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Abstract: Wound management presents a significant global challenge, necessitating a comprehensive
understanding of wound care products and clinical expertise in selecting dressings. Bioactive dress-
ings (BD) represent a diverse category of dressings, capable of influencing wound healing through
various mechanisms. These dressings, including honey, hyaluronic acid, collagen, alginates, and
polymers enriched with polyhexamethylene biguanide, chitin, and chitosan derivatives, create a
conducive environment for healing, promoting moisture balance, pH regulation, oxygen perme-
ability, and fluid management. Interactive dressings further enhance targeted action by serving as
substrates for bioactive agents. The continuous evolution of BDs, with new products introduced
annually, underscores the need for updated knowledge in wound care. To facilitate dressing selec-
tion, a practical algorithm considers wound exudate, infection probability, and bleeding, guiding
clinicians through the process. This algorithm aims to optimize wound care by ensuring the ap-
propriate selection of BDs tailored to individual patient needs, ultimately improving outcomes in
wound management.

Keywords: wound healing; wounds; inflammation; angiogenesis; bioactive dressing; skin; stem cells;
plastic surgery

1. Introduction

Wound management poses a significant and growing challenge globally. Two key
components for a proper approach to wound management are knowledge of wound care
products and clinical experience in selecting dressings, both of which are essential to ensure
evidence-based care. Optimal wound management requires accurate patient assessment,
precise wound diagnosis, and a thorough understanding by healthcare professionals of the
wound healing process, as well as the characteristics of dressings, including advantages
and disadvantages, indications, and contraindications. This also involves a careful under-
standing of the properties of first-line interactive/bioactive dressing groups commonly
used in clinical practice [1].

Bioactive dressings (BD) remain a topic of discussion within the medical community.
They are characterized as dressings made from natural or synthetic materials that have the
ability to impact the wound-healing process either directly or indirectly [2].

Their action can manifest through the release of bioactive factors or due to the pres-
ence of materials with endogenous activity. This category includes various types of prod-
ucts such as alginates, collagen (CG), hydrocolloids, biotextiles, chitosan, chitin, and
their derivatives [3].

Interactive dressings have the potential to act as a platform for bioactive agents,
enabling a more precise and tailored approach to address the unique conditions of ulcers
and the specific requirements for skin restoration [4]. Key characteristics shared by BDs
typically involve:

- Maintenance of a moist wound environment;
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- Assistance in restoring normal pH levels;
- Permeability to oxygen;
- Promotion of optimal oxygen concentration within the ulcer site;
- Effective management of fluids;
- Biodegradability;
- Compatibility with biological systems;
- Antioxidant properties;
- Frequently necessitating secondary dressing application.

Schematically, BDs can be divided into two subgroups [5] (Table 1):

(1) Bioactive;
(2) Drug-loaded wound dressings.

Table 1. Types of Bioactive dressings.

(1) Bioactive Dressings (2) Drug-Loaded Wound Dressings

Honey Silver
Hyaluronic Acid Iodopovidone

Collagen Ozonides
Alginate Mesoglycan

Chitin DNA and ribosomes
Chitosan Rigenase

Polymers enriched with PHMB
(Polyhexamethylene Biguanide)

Matrix metalloproteinase inhibitors (MMPs
inhibitors)

The number of BDs is destined to increase even further, thanks to advancements in
new technologies. The objective is to develop the “optimal dressing” that meets specific
requirements, including maintaining a moist environment, promoting epidermal migra-
tion, promoting angiogenesis and the synthesis of connective tissue, facilitating gas and
nutrient exchange, protecting against bacterial infections, and being sterilizable, non-toxic,
biodegradable, and hypoallergenic [6].

2. Bioactive Dressings
2.1. Bioactive Dressing: Honey

Honey, being a natural product containing enzymes, phenols, and sugars with antioxi-
dant, anti-inflammatory, and antibacterial properties, consists of water, sucrose, glucose,
fructose, amino acids, beeswax, pollen, pigments, minerals, and glucose oxidase. Honey
can have various positive effects on the wound healing process, including suppressing
inflammation, encouraging angiogenesis and immune response, and speeding up dermal
repair and re-epithelialization [7].

