
Citation: Grzyb, C.; Du, D.; Nair, N.

Artificial Intelligence Approaches for

Predicting the Risks of Durable

Mechanical Circulatory Support

Therapy and Cardiac Transplantation.

J. Clin. Med. 2024, 13, 2076. https://

doi.org/10.3390/jcm13072076

Academic Editor: Maya Guglin

Received: 19 February 2024

Revised: 24 March 2024

Accepted: 30 March 2024

Published: 3 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Review

Artificial Intelligence Approaches for Predicting the Risks
of Durable Mechanical Circulatory Support Therapy and
Cardiac Transplantation
Chloe Grzyb 1, Dongping Du 2 and Nandini Nair 1,*

1 PennState College of Medicine, Heart and Vascular Institute, Milton S. Hershey Medical Center,
500 University Dr, Hershey, PA 17033, USA; cgrzyb@pennstatehealth.psu.edu

2 Department of Industrial and Structural Engineering, Texas Tech University, Lubbock, TX 79409, USA;
dongping.du@ttu.edu

* Correspondence: nandini.nair@gmail.com; Tel.: +1-610-864-1687

Abstract: Background: The use of AI-driven technologies in probing big data to generate better
risk prediction models has been an ongoing and expanding area of investigation. The AI-driven
models may perform better as compared to linear models; however, more investigations are needed
in this area to refine their predictability and applicability to the field of durable MCS and cardiac
transplantation. Methods: A literature review was carried out using Google Scholar/PubMed from
2000 to 2023. Results: This review defines the knowledge gaps and describes different AI-driven
approaches that may be used to further our understanding. Conclusions: The limitations of current
models are due to missing data, data imbalances, and the uneven distribution of variables in the
datasets from which the models are derived. There is an urgent need for predictive models that can
integrate a large number of clinical variables from multicenter data to account for the variability in
patient characteristics that influence patient selection, outcomes, and survival for both durable MCS
and HT; this may be fulfilled by AI-driven risk prediction models.

Keywords: AI-driven risk prediction models

1. Introduction

Artificial intelligence (AI) has the potential to improve risk prediction in cardiovas-
cular medicine through the integration and analysis of complex clinical data. In recent
years, an expanding body of literature has studied the applications of AI to predict the
outcomes of patients undergoing durable mechanical circulatory support (MCS) and heart
transplantation (HT) for end-stage heart failure. Durable MCS can be a bridge to transplan-
tation or a long-term solution, while HT provides a lifesaving surgical therapy, although it
is limited by the availability of donor organs. The outcomes of each of these therapies are
dependent on an intricate and dynamic array of variables, such as comorbidities, laboratory
values, echocardiogram findings, and biomarkers. In addition to the prognostication of
perioperative risks, AI risk prediction models can analyze the preoperative variables to
select the optimal type of patient for durable MCS or HT in order to maximize resource
allocation and minimize complications such as mortality [1,2].

While technological advances have improved the outcomes for durable MCS and
HT, patients continue to develop complications. Cerebrovascular complications, right
ventricle (RV) failure, and gastrointestinal (GI) bleeding are common complications in
patients receiving durable mechanical support. A stroke or transient ischemic attack (TIA)
can occur anytime during the post-implant period and beyond. Complications unique
to HT include primary graft dysfunction, allograft rejection, and graft vascular disease,
developing weeks to years after transplantation. Chronic immunosuppression is critical
to transplant success but also remains a leading cause of complications like malignancy
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and infection. AI risk prediction models have improved in their ability to predict post-
operative complications but remain limited in clinical settings due to missing data and class
imbalances [3–5]. AI models based on the Bayesian Network, which utilize hemodynamic,
clinical, and demographic data, as well as others based on Active Network Management
(ANM) image recognition, are described in this review. It is important to note that AI is an
up-and-coming area in assessing risk prediction but needs more investigations to be useful
as a bench-to-bedside tool. Ethical, logistical, and legal aspects as well as algorithm bias
and usefulness in enhancing healthcare outcomes still need to be standardized.

Additionally, the external validation of prospective studies will be required for broad
applications [6–8].

Complications post-durable MCS implant and post-heart transplant pose different
and unique challenges.

