB were markedly improved, and there were improvements of 

hepatosteatosis, hypertriglyceridemia, hyper-fattyacidemia, hypercholesterolemia and hyperinsulinemia. 

Additionally, insulin signaling in muscle, adipose tissue and liver improved, fasting levels of  

hepatic PEPCK/G6Pase diminished, and, with these alterations, glucose homeostasis markedly  

improved [12,17]. In addition, excessive expression of lipogenic and proinflammatory factors 

improved [12,17]. 

Subsequently, we used two low molecular weight chemical inhibitors of PKC-viz. “ICAPP”,  

1H-imidazole-4-carboxamide,5-amino-1-2,3-dihydroxy-4-[(phosphono-oxy)methyl]cyclopentyl-1R-

(1a,2b,3b,4a), which binds tightly to the substrate-binding site of PKC-ι/λ, and “ATM”,  

aurothiomalate, which binds to the PB1-binding site in the regulatory domains of all aPKCs, which is 

essential for activation and certain subsequent actions of aPKCs. We first used these inhibitors in 

isolated hepatocytes of type 2 diabetic humans [1] to verify that these inhibitors diminish overactive 

lipogenic, proinflammatory and gluconeogenic pathways. We then used them to treat heterozygous 

muscle-specific PKC-λ knockout mice that have abdominal obesity, a full-blown metabolic syndrome 

and T2DM [9,10]. Importantly, both inhibitors selectively inhibited hepatic aPKC and corrected the 

exaggerated increases in expression/activities of SREBP-1c, NFκB, lipogenic enzymes, fatty acid 

synthase (FAS) and acetyl-CoA Carboxylase (ACC), and proinflammatory cytokines, tumor necrosis 

factor-α (TNF-α) and Interleukin-1β (IL-1β), and gluconeogenic enzymes, PEPCK and G6Pase, both 

in isolated hepatocytes of type 2 diabetic humans [1] and livers of obese-type 2 diabetic heterozygous 

muscle-specific PKC-λ knockout mice [10]. Moreover, within seven days of treatment of the 

heterozygous muscle-specific PKC-λ knockout mice, there were dramatic reversals of abdominal 

obesity, hepatosteatosis, hypertriglyceridemia, fattyacidemia, hypercholesterolemia, hyperinsulinemia 

and hyperglycemia [10]. Furthermore, insulin signaling to Akt was improved in muscle, adipose and 

liver tissues, and insulin-stimulated aPKC activation was improved in muscle and adipose tissues [10]. 

It should be noted that ICAPP is a highly specific inhibitor of PKC-ι/λ, and has no effect on other 

PKCs, including, PKC-ζ, PKC-α, PKC-β, PKC-δ, PKC-ε, and PKC-θ, and does not alter AMPK or 

Akt activity or their activation [1]. Additionally, note that both ICAPP and ATM selectively target 

hepatic aPKC activity, and, when used in vivo, do not inhibit muscle or adipose tissue aPKC activity or 

their activation by insulin. In fact, other than hepatic aPKC, all other signaling effects of insulin on 

both aPKC and Akt are improved in muscle, liver and adipose tissues of heterozygous muscle-specific 

PKC-λ knockout mice following ICAPP or ATM treatment [10]. 

More recently, we used another low molecular weight agent, 2-acetyl-1,3-diketo-cyclopentane 

(ACPD), that inhibits both PKC-ι/λ and PKC-ζ with equal potency (I50, approximately 0.5 μM), but 

not cPKCs or nPKCs [5]. Like ICAPP and ATM, ACPD inhibits insulin-induced increases in aPKC 

activity and aPKC-dependent increases in lipogenic enzymes in human hepatocytes [5], and lipogenic 

and gluconeogenic enzymes and proinflammatory factors in livers of obese ob/ob mice [7], and high 

fat fed mice [13]. Also, like ICAPP and ATM, ACPD does not inhibit Akt and has no effect on activity 

or activation of AMPK [5,13]. Most interestingly, ACPD was used over a 10-week period in high fat 

fed mice [13] and ob/ob mice [18] with no obvious ill effects, and was very effective in improving 

hepatic FoxO1 phosphorylation and diminishing expression of gluconeogenic and lipogenic enzymes. 
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In addition, and presumably secondary to hepatic alterations, insulin signaling to both Akt and aPKC 

in muscle improved, and clinical parameters, including, glucose tolerance, obesity, hepatosteatosis and 

hyperlipidemia, improved in both obesity models. 