2.1.1. Anti-Inflammatory Activity

This activity is crucial for wound healing and an inadequate response can lead to de-
layed healing. Honey exhibits its anti-inflammatory activity through various mechanisms.
Firstly, reducing the production of free radicals through its antioxidant properties, thereby
limiting tissue necrosis [7]. Additionally, in vivo and in vitro studies have shown that honey
reduces prostaglandin synthesis by inhibiting the activity of cyclooxygenase 1 (COX1) and
cyclooxygenase 2 (COX2). [8]. A decrease in prostaglandins results in an improvement in
edema, pain, and inflammation. Finally, honey blocks the expression of tumor necrosis
factor-alpha (TNF-α) and reduces pro-inflammatory cytokine levels by modulating nu-
clear factor kappa B (NF-kB) levels. Finally, honey improves microcirculation and tissue
oxygenation. This promotes tissue repair and tissue growth [9].
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2.1.2. Antioxidant Activity

Various components of honey are responsible for antioxidant activity such as flavonoids,
phenolic acids, ascorbic acid, tocopherols, and some enzymes like superoxide dismutase
and catalase [10].

2.1.3. Antibacterial Activity

Honey acts directly on bacterial growth and survival due to its high acidity and os-
molarity, through hydrogen peroxide and phenolic compounds, and indirectly promotes
the production of lymphocytes, antibodies, cytokines, and nitric oxide. Both in vivo and
in vitro studies also demonstrate the effectiveness of honey against antibiotic-resistant
bacteria. It inhibits the formation of bacterial biofilm by reducing the expression of
the gene related to its development and decreasing the metabolic activity of already
formed biofilm [11–19].

2.1.4. Neo-Angiogenic Activity

It has been widely demonstrated that honey promotes neoangiogenesis and the pro-
liferation of endothelial cells thanks to the hydrogen peroxide produced by the glucose
oxidase enzyme present in honey. Activation of this enzyme stimulates the production of
growth factors, including vascular endothelial growth factor (VEGF), by macrophages [20].

VEGF is a key molecule involved in the formation of new blood vessels, known
as neoangiogenesis [21].

This process is crucial for wound healing and tissue repair as it increases the availabil-
ity of oxygen and nutrients at the site of interest. Furthermore, the high number of sugars
in honey further stimulates the neoangiogenesis process. In summary, honey acts synergis-
tically through hydrogen peroxide and nutrient supply to promote neo-angiogenesis and
the proliferation of endothelial cells.

2.1.5. Side Effects

Honey, despite being a natural product, faces limitations in its application. Its compo-
sition is highly variable, primarily influenced by botanical origin and geographical location,
and not all of its components have well-understood biological activities. Collection, pro-
cessing, and treatment methods can also impact its characteristics. These alterations affect
bioactivity profiles and, consequently, therapeutic efficacy. Medical-grade honey undergoes
sterilization through gamma irradiation to eliminate potential Clostridium spores. They
are produced under strict hygiene standards, without contaminants or pesticides in their
composition. Manuka honey is among the most widely utilized honey in the medical field,
originating as a monofloral honey from New Zealand and Australia. Bees primarily collect
nectar and pollen from Leptospermum scoparium (known locally as manuka) to produce
it. Apart from manuka, other honeys like tualang, kanuka, and capilan also display no-
table antibacterial effects, although these may be diminished by high-temperature heat
treatments [22,23]. Considering the presence of various substances with antibacterial
properties, such as methylglyoxal, leptosperine, or methyl syringate, the concept of UMF
(unique manuka factor), also known as “non-peroxide-dependent activity” (NPA), has been
devised. For instance, honey labeled UMF 5 possesses the same antibacterial activity as a
5% phenol solution. The rating can range from UMF 5+ to UMF 20+; the higher the value,
the greater the antibacterial activity of the product.

2.1.6. Dressings

Honey-based dressings can be employed for treating both acute and chronic wounds,
with certain limitations in the case of burns. They prove particularly beneficial in the
presence of critical bacterial colonization or when bacterial strains do not respond to
conventional antibiotic therapy [11]. These dressings are mainly used on wounds with a
mild to moderate level of exudate to prevent excessive dilution of honey caused by the
wound exudate [24]. Research also indicates the potential use of honey dressings on highly
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exudative wounds in the case of infection. Notably, even when honey is considerably
diluted by the wound exudate, it maintains sufficiently potent antibacterial activity to
inhibit bacterial growth (with minimal inhibitory concentration values below 11%) [11].
These dressings are commercially available in various forms, including creams, ointments,
and impregnated gauzes as simple dressing options, while hydrogels, alginates, and
pads are categorized as advanced dressings. It is crucial to note that honey dressings
always necessitate the application of a secondary dressing and can be utilized under
compression bandaging.

2.2. Bioactive Dressing: Hyaluronic Acid

Hyaluronic acid (HA) is a natural polymer belonging to the glycosaminoglycans
(GAGs), a heterogeneous group of polysaccharides. It is mainly present in the vitreous
humor, joints, umbilical cord, skin, and connective tissue. Nowadays, it is primarily
obtained through bacterial fermentation.