Complications post-durable MCS as a bridge to transplantation have been accom-
panied by significant early and late complications post-implant. Stroke occurs with
continuous-flow pumps and pulsatile devices. The stroke risk is highest in the first three
months after implant, but contradictory evidence has shown bimodal distributions at the
9- to 12-month mark [9]. The risk of both hemorrhagic and ischemic strokes is high and
estimated at 10–30% within 2 years of device implantation [10,11]. Embolic strokes appear
more common than hemorrhagic strokes with all device designs and may arise not only
from clot formation in situ in the pump, but also from ingested thrombi propelled through
the device. The type of device also influences the stroke incidence [12,13]. Clots formed in
the in-flow and out-flow grafts can also cause heart failure due to pump dysfunction.

Approximately 16% of durable MCS patients suffer at least one post-operative stroke [14].
The risk factors associated with stroke include treatment-related factors, including specific
devices, prior cardiac surgery, and patient-related factors. There remains a need for long-
term data and a more accurate characterization of the natural history of post-implant
strokes [13,14].

A device-related infection can be an early or late complication of durable MCS. Pump-
related infections involve the driveline, pump pocket if it is an axial pump, or other
components of the pump itself. The pump design, patient susceptibility, surgical technique,
causative organism, and driveline care appear to be the primary risk factors of infection [15].

RV failure is an important and common complication of durable MCS, affecting
between 20–50% of LVAD patients [16]. Survival at one year after a durable MCS implant
is approximately 83% [17]. Right heart failure after an LVAD implant increases the risk of
death and prolongs the length of hospitalization [18]. Although survival is influenced by
multiple factors, younger and less sick patients at the time of LVAD implantation tend to
have better outcomes.

The neurological complications post-durable MCS can be devastating. Further investi-
gations into risk factor identification and prevention are warranted [19].

Interestingly, the newer pumps, which are magnetically levitated, have a lower rate of
complications in the 5-year data as per the 14th annual INTERMACS report. GI bleeding,
stroke, and device malfunction/pump thrombus have significantly decreased [20].

Complications post-heart transplant include primary graft dysfunction (PGD), stroke,
and acute cellular and acute antibody-mediated rejection. A 2018 meta-analysis demon-
strates that the recipient age, congenital etiology, creatinine levels, pulsatile flow, durable
MCS status, donor age, and female donor-to-male recipient sex mismatch influence the
1-year mortality status post-heart transplant [21]. Primary graft dysfunction post-transplant
(PGD) is one of the leading causes of early mortality in HT, with a prevalence of 2.3% to
28.2% [22–28]. The risk factors for the development of PGD have been identified as ad-
vanced donor and recipient age, ischemia time, pre-transplant recipient diabetes, hemodial-
ysis, African American race, recipient amiodarone treatment, higher pre-transplantation
right atrial pressure, and donor ischemia time [26,27]. Further investigation into the under-
lying causes and management of PGD is critical in halting the increased incidence.
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Cerebrovascular/neurological complications after cardiac transplant in the early post-
transplant period are possible [29]. More recent data on the neurological complications
post-heart transplant estimate an incidence of 3–10%. Additionally, ischemic strokes have
an incidence of 2.5%, while transient ischemic attacks (TIAs) have been estimated to occur
up to 13% post-heart transplantation [29,30]. Perioperative cerebrovascular complications
are more common after a cardiac transplant than other cardiac surgical procedures.

Antibody-mediated rejection (AMR) is another major risk factor for mortality, as well
as allograft injuries, including systolic dysfunction, restrictive physiology, and cardiac
allograft vasculopathy (CAV) [31]. AMR may present as early as days to years after the
transplant [32]. Earlier antibody rejection is associated with preformed HLA antibodies,
whereas rejection occurring months to years after the transplant is due to the development
of de novo antibodies. HLA antibodies and immune complexes are commonly found in
patients exhibiting rejection. The patients with an elevated risk were identified as female,
multiparous, high panel-reactive antibody, CMV seropositivity, those receiving a second
transplant, OKT3 induction therapy, and positive crossmatch [32].

Cardiac transplantation is still the gold standard of treatment for patients who have
end-stage heart failure. Advances in immunosuppression have contributed to better
long-term outcomes even in older and higher-risk recipients. Heart transplant recipients
currently have a median survival of 12–13 years [33]. One of the important causes of early
mortality is primary graft failure. Factors that influence late mortality include malignancy,
chronic rejection, and cardiac allograft vasculopathy (CAV). CAV is the single most sig-
nificant long-term complication of heart transplantation. Concentric hyperplastic lesions
comprised of smooth muscle cells and matrix build-up on the intimal layer of the coronary
arteries are the anatomical highlights of this disease process. CAV diffusely affects allograft
vessels, resulting in narrowing, decreased perfusion, ischemia, and graft failure. Strategies
for the maintenance of graft patency focus on immunomodulation, anti-thrombogenesis, as
well as the modulation of endothelial progenitor cell and endothelial cell adhesion, prolif-
eration, and activation [32]. This is an aggressive disease that is unresponsive to existing
therapies such as immunosuppression modifications [34]. A deeper understanding of the
mechanisms and risk factors underlying CAV is imperative to the optimal management of
this complication.