Finally, we have studied mice in which one PKC-λ was knocked out by standard homologous 

recombination methods, and these mice surprisingly had a global defect in insulin signaling to  

both Akt and aPKC in liver, muscle, adipose tissue, but, nevertheless, were not diabetic, had normal 

responsiveness to insulin in hyperinsulinemic-euglycemic clamp studies, and, moreover, were fully 

protected from developing glucose intolerance or insulin resistance, or lipid abnormalities, when 

challenged with a high fat diet [37]. Thus, partial deficiency of aPKC throughout the body conferred 

remarkable metabolic protection. 

11. Conclusions 

Our findings and postulates are summarized in Figures 1–3. In the first phase of insulin resistance, 

as seen in mouse models of diet-dependent obesity that are produced either by a moderate increase in 

dietary fat or carbohydrate intake, or by hyperphagia secondary to genetic (ob/ob) leptin deficiency, 

hepatic aPKC activity is inordinately increased, and, presumably because of co-localization of aPKC, 

Akt and FoxO1on the same ProF platform [13,38,39], and because of the ability of aPKC to bind, 

phosphorylate and inhibit Akt [40–42], the effects of Akt on FoxO1 phosphorylation are selectively 

diminished [13]. This selective impairment in FoxO1 phosphorylation leads to increased expression of 

gluconeogenic enzymes, glucose intolerance, hyperinsulinemia, further activation of hepatic aPKC and 

Akt, and further increases in expression of lipogenic enzymes and proinflammatory factors. Even in 

this early phase of insulin resistance, as well as in later phases, increases in hepatic production of lipid 

enzymes and proinflammatory factors appear to play important roles in causing decreases in insulin 

signaling to IRS-1/PI3K, aPKC and Akt in muscle, which in turn causes further worsening of glucose 

tolerance and insulin resistance, and thus further activation of hepatic aPKC and increases in 

production of hepatic lipid and proinflammatory factors. 

In later phases of diet-induced obesity and early phases of type 2 diabetes, increases in hepatic 

aPKC activity are further heightened, and defects in activation of hepatic IRS-1/PI3K and Akt develop, 

further diminishing FoxO1 phosphorylation, and further increasing expression of gluconeogenic enzymes. 

Lipogenic enzyme expression and production of proinflammatory factors are still elevated by actions 

of aPKCs, residual Akt and perhaps other activators of S6 protein kinase. 

In later phases of T2DM, pancreatic islet insulin secretion continues to fall, and this causes further 

decreases in hepatic IRS-1/PI3K and Akt, and further increases in hepatic gluconeogenesis. However, 

IRS-2/PI3K activation is more resistant to downregulation, and, along with increases in lipids that 

directly activate aPKCs (and, for that matter, DAG-dependent cPKCs and nPKCs), aPKC-dependent 

lipogenic and proinflammatory pathways may be better maintained. Of course, if insulin secretion is 

fully compromised, as in very late stages of T2DM, insulin activation of IRS-2/PI3K and IRS-2-dependent 

aPKC would also diminish. Nevertheless, IRS-2, aPKC, and other PKC activities may continue to be 

maintained by stimulatory lipids derived from high circulating levels of glucose, and fatty acids, and 

possibly by other factors. 
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Figure 1. Phase 1 of insulin resistance (early diet-induced obesity). 

 

Figure 2. Phase 2 of insulin resistance (later diet-induced obesity and early T2DM). 
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Figure 3. Phase 3 of insulin resistance (later T2DM). 

 

To add further insult in hepatocytes of type 2 diabetic humans, hepatic PKC-ι expression and  

actual protein levels of PKC-ι are increased by insulin (and possibly by lipids), and a vicious cycle of 

excessive activation and production of aPKC is set up, further intensifying all metabolic problems. 

With increases in circulating lipids and proinflammatory cytokines, and with increases in blood 

pressure that ensues from insulin resistance and hyperinsulinemia, cardiovascular risk is increased. 

Fortunately, the vicious cycle of aPKC hyper-expression and hyper-activity in human hepatocytes 

can be broken by low molecular weight inhibitors of aPKC. And fortunately, as we have seen in rodent 

models, breaking of this vicious cycle can largely correct obesity, metabolic syndrome abnormalities 

and T2DM. Whether the present or yet-to-be-developed low molecular weight inhibitors of aPKC will 

prove to be as effective in humans as they have been in rodents remains to be determined. In addition, 

there is a critical need to address safety issues during long-term treatment with aPKC inhibitors. At 

this point, we have reason to believe that this pharmacologic approach will be useful. However, also 

note that simple incubation of hepatocytes of type 2 diabetic humans in the absence of insulin (and/or 

other factors) can break this vicious cycle [1], and this suggests that dietary measures that are effective 

in reversing hyperinsulinemia should be similarly effective. 
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