HA is composed of disaccharide units ofβ-D-glucuronic acid and N-acetyl-D-glucosamine
linked by β-1,3 and β-1,4 glycosidic bonds. It has a semi-rigid structure [25], with a variable
molecular weight. Its formula is characterized by a high number of carboxylic (-COOH)
and hydroxyl (-OH) groups, providing pronounced hydrophilicity. At physiological pH,
the carboxylic and acetoamide groups on the molecule’s surface form hydrogen bonds
with water, stabilizing the biopolymer’s secondary structure. High molecular weight HA
(HMW-HA) exhibits greater stability and viscoelasticity than smaller molecules. It is crucial
to note that the rheological properties of HA depend not only on molecular weight but also
on the ionic charge of the solution (ionic strength), pH, and temperature. For instance, in
case of skin damage, the wound bed’s pH is around 8 and reaches a value of 5 at the end of
the healing process [26].

Under normal conditions, HA is mainly synthesized as HMW-HA. When the extra-
cellular matrix (ECM) homeostasis is disrupted by pathological conditions, endogenous
HMW-HA can be degraded more rapidly by hyaluronidases (HYAL) and reactive oxygen
species (ROS). This imbalance leads to a higher concentration of low molecular weight HA
(LMW), which can be further fragmented into shorter oligomers (o-HA). These changes
underlie its multiple actions in the wound-healing process [27], as follows:

- Fibrin plug formation;
- Production and release of interleukins;
- Stimulates the invasion and proliferation of fibroblasts along with fibronectin and

induces the formation of myofibroblasts, essential in the wound contraction process;
- Stimulates the migration and proliferation of keratinocytes.

Dressings

HA dressings should be used on acute and chronic cleansed wounds, with low to
medium exudate. They require a secondary dressing.

We can schematically divide them into [28]

- Simple dressings: gauze, creams, and sprays, sometimes enriched with sulfadiazine,
silver, and collagenase;

- Vials for local infiltration or topical treatment (HA with polynucleotides);
- Granules and powders;
- Esters Hyaff-11;
- Sponges with HA and native equine type 1.

The Esters Hyaff-11 family [29], consisting of semi-synthetic biopolymers, enables
the production of various biomaterials through the esterification of the carboxyl groups
of the HA molecule with benzyl alcohol. Esterification protects the molecule from rapid
enzymatic degradation, allowing a longer in situ presence of the device. Upon contact
with wound exudate, it transforms into a hydrophilic gel that coats the wound, creating a
HA-rich interface that provides the ideal moist environment for wound healing.
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2.3. Bioactive Dressing: Collagen

CG is the primary protein found in the ECM of the human body. It is synthesized by
fibroblasts and plays a crucial role in various stages of the healing process. Its chemotactic
effect on macrophages and fibroblasts, the predominant cells during the inflammation,
proliferation, and maturation phases of wounds, significantly contributes to this process.
There are 29 types of CG, divided into fibrillar and non-fibrillar categories. Among the
fibrillar types, the most relevant ones in the skin are types I, II, and V, while among the
non-fibrillar types, types IV and XVIII stand out [30].

2.3.1. Extracellular Matrix Remodeling

The remodeling phase is essential in the healing of cutaneous wounds, marked by an
active reorganization of the ECM. During this phase, there is an increase in crosslinking
between CG fibers, leading to scar maturation. The formation of scar tissue replaces dam-
aged tissue with CG-rich type I connective tissue, characterized by densely grouped and
oriented CG fibrils. The degree of fibrosis varies between anatomical sites and individuals,
influenced by factors such as mechanical tension and genetic predisposition. The inflamma-
tory response plays a key role in scar formation, affecting the abnormal interaction between
keratinocytes and fibroblasts, fibroblast–myofibroblast transformation, and excessive ECM
deposition, resulting in various types of scars. A detailed understanding of these processes
is crucial for the development of targeted therapies, with a specific emphasis on regulating
remodeling processes, including CG synthesis and degradation mechanisms [31].

2.3.2. Anti-Inflammatory Activity

Following tissue damage, CG fibers in the ECM activate platelets, leading to their
aggregation and the formation of the platelet plug. CG types I and IV play a crucial
role as mediators of anti-inflammatory activity, acting as a chemotactic agent for neu-
trophils, promoting phagocytosis, influencing the immune response, and modulating gene
expression [32]. The presence of a CG matrix accelerates the inflammatory response, con-
tributing to a rapid restitution ad integrum. Reduced CG levels in chronic wounds are
associated with delayed healing [33].

2.3.3. Neo-Angiogenic Activity

CG type I promotes angiogenesis through the release of C peptide and attracting
endothelial cells. Conversely, CG type IV and XVIII (non-fibrillar) exert anti-angiogenic
actions, as their proteolytic fragments hinder the migration and growth of endothelial cells,
leading to apoptosis [34,35].