The key areas of knowledge gaps are in patient selection and avoiding complications
post-durable LVAD implantation and/or cardiac transplantation. Further investigations
into the risk factors should focus on elucidating the characteristics of the recipient patient
and donor allograft. In patients receiving durable MCS, the prevention of strokes is an
important aspect influencing the outcomes. Such knowledge gaps may be closed using
AI-driven technology with big data.

2. Materials and Methods

This is a qualitative review. Hence, a literature search was conducted on PubMed
and Google Scholar. All published papers on risk prediction in mechanical circulatory
support and cardiac transplantation were reviewed qualitatively, and the information
was synthesized to arrive at the results and conclusions presented in this review. The
keywords used were risk prediction models, linear risk prediction/AI-driven models for
risk prediction in durable MCS and heart transplantation, prediction of outcomes in heart
transplants, complications of heart transplants, and durable MCS.

3. Results
3.1. Linear Risk Prediction Models and Their Limitations for Durable MCS

Two popular clinical RV failure risk scores used for predicting the post-operative RV
failure are the Penn and CRITT scores [18,35]. These models were put forth to predict RV
failure post-LVAD implantation. These incorporate the hemodynamic values, qualitative
assessments, and laboratory values. The CRITT model offers a five-variable risk calculator
to determine the suitability for uni- or bi-ventricular support. The negative predictive
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value was 93% and had an AUC of 0.80 ± 0.04. The Penn model found the most significant
predictors for the need for an RVAD, which were the RV stroke work index, cardiac index,
severe pre-operative RV dysfunction, prior cardiac surgery, systolic blood pressure, and
creatinine levels. This algorithm predicts which LVAD patients will require an RVAD with
a >80% sensitivity and specificity. The Destination Therapy Risk Score was an early model
that was later found to be poorly predictive in continuous-flow VAD patients [36,37]. The
HeartMate II Risk Score (HRMS) was designed to predict the 90-day mortality in patients
undergoing LVAD implantation and factored in the age, serum creatinine, international
normalized ratio, albumin levels, and center volume. The HMRS was found to correlate
with short- term and long-term post-LVAD survival and could identify patients with a
low (8%), medium (12%), and high (26–32%) risk of 90-day mortality (c-statistic 0.7 and
0.71) [38,39]. Soliman et al. developed an effective linear regression model for right heart
failure after durable MCS implantation [40].

However, linear regression models would need further development and testing to
assess their efficacy in comparison to AI-driven models. The risk models derived from
logistic regression studies are summarized in Table 1A.

3.2. AI Models for Durable MCS and Their Limitations

AI risk prediction models for durable MCS exist at this time, all of which have
their strengths and limitations. The Cardiac Outcomes Risk Assessment (CORA) model
is the earliest model, which risk-stratified patients using Bayesian networks to predict
short- and long-term LVAD mortality [41]. The variables comprised of 226 clinical, demo-
graphic, hemodynamic, and laboratory values, social characteristics, and functionalities [41].
Bayesian classification models were developed to predict mortality at five endpoints post-
implant, achieving c-statistics of 0.91, 0.82, 0.82, and 0.81 for predicting mortality at 30 days,
90 days, 6 months, 1 year, and 2 years after implantation. The prediction of mortality at
different periods is influenced by the risk factors used in developing the risk prediction
model. Hence, when more risk factors are applied, the mortality of a given patient popula-
tion will increase. This demonstrates that identifying key risk factors is the most important
aspect of building risk prediction models.

Kanwar et al. developed a model that predicts survival in durable LVADs. Their 2018
model predicts survival at 1, 3, and 12 months after LVAD implantation using INTERMACS
data [42]. Their Bayesian network analysis showed accuracies between 76% and 87% and
c-statistics of 0.7–0.71 for the 1-, 3-, and 12-month mortality. The variables predicting
1-month mortality (number of acute events 48 h before surgery, temporary MCS, and renal
and hepatic dysfunction) differed from those predicting 12-month mortality (advanced age,
frailty, device strategy, and chronic renal disease).

In 2021, Kilic et al. used INTERMACS data to predict the 90-day and 1-year mortality
using ML and compared the results to an equivalent logistic regression model. The XGboost
model had a max AUC of 0.74. They found a substantial improvement in the 90-day
(logistic regression 0.536 versus 0.752 with AI model) and 1-year (logistic regression 0.555
versus 0.726) mortality [2]. To date, the limited ML models of mortality demonstrate
superiority over traditional linear models (c-statistic between 0.7–0.81) compared with
logistic regression models of mortality (c-statistics range from 0.54–0.55) [18,42–46].

Kanwar et al. 2016 developed a model which predicts right ventricular failure us-
ing INTERMACs data [5]. They developed acute, early, and late right ventricular failure
models that included preoperative variables (from demographics, laboratory values, hemo-
dynamics, and medications), respectively. This model revealed c-statistics of 0.9, 0.83, and
0.88 for acute, early, and late RVF, respectively. These were superior to the prior linear
models, with c-statistics ranging from 0.55–0.65 [18,42–46]. Missing data from the INTER-
MACS registry limited these studies. Additionally, the skewness of the data towards the
absence of RVF affected the effectiveness of the models in predicting RVF failure despite
the promising c-statistics.
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A model from Shad et al. predicts post-operative RV failure, which they developed
using a 3D convolutional neural network with preoperative transthoracic echocardiograms
as input. The model achieved a c-statistic of 0.729, outperforming a team of human experts
on the same task evaluation, and was compared to the CRITT and Penn linear models [4].
Saliency maps were utilized for model interpretation, which identify motion characteristics
in specific regions of the heart that contribute to the prediction.

The limitations of models using INTERMACS data are the prevalence of missing data
and severe class imbalances within the registries. Furthermore, the INTERMACS data
used at those times primarily included patients with Heart Mate II, which makes the data
less generalizable across the entire spectrum of devices. Other limitations of the dataset
analyses are their retrospective nature, with the uneven distribution of continuous and
categorical variables [47,48].

Through the use of imaging and spectral data, Misumi et al. developed an AI-trained
model using the acoustic spectra of LVAD devices as input to predict cerebrovascular
accidents and aortic valve insufficiency. Their novel methodology predicts cerebrovascular
accidents with an accuracy of 0.98 [47,48]. The prediction of aortic valve insufficiency
in LVAD patients had an accuracy of 91% with an ROC of 0.73 [48]. Promising Active
Network Management (ANM)-based image recognition models have been used to predict
infection severity identification on LVAD driveline exit-site images with a 67% accuracy,
which is close to expert-level performance [49]. Risk-stratification models for durable MCS
reveal an array of risk factors including demographic, clinical, and hemodynamic data,
which attempt to predict RV failure and the overall survival, reflecting the multifactorial
approach to decision making in clinical practice. A list of selected AI-driven studies is
shown in Table 1B. Most recently published is the STOP-RVF study, which generates a risk
assessment tool for the prediction of right ventricular failure and consequent mortality [50].
This is a supervised machine learning model with a c-statistic of 0.73–0.75.

3.3. Linear Risk Prediction Models for HT

Models from Aaronson et al. integrate 80 clinical characteristics from 268 patients
with advanced heart failure to predict the 1-year post-transplant survival with a c-index of
0.61 [51]. A notable model is the IMPACT score, which uses a 50-point index to predict the
1-year post-transplant mortality with a c-statistic of 0.65 [52]. Segovia et al. developed a
RADIAL score, which showed a good ability to predict the development of PGD and could
be useful in the prevention and prompt treatment of this complication [24]. Risk factors of
this model included an age over 60, diabetes mellitus of the recipient, right atrial pressure
greater than 10, donor age over 30 years, and ischemic time > 4 h. The risk stratification
score (RSS) model found that pre-transplant recipient variables influence early and late
graft failure. The strongest negative predictors of 1-year graft failure were RVAD only,
ECMO, renal failure, LVAD, total artificial heart, and advanced age. The 1-year survival for
the low-risk, intermediate-risk, moderate-risk, elevated-risk, and high-risk groups were
93.8, 89.2, 81.3, 67, and 47%, respectively [53].