2.3.4. Dressing

Wound dressings comprising 100% non-hydrolyzed CG are employed for treating both
burns and wounds [36]. These dressings, which are typically non-porous and chemically
similar to the CG ECM, are suitable for non-infected wounds that require intermediate
exudation. This prevents excessive dryness associated with the rapid evaporation of
exudate. Moreover, the CG pad acts as a scaffold, expediting wound healing by facilitating
the presence of fibroblasts, macrophages, and neutrophils. In some cases, these described
pads are combined with Manuka honey, known for its ability to reduce wound pH, inhibit
matrix metalloproteinases (MMPs), and exhibit additional antimicrobial action [37].

Another available formulation involves triple-helical CG associated with HA. This
dressing utilizes not only the characteristics of CG but also the hydrating, proliferative,
and migratory properties of HA, along with promoting angiogenesis. Formulations fea-
turing hydrolyzed and denatured CG have been introduced to overcome limitations as-
sociated with triple-helical CG, including poor solubility and prolonged solubility in an
aqueous environment [36].
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Certain pads, in addition to non-hydrolyzed bovine CG, are linked to polypeptides and
glycerin or oxidized regenerated cellulose (ORC), enabling greater absorbent capacity [38].
Formulations involving ORC appear capable of

(1) Reducing enzymatic activity on the wound bed, thereby promoting the deposition of
new tissue;

(2) Enhancing the release of platelet-derived growth factor (PDGF).

A final formulation combines the capabilities of denatured CG with the absorbent
properties of carboxymethyl cellulose and sodium alginate. It also includes ethylenedi-
aminetetraacetic acid (EDTA), which binds calcium, regulating MMPs, and CGases [39].

2.4. Bioactive Dressing: Alginate

Alginate, derived from various macroalgae, is a polymer found in many coastal areas
worldwide. Primarily extracted from brown algae, it can be rendered water-soluble for
advanced BDs. Water-soluble alginate, such as sodium alginate, exhibits significant rhe-
ological properties like gelation, viscosification, and dispersion stabilization, dependent
on its chemical structure of M-blocks (mannuronic) and G-blocks (guluronic). The high
content of M-blocks is beneficial for chronic wound healing, stimulating cytokine produc-
tion. Non-toxic and biocompatible alginate is a hydrophilic biopolymer suitable for various
advanced clinical and biomedical applications [40].

2.4.1. Anti-Inflammatory Activity

The results obtained from a study on a full-thickness excision wound model in rats
indicate that the use of alginate dressings can enhance the natural wound-healing process
while concurrently inhibiting cytokines associated with fibrosis. This results in a reduction
in wound size and an increase in epithelial cell proliferation. These findings suggest that
topical treatment with alginate for skin defects could be highly effective in reducing wound
dimensions; further studies are needed to evaluate the precise mechanism of epithelial cell
proliferation induced by alginate treatment [41]. Additionally, a pronounced reduction
in TNF-α in solution was observed with the use of alginate. All tested wound dressings
demonstrated a high binding affinity, allowing only negligible amounts of cytokines to be
subsequently released [42].

2.4.2. Antimicrobial Activity

Tests on the antimicrobial activity of alginate-based wound dressings have confirmed
their ability to effectively inhibit the growth of both Gram-positive and Gram-negative
bacteria. No bacterial growth was observed after a 24-h treatment with these dressings for
P. aeruginosa, K. pneumoniae, and E. coli. Silver-containing alginates demonstrated effective
inhibition of S. aureus growth, while alginate alone still achieved a strong inhibitory effect.
In the case of C. albicans, only dressings with alginate and nano-Ag achieved a complete
reduction of viable yeast cells. Alginate + ionic Ag formulations showed a significant
reduction in microbial growth, while alginate alone exhibited a modest inhibition.

In conclusion, alginate-based wound dressings have demonstrated significant and
swift antimicrobial activity against a range of tested microorganisms, suggesting their
potential for effective wound management [42].

2.4.3. Dressing

Alginate dressings display several fascinating properties such as high biocompatibility,
low toxicity, cost-effectiveness [43], and hemostatic properties [44].

They can take various forms, including hydrogels, films, nanofibers, and wafers.
Hydrogels, films, and nanofibers containing sodium alginate demonstrate significant
beneficial properties in the context of wound dressings. Hydrogels, through the use
of nanoparticles and bioactive agents, exert a positive influence on wound healing by
enhancing antibacterial activity and promoting cell proliferation. Films, appropriately
enriched with antibacterial agents, exhibit high activity against bacteria and accelerate
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re-epithelialization in vivo. Nanofibers surpass commercial dressings in reducing cytokine
production and significantly improving wound healing by facilitating re-epithelialization,
vascularization, and hair follicle formation. The topical application of formulations with
sodium alginate has shown a significant reduction in wound area in vivo. Overall,
alginate-based materials hold promise for the future development of advanced dressings
for effective wound management [45].