Weiss et al. developed a donor risk index (DRI) that predicts the short- and long-term
mortality. It is a 15-point scoring system that incorporates the ischemic time, donor age,
race mismatching, and BUN/creatinine ratio. Each point increases the risk of 1-year death
by 9%. It also predicted the 30-day mortality (OR = 0.11 [1.08 to 0.14], p < 0.001) [54].
Selected logistic regression studies are shown in Table 2. There is a need for AI models that
focus not only on survival but also on long- and short-term rejection phenomena, as well
as immunosuppression and subsequent cancer development. These models remain limited
in their clinical use due to the poor predictive powers of outcomes that are multifactorial.

3.4. AI Models of HT

The applications of AI can be separated into three areas of application: mortality, graft
failure, and outcomes in HT [55]. Most of the evidence focuses on the use of ML models
in predicting mortality and survival post-transplant. Twelve ML models were developed
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for predicting waitlist mortality and post-transplant rejection [1,24,52–63]. Medved et al.
implemented a two-layer neural network model to predict the waitlist outcomes, such as
still waiting, transplanted, or deceased 180 days, 365 days, and 730 days after being listed.
Their model achieved F1 macro scores of 0.674, 0.680, and 0.680 at these three time points.
Additionally, Medved et al. created an organ allocation policy using a neural network
algorithm. The simulation study suggested that the neural network policy extends the
mean survival to 4700 days, compared to the mean survival of 4300 days under the wait
time policy or the clinical rules policy [64,65].

Yoon et al. developed a survival model using decision tree techniques to predict
post-transplant survival. The approach was to use clusters of predictors called “trees of
predictors” (ToPs). This technique used clinical data to discriminate the differences in the
survival of patients at different time points after LVAD implantation. The inputs ranged
from clinical to demographic features of the recipient, donor, and donor–recipient compati-
bility attributes. The inputs included the age, gender, prior transplantation, transfusions,
hepatic and renal functions, ventilator assistance, HLA mismatch, and blood type. Their
model achieved a c-statistic of 0.66 for the 3-month survival prediction and a sensitivity of
0.8 for the 3-year survival prediction [56].

Miller et al. compared a neural network model with traditional regression models
to predict the 1-year survival after pediatric heart transplantation. The input of variables
included donor and recipient characteristics such as the age, gender, race, weight, ABO
blood type, diagnosis, payor type, creatinine level pre-transplant, days on waitlist, medical
condition, presence of defibrillator/LVAD/ECMO at transplant, mechanical ventilation,
inotropic agents, donor blood type, and recipient blood match [57].

The neural network demonstrated the highest c-statistic of 0.66, though only marginally
superior to logistic, ridge, and LASSO regression models. The study highlighted the crucial
role of data quality in achieving accurate prognoses using ML techniques. In a subsequent
study, a random forest model yielded c-statistics of 0.72, 0.61, and 0.60 for the 1-, 3-, and
5-year mortality, respectively, with a poor sensitivity (0.07–0.49), which was attributed to
missing data and data imbalance issues [58].

Furthermore, Kampaktsis et al. reported c-statistics of 0.689, 0.642, 0.649, 0.637, and
0.526 for Adaboost, logistic regression, decision tree, support vector machine, and K-nearest
neighbor models, respectively, in predicting the 1-year mortality after heart transplant [59].
All the studies utilized the UNOS data registry, and the ML models developed converged
to a similar performance. A key takeaway is that ML models outperform conventional risk
scores, such as the Index for Mortality Prediction After Cardiac Transplantation (IMPACT)
score [52]. Ahady Dolatsara et al. designed a two-stage machine learning (ML) framework.
In the first stage, an ML model is employed to predict the transplant outcomes at different
periods of interest. Subsequently, an isotonic regression is performed in the second stage to
calibrate the survival probability. Their framework yields c-statistics ranging between 0.6
and 0.7 for predicting survival from 1 to 10 years after heart transplantation [60]. Ayers et al.
combined multiple machine-learning models, including logistic regression, deep neural
network, random forest, and Adaboost, into an ensemble model. The ensemble model
demonstrated an improved c-statistic of 0.764, outperforming each model, with c-statistics
ranging from 0.649 to 0.691 for predicting the 1-year mortality. This is the first ensemble ML
model developed for predicting heart transplantation outcomes [61]. Beyond the registry
study, Zhou et al. assessed the efficacy of random forest and gradient-boosting machine
in predicting the 1-year mortality using a single-center dataset. The random forest model
yielded a higher c-statistic (0.801), whereas the gradient boosting machine demonstrated a
superior sensitivity (0.271), indicating its better capability in predicting the outcomes of the
minority (deceased) group [62]. However, as highlighted in other studies, the low sensitivity
suggests room for improvement, particularly for potential clinical implementation. Nilsson
et al. developed a non-linear artificial neural network survival model with a concordance
index of 0.6 and a c-statistic of 0.65 for predicting the 1-year mortality [63]. This outperforms
existing scoring models, including the donor risk index (DRI), risk-stratification score (RSS),
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and IMPACT score. Additionally, they created a decision tree model to interpret the results
by assessing the impacts of recipient–donor variables on survival over time. Predictive
models of graft failure and mortality were found to be more accurate than traditional
linear models. Major predictors of graft failure and mortality were immunosuppressive
regimens, recipient age, organ ischemia time, length of hospital stay, and congenital heart
disease [1,3,63–65]. ML models of mortality and graft patency revealed new risk factors
that were not previously identified in linear models, such as length of stay. Further studies
are needed to clarify the variables influencing the post-operative outcomes and mortality.
Recipient age was found to be significant in both linear and AI models. Predictive power
was improved for patients over 60, reflecting the age group most represented in existing
datasets. The variables prevalent in other populations, such as congenital heart disease
(CHD) were unaccounted for in all but one model [66]. Datasets should incorporate detailed
data from all age groups or stratify their model according to the age group. Prolonged
ischemic time is a known factor predicting graft failure and mortality at 1 year more so than
at 5 years, as most failure due to ischemia occurs early post-operatively. Current AI models
identified the immunosuppressive regimen as more important in the prediction of graft
failure than mortality [1,27]. However, few databases have granular immunosuppression
regimen data, which may limit the strength of this association.

Table 1. (A) Selected risk prediction models using logistic regression-driven statistical models for
MCS. (B) Selected risk prediction models using AI-driven statistical methods for MCS.

(A)

Study (Authors
and Reference #) Study Type Study Method Subjects Duration

(Months) Conclusion of Study

Cowger et al.,
2013 [38]

Multicenter,
prospective

Logistic regression,
HMII Risk Score

1122 patients
enrolled into HMII
bridge to
transplantation
and destination
therapy trials

3-month mortality

Stratifies mortality
risk in HMII
candidates; AUC
0.71, 95% CI:
0.66–0.75.

Atluri et al.,
2013 [35]

Retrospective,
single center

Multivariable
logistic regression,
CRITT score

218 patients who
underwent VAD
implant: LVAD =
167, BIVAD = 51

Patients between
2003 and 2011

5-variable risk
stratification score to
determine suitability
for uni- or bi-
ventricular support;
NPV 93%, AUC: 0.80
± 0.04.

Fitzpatrick et al.,
2008 [18]

Retrospective,
single center

Logistic regression,
PENN score

266 LVAD
recipients

Patients between
1995 and 2007

Most significant
predictors for RVAD
need were creatinine
level, prior cardiac
surgery, systolic
blood pressure,
stroke work index,
severe pre-operative
RV dysfunction;
showed >80%
sensitivity and
specificity.
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Table 1. Cont.

(B)

Study (Authors
and Reference #) Study Type Study Method Subjects Duration

(Months) Conclusion of Study

Kilic et al., 2021 [2] Retrospective,
multicenter

Extreme gradient:
XG Boost and
logistic regression

Adults aged 19
years or older
undergoing
primary durable
LVAD
implantation as
part of the
INTERMACS
database (16,120)

3 and 12 months

ML was associated
with a statistically
significant
improvement in
discriminatory
performance for both
90-day and 1-year
mortality; ML can be
used independently
and as an adjunct to
logistic regression.

Kanwar et al.,
2018 [42]

Retrospective,
multicenter

Bayesian models,
Cardiac Outcomes
Risk Assessment
(CORA)

Adults over 18
who received an
initial primary
continuous flow
LVAD or LVAD
and right
ventricular assist
device (RVAD) in
combination
(10,277)

1, 3, and 12 months

Accuracy of all
Bayesian models
was between 76%
and 87%, with an
area under the
receiver operative
characteristics curve
between 0.70 and
0.71.

Shad et al., 2021 [4]
Retrospective, 3
contributing
centers

Three-dimensional
convolutional
neural network,
built using the
Keras framework
with a TensorFlow
2.1 backend and
Python

18 years or older
with at least one
pre-operative
transthoracic
echocardiogram
undergoing LVAD
placement (941)

Implant to
MCS-ARC
definition of
post-operative RV
failure

A video AI system
trained to predict
post-operative RVF
in the setting of MCS
can outperform
human experts on
the same task
evaluation (AUC
0.729).