2.5. Bioactive Dressing: Chitin and Chitosan

Chitosan is a polymer derived from the deacetylation of chitin, a fundamental com-
ponent of the exoskeleton in various crustaceans such as lobsters, crabs, and shrimp. It
exhibits antimicrobial activity and has proven to be an effective material for wound dress-
ing. Chitosan is insoluble at neutral or basic pH due to its free amino groups, while at
acidic pH, it becomes soluble in water due to the protonation of amino groups [46,47]. It is
a biocompatible molecule that stimulates hemostasis and accelerates tissue regeneration,
attributed to the presence of N-acetyl glucosamine within it [48,49].

Chitosan has demonstrated analgesic properties when applied topically to open wounds,
such as burns, skin abrasions, cutaneous ulcers, and grafted areas [50]. Additionally, due
to its cationic nature, chitosan exhibits antimicrobial action [51], inhibiting the growth of
microorganisms like Escherichia coli, Fusarium, Alternaria, and Helminthosporium [52]. Chitosan
also exerts anti-inflammatory effects by inhibiting prostaglandin E2 and cyclooxygenase-2,
reducing proinflammatory cytokines and increasing the expression of the anti-inflammatory
cytokine interleukin-10 [53]. It can be employed to create diverse types of wound dressings,
including membranes, coatings, hydrogels, fibers, powders, and nanoparticles.

2.6. Bioactive Dressing: PHMB

Polyhexamethylene biguanide (PHMB) is a potent antimicrobial agent belonging to
the biguanide family. The structure of PHMB is characterized by repeated biguanide groups
linked by hexamethylene chains. Its lethal action primarily occurs through interaction
with bacterial cytoplasmic membranes, causing immediate damage followed by diffusion
and irreversible loss of essential cell components. This sensitivity to PHMB is studied
in various Escherichia coli cultures. PHMB is a low-toxicity and safe disinfectant widely
used in various clinical applications, including the disinfection of contact lenses and
wound dressings [54].

2.6.1. Antibacterial Activity

Research indicates that PHMB interacts solely with negatively charged phospholipid
membranes. Moreover, it is only at concentrations surpassing a critical threshold that the
adsorption of PHMB leads to a notable reduction in bilayer stability [55]. Even if some
studies suggest that PHMB may traverse the membrane by forming salt bridges with
anionic phospholipids, its predominant mechanism of action seems to be translocation
across the cytoplasmic membrane. Intensive interactions between PHMB and the lipid
bilayer, with possible stochastic fluctuations of the PHMB chain, suggest a translocation
process through the lipid membrane. Regardless of the mechanism of entry into cells,
PHMB shows extensive interaction with DNA, adopting a clustered conformation. This
aggregation, especially with numerous PHMB chains, could interfere with DNA replication
or activate repair processes. In conclusion, membrane disruption seems unlikely to be the
primary mechanism of action for PHMB, supporting the recent hypothesis of translocation
through the bacterial membrane and direct interaction with genetic material [56].

2.6.2. Side Effects

Human skin fibroblasts (HSF) and human vascular endothelial cells were cultured
in a culture medium supplemented with 10% fetal bovine serum. In two different plates,
a PHMB hydrogel-modified wound scaffold dressing, with a diameter of 16 mm, and an
unmodified wound scaffold dressing were applied. The percentage survival rate of cells
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treated with the PHMB hydrogel dressing and the dressing group without PHMB was
overlapping [57]. In 2017, the Scientific Committee of Consumer Safety gave the opinion
that the use of PHMB as a preservative in all cosmetic products up to 0.1% is safe [58].

2.6.3. Dressing

Dressings containing PHMB are commercially available in the form of foam, sponge,
and rolls. The antibacterial capacity of PHMB was assessed by evaluating its effectiveness
in reducing bacterial load in a randomized controlled trial. The results highlighted that,
although both achieved the goal of reducing bacterial load and pain, the wounds treated
with PHMB exhibited a significantly greater decrease in bacterial presence compared to
those treated with silver [59].