Loghmanpour
et al., 2016 [5]

Retrospective,
multicenter

Bayesian models,
CORA models

Continuous flow
LVAD as the
primary implant
and age ≥18 years
(10,909)

Acute (<48 h),
early (48 h to 14
days), and late
(>14 days)

Three separate
Bayesian models for
acute, early, and late
RVF substantially
outperformed the
existing linear risk
scores in their ability
to predict the risk of
RV failure.

Loghmanpour
et al., 2015 [41]

Retrospective,
multicenter

Bayesian models,
CORA models

Continuous flow
LVAD patients
over 19 years
(8050)

1, 3, 6, 12, and 24
months

Bayesian models
predicting mortality
at 5 time points out
performed
HeartMate II Risk
Score (HMRS);
preimplant
interventions,
ECMO, and
ventilators were
major risk factors.
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Table 1. Cont.

(B)

Study (Authors
and Reference #) Study Type Study Method Subjects Duration

(Months) Conclusion of Study

Misumi et al.,
2019 [47]

Retrospective,
single center ML

Acoustic spectra
from 4 patients
with HeartMate II
CF-LVAD who
developed CVA
during 1-year
follow -up; 81
sound signals from
4 patients

12 months

ML model predicted
cerebrovascular
accident in patients
with a VAD using
acoustic spectra with
AUC 0.98, F-measure
0.89.

Misumi et al.,
2021 [48]

Prospective,
single center ML

Acoustic spectra
from 13 adults
with Jarvik2000
LVAD; 245 spectra
from 13 patients

24 months

ML trained on
acoustic spectra
offers a novel
modality for
prediction of aortic
regurgitation in
LVAD patients.

Table 2. Selected risk prediction models using logistic regression-driven statistical methods for the
transplant population.

Study (Authors and
Reference #) Study Type Study Method Subjects Duration (Months) Conclusion of Study

Hong et al., 2011 [53]
Multicenter
(UNOS),
retrospective;

Multivariable
logistic regression 11,703 12-month graft

failure

The risk stratification score
(RSS) model found that
pre-transplant recipient
variables influence early and
late graft failure; the strongest
negative predictors of 1-year
graft failure were RVAD only,
ECMO, renal failure, LVAD,
total artificial heart, and
advanced age; the 1-year
survival for the low risk,
intermediate risk, moderate
risk, elevated risk, and high-risk
groups were 93.8, 89.2, 81.3, 67,
and 47%, respectively.

Aaronson et al.,
1997 [51]

Single center,
prognostic

Multivariable
proportional hazard
survival models

286 patients with
advanced heart
failure

12-month survival

Determined 1-year survival in
low-risk (93, 88%), medium-risk
(72, 60%), and high-risk (43,
35%) patients; Medium- and
high-risk patients are likely to
die or require transplantation
within one year; transplantation
can be deferred in the low-risk
group.

Weiss et al., 2012 [54]
Multicenter
(UNOS),
retrospective

Multivariate logistic
regression 22,252 12-month survival

The donor risk index (DRI)
model is a 15-point scoring
system incorporating ischemic
time, donor age, race
mismatching, and
BUN/creatinine ratio; each
point increases the risk of 1-year
death by 9%; it also predicted
the 30-day mortality (OR = 0.11
[1.08 to 0.14], p < 0.001).
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Table 2. Cont.

Study (Authors and
Reference #) Study Type Study Method Subjects Duration (Months) Conclusion of Study

Weiss et al., 2011 [52] Multicenter,
prospective

Multivariable
logistic regression 21,378 12-month mortality

post-transplant

A 50-point IMPACT scoring
system incorporated 12
recipient-specific variables to
accurately predict the mortality,
with a c-statistic of 0.65.

Segovia et al.,
2011 [24]

Single center,
prospective

Multivariate
stepwise logistic
regression model

621 Post-transplant

6 multivariate risk factors of
PGF (RA pressure >10 mmHg,
recipient age >60, diabetes,
inotrope dependence, donor
age >30 years, and ischemic
time >40 min: RADIAL); rates
of actual and predicted PCG
incidence showed good
correlation (c-statistic 0.74).

4. Discussion
4.1. Superiority of AI and ML Predictive Models

ML models identify non-linear relationships and integrate an array of variables to
predict patient outcomes. ML models are advantageous over traditional regression models,
because they can analyze data in complex structures to create new, dynamic relationships
and determine the variables most influential on a particular outcome. Traditional linear
models determine the probability of an event occurring due to the influence of a specific
variable. ML allows for a model to be built based on the input of an array of variables
and tailors to the model based on the most influential factors. This review reveals that
preliminary ML models predicting LVAD failure and mortality exhibit superiority over
traditional logistic regression models. In HT, AI models of graft failure and mortality
were found to be more accurate than traditional linear models. This has the potential to
determine the candidacy for HT and durable MCS through the prediction of post-operative
outcomes. In addition, patients at risk of end-stage heart failure may also be identified
earlier and referred to a life-prolonging therapy before disease progression, which renders
them ineligible for surgery. Optimized models offer a helpful adjunct to clinical decision
making. A list of selected studies is shown in Table 3A,B.

Table 3. Selected risk prediction models using AI-driven statistical methods for HT.

(A)

Study (Authors
and Date) Study Type Study Method Subjects Duration

(Months) Conclusion of Study

Kampaktsis et al.,
2021 [59]

Multicenter,
retrospective

LR, decision tree,
K-nearest
neighbor, logistic
regression,
Adaboost

18,625
12-month
mortality
post-transplant

Reasonable predictive
accuracy of mortality after
transplant; highest
predictive performance with
Adaboost model; AUCs for
the prediction of 1-year
survival were 0.689, 0.642,
0.649, 0.637, and 0.526 for
the Adaboost, logistic
regression, decision tree,
support vector machine,
and K-nearest neighbor
models, respectively.
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Table 3. Cont.

(A)

Study (Authors
and Date) Study Type Study Method Subjects Duration

(Months) Conclusion of Study

Zhou et al.,
2021 [62]

Single center,
retrospective

Artificial neural
network, gradient
boost machines,
Adaboost,
random forest,
support vector
machine, logistic
regression

381
12-month
mortality
post-transplant

Random forest plot
performed highest
discrimination with largest
AUG (0.801) when
validated; albumin level,
recipient age, and left
atrium diameter were the
most important prognostic
variables.

Ayers et al.,
2021 [61]

Multicenter
(UNOS),
retrospective

Deep neural
network, logistic
regression,
Adaboost

33,657
12-month
mortality
post-transplant

Model derived from
preoperative variables; final
ensemble ML model
outperformed traditional
models (p < 0.001); AUROC
of logistic regression (0.649)
vs. random forest (0.691),
deep neural network (0.691),
Adaboost (0.653), and final
ensemble ML (0.764).

Ahady Dolatsara
et al., 2020 [60]

Multicenter
(UNOS),
retrospective

Logistic
regression, XG
Boost, linear
discriminant
analysis, random
forest, artificial
neural network,
classification and
regression tree

103,570

First, ML was
used to predict
transplant
outcomes for
time periods;
second, survival
probabilities
were calibrated
over time using
isotonic
regression.

First stage showed AUC
(0.60 and 0.71) for years
1–10; the 10-year AUC of
0.70 is higher than most
results; isotonic regression
can calibrate survival
probabilities for each patient
over a 10-year period.

Agasthi et al.,
2020 [1]

Multicenter
(ISHLT registry),
retrospective

Gradient boost
machines 15,236 5-year mortality

and graft failure

Length of stay, recipient and
donor age, recipient and
donor BMI, and ischemic
time had the highest
prediction of mortality;
model used 87 variables to
predict mortality and graft
failure; AUC for 5-year
mortality was 0.717
and 0.716.

Hsich et al.,
2019 [66]

Multicenter
(Scientific
Registry of
Transplant
Recipients),
retrospective

Random survival
forest 33,069 NA

Identified strong and weak
predictive variables from
registry between 1985 and
2015; most predictive
variables are currently in the
tiered allocation system;
new variables identified
were eGFR and
serum albumin.
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Table 3. Cont.

(A)

Study (Authors
and Date) Study Type Study Method Subjects Duration

(Months) Conclusion of Study

Miller et al.,
2019 [57]

Multicenter
(UNOS),
retrospective

Logistic
regression,
decision tree,
neural networks,
random forest,
support vector
machine

56,447 1-year mortality
after transplant

ML did not result in
improvements in 1-year
prediction compared to
traditional models
(c-statistic 0.66 for all
models); identified
predictive variables
consistent with prior
findings, including age,
renal function, liver function
tests, hemodynamics,
and BMI.

Miller et al.,
2019 [58]

Multicenter
(UNOS),
retrospective

Artificial neural
network,
classification and
regression tree,
random forest

2802

1-, 3-, and 5-year
mortality after