3. Drug-Loaded Wound Dressings
3.1. Drug-Loaded Wound Dressings: Silver

The issue of using topical antimicrobials in wounds is controversial due to concerns
related to bacterial resistance. In this context, silver-based agents have attracted grow-
ing attention. Silver, known for its antimicrobial properties, has a long history of use in
medicine. It has the ability to inactivate bacterial enzymes, block DNA synthesis, and
disrupt bacterial membranes [60]. The response to silver nanoparticles varies among differ-
ent biological systems, influenced by differences in surface properties and cell receptors.
The toxic effects of silver can arise from both direct interactions, such as binding to mem-
branes and receptors, and indirect effects, such as the activation of signaling pathways.
Although low concentrations are recommended for clinical applications, toxicity can vary.
At present, further systematic studies are essential for a comprehensive assessment of silver
toxicity [61]. Silver is available in various formulations, packaged with practically every
type of dressing, including creams, alginates, CG, hydrofibers, sponges, films, hydrogels,
foams, and hydrocolloids.

3.2. Drug-Loaded Wound Dressings: Iodine

Iodine has been topically used for centuries to heal wounds [62]. Its antimicrobial
action, discovered in 1882, is well-established and has provided a scientific basis for
iodine-based products in the treatment of infected wounds [63]. To minimize side effects,
iodine is commonly bound to carrier molecules like povidone-iodine and cadexomer
iodine [64]. Iodine induces the oxidation of proteins, nucleotides, and fatty acids in
microorganisms, leading to their cellular death [65,66]. It exhibits a broad antimicrobial
spectrum, acting against Gram-positive and Gram-negative bacteria, antibiotic-resistant
strains, fungi, protozoa, and viruses [67,68]. Iodine has demonstrated greater efficacy
against mature biofilms compared to silver, suggesting potential clinical superiority [69].
The occurrence of adverse effects, including thyroid function deviation, has not been
observed more frequently with iodine use than with other BDs [70]. Iodine is commercially
available for wound treatment in the form of gel, foam, and dressings.

3.3. Drug-Loaded Wound Dressings: Ozonides

Ozone is formed in a reversible endothermic reaction catalyzed in the atmosphere by
ultraviolet rays [71]. Ranked as the third most potent oxidizing agent after fluorine and
persulfate, ozone is highly reactive and unstable, with a lifespan of about 3 s in the gas
phase, making storage impractical [72].

The German chemist Schönbein, in 1840, identified ozone after a reaction between
water and electricity. Subsequently, surgeon Erwin Payr extensively used ozonated oil as a
therapy to treat infected wounds during World War I [73].

Ozonide-based wound care devices can be distinguished as spray oils, creams, im-
pregnated gauze, oily preparations in pre-filled syringes, and cleansers [74,75]. They can
be combined with hydrogels or alginates.
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Antibacterial Mechanism and Anti-Inflammatory Activity

Ozone is recognized as a potent bactericidal, antiviral, and antifungal agent, empir-
ically used for clinical therapeutic purposes in various conditions such as post-surgical
fistulas, pre-secure ulcers, and chronic wounds like trophic ulcers, ischemic ulcers, diabetic
wounds, psoriasis, and athlete’s foot. Ozone’s beneficial effects on wound healing are
linked to reducing microbial infection, debridement effect, modulation of the inflammatory
phase, stimulation of angiogenesis, and biological and enzymatic reactions promoting
oxygen metabolism to enhance wound healing [76].

Ozonized oil demonstrates early response, increased cell involvement in the repair
process, superior angiogenesis with elevated VEGF, and cyclin D1 expression when used
on wounds [77].

A variety of ozonized vegetable oils have shown antibacterial effects against S. aureus,
E. faecalis, E. faecium, S. pyogenes, E. coli, P. aeruginosa, and Mycobacterium spp. [78,79]. Most
research focuses on sunflower oil and its commercial preparations. Ozonized olive oil has
proven effective in in vivo studies in rats against S. pyogenes and S. aureus [80].

Daily use of ozonized oil on infected lesions in diabetic and atherosclerotic patients
eliminates infections and promotes rapid healing [81]. Medical ozone treatment activates
the antioxidant system and can serve as an alternative therapy for diabetic ulcers and
their complications [82]. Ozonized oil may be an alternative for biofilm control in patients
with prosthetic stomatitis [83]. Gum massage with ozonized oils proves to be an effective
alternative against plaque-induced gingivitis [84]. Ozonized oil can suppress inflammation
in atopic dermatitis, showing potential as a treatment for this condition. In acute skin
wounds, ozonized oil significantly improves the healing process [85].

3.4. Drug-Loaded Wound Dressings: Mesoglycan

Mesoglycan (MSG) is a mixture of GAGs extracted from the intestinal mucosa of pigs.
It has shown promise in wound healing by inducing migration and early differentiation
of keratinocytes [86,87]. There is increasing evidence that GAGs play a role in reepithe-
lialization of chronic skin ulcers, particularly in lower limb ulcers of venous and arterial
origin. MSG has been demonstrated to promote the externalization of microvesicles by
human keratinocytes in vitro [87]. It exhibits antithrombotic and pro-fibrinolytic actions,
proving effective in treating vascular disorders and providing beneficial effects in patients
with chronic venous ulcers and peripheral arterial diseases [88].

The commercially available device is primarily composed of MSG, alginate, and HA.
The MSG in the dressing is a natural preparation of GAGs, including heparan sulfate,
dermatan sulfate, slow-moving heparin, and chondroitin sulfate [89]. These dressings
do not have an antibacterial effect. For this reason, they should be used exclusively on
non-infected wounds. They are suitable for use on clean ulcers with moderate to low
exudate or wounds in the granulation phase.

3.5. Drug-Loaded Wound Dressings: DNA and Ribosomes

Polydeoxyribonucleotide (PDRN) is a drug extracted from the gonads of trout, contain-
ing a mixture of polynucleotides [90,91]. It is a DNA fraction with a double-helix structure,
comprising deoxyribonucleotides. Triggered by cellular enzymes, it supplies purines and
pyrimidines [92]. PDRN induces cell growth via recovery metabolic pathways and adeno-
sine A2a receptor activation, fostering inflammatory resolution. Moreover, it enhances
VEGF, aiding endothelial cells in blood vessel formation and supporting granulation tissue
development [93], and is able to promote the proliferation of human pre-adipocytes in vitro,
affirming the potential use of PDRN for therapeutic and regenerative applications [94].

In a large double-blind randomized controlled trial (RCT), 216 diabetic patients with
Wagner grade 1 or 2 ulcers were divided into two groups, with one receiving a placebo
and the other PDRN for 8 weeks. Administered intramuscularly and perilesionally, PDRN
demonstrated a twofold increase in the complete healing rate of challenging foot ulcers
compared to the placebo within an 8-week period [91]. Additionally, a study on diabetic
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foot ulcers (Wagner grade 1–4) involving PDRN administration revealed improved tis-
sue oxygenation, increased angiogenesis, and reduced inflammation after a two-week
treatment [95]. Another randomized clinical trial on pressure ulcers highlighted the sig-
nificant reduction in wound surface area with PDRN administration, demonstrating its
efficacy without adverse effects during treatment [96].

PDRN is indicated for use on cleansed wounds. Topical formulations are accessible
in prefilled syringes and cream presentations. Certain formulations may contain HA to
enhance the formation of granulation tissue.

3.6. Drug-Loaded Wound Dressings: Rigenase

Rigenase® is a new specific extract of Triticum vulgare (TVE), a plant belonging to
the Graminaceae family, renowned for its hydrating properties that retain a scavenging
effect against free radicals, demonstrating significant antioxidant activity. Additionally,
it maximizes the tissue regeneration process through increased chemotaxis, fibroblas-
tic proliferation, and maturation. These properties result from the enhanced synthe-
sis of proteins, proline uptake, and the upregulation of crucial factors such as MMP-2,
MMP-9, CG I, and elastin [97]. Widely used in conjunction with polyhexanide dressings,
it treats skin lesions such as pressure ulcers, sores, burns, and delayed healing, requiring
stimulation of the repair process. When applied as a cream or impregnated gauze, they
form a protective layer against the external environment, creating favorable conditions for
faster skin re-epithelialization and more effective wound healing [98].

Dressings containing Rigenase® are suitable for application on both acute and chronic
wounds that are cleansed, exhibiting low to medium exudation levels. These dressings are
available in various forms, including impregnated gauze, cream, spray, or hydrogels [98–100].

3.7. Drug-Loaded Wound Dressings: MMPs Inhibitors

MMPs were first discovered in 1962 in the tadpole’s tail during frog metamorphosis.
These enzymes are acknowledged as the key proteases involved in controlling the degra-
dation of the ECM [101]. Beyond their role in remodeling tissues, MMPs also contribute
to regulating various targets outside the matrix, including cell surface receptors, cell–cell
adhesion molecules, cytokines, clotting factors, chemokines, and other proteinases [102]. Up
to now, 23 MMPs have been recognized in the human body. MMPs are categorized into six
classes based on their substrate specificity, primary structures, and cellular localization [103]:

• CGases (MMP-1, MMP-8, and MMP-13);
• Gelatinases (MMP-2 and MMP-9);
• Stromelysins (MMP-3, MMP-10, and MMP-11);
• Matrilisins (MMP-7 and MMP-26);
• Membrane-type MMPs (MMP-14, MMP-15, MMP-16, MMP-17, MMP-24, and MMP-25);
• Others (MMP-12, MMP-19, MMP-20, MMP-21, MMP-23, MMP-27, and MMP-28).

Their functions extend beyond ECM modifications, encompassing involvement in
inflammation. MMP-8, released by neutrophils, is crucial for wound debridement and
cleavage of damaged CG. The lack of MMP-8 can lead to healing delays, TGF-b signal-
ing, and inflammation. Similarly, MMP-1 produced by keratinocytes bound to type I
CG plays a key role in keratinocyte migration. MMP-2 and MMP-9 are involved in cell
migration during wound healing, participating in laminin-5 proteolysis and contributing to
re-epithelialization. In diabetic patients, wound healing requires a balance between CGous
and non-CGous ECM components, with MMP-8 and MMP-9 degrading damaged CG and
facilitating keratinocyte migration [104].

Dressings targeting MMPs can be broadly classified into two main groups [102]:

1. MMP inhibitors;
2. MMP modulators.
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The distinction between the two lies in the fact that the former are specifically designed
for their impact on proteases, while the latter act by modulating the ulcer microenvironment.
Among devices inhibiting MMP secretion, two stand out:

1. ORC/CG Matrix: it is a sterile lyophilized pad composed of 55% CG and 45% ORC.
This device reduces the activity of elastase, MMPs (particularly CGase and gelatinase),
and oxygen-free radicals [105]. Interacting with the wound, it hinders tissue degrada-
tion and promotes granulation tissue synthesis through mechanisms such as reducing
proteolytic activity and free radical damage, binding and stabilizing growth factors
like PDGF, increasing the recruitment of macrophages and fibroblasts, and fostering
fibroblast proliferation [106];

2. Lipid-Colloid Technology with Nano Oligosaccharide Factor (TLC-NOSF): this range
of dressings consists of carboxymethylcellulose particles distributed in a vaseline
network and impregnated with NOSF on a non-occlusive soft non-woven polyester
layer. Upon contact with exudate, hydrocolloid particles form a gel that interacts
with Vaseline by creating a lipidocolloid film, maintaining a moist environment in
the wound, and reducing discomfort during dressing removal [107]. The potassium
salt of sulfated oligosaccharides enhances the reparative process by inhibiting MMPs,
interacting with growth factors, and restoring their biological functions [108].

Several devices on the market regulate ulcer bed characteristics (ES pH), leading to
a reduction in MMP levels. These may include modulators of wound environment pH
through ion exchange mechanisms, acetate mesh media containing potassium chloride,
rubidium chloride, calcium chloride, zinc chloride, potassium citrate, and citric acid. Use is
indicated in cleansed lesions, both acute and chronic.

4. A New Practical Algorithm in Approaching Challenging Wounds

In recent years, multiple BDs have been introduced to the market [5]. Some of the
latest products were introduced in 2023 [98]. The BD market is continuously expanding,
with the number of available dressings increasing each year. It becomes essential, for this
reason, to stay updated on new products and understand their mechanisms of action to
choose the most suitable BD. The high number of available dressings makes the selection
process challenging for both novices and experienced individuals. For this reason, we
have developed a practical algorithm based on every BD action as exposed in previous
paragraphs and on authors’ everyday practice. Although other decision-making algorithms
on advanced dressings have been published, some do not consider dry wounds [109],
limiting their practical use, while others do not take into account the latest BDs [110–112].

Our algorithm differs from other published algorithms because it is based on the
initial clinical assessment of wound exudate both wet or dry, the clinical evaluation of
the probability of infection [113], and the presence of bleeding, leading step by step to
the selection of the most suitable dressing. It also allows for the assessment of alternative
BDs in case those considered first-line are not available as happens in everyday practice
(Figure 1). In cases of infected non-bleeding wounds, absorbent dressings containing iodine
are recommended as first-line treatment, followed by PHMB as second-line, and silver
as third-line in decreasing order of antimicrobial potency [59,69,114]. They have to be
absorbent as foams if there is exudate or not absorbent as gauze if there is a dry wound. In
case of bleeding wounds, the use of alginate or chitosan is always recommended, with or
without the addition of silver if infection is suspected [44,115]. When treating an inflamed
wound, a honey-based dressing should be considered in the early stages [7,9]. Non-infected
and dry ulcers should be treated primarily with HA (with or without Rigenase) or CG
dressings of varying thickness depending on the depth of the wound [36–39,98–100]. As
a second-line treatment, MSG may be used [89]. Only if there is no improvement should
dressings containing MMP inhibitors be considered, which, unlike HA, CG, and MSG,
have an indirect action on the ECM. The use of PDRN remains niche and we recommend
it only for refractory ulcers, as the commercially available formulations require multiple
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daily applications for creams, making them impractical, or injections, which may be poorly
tolerated by the patient [91,95,96].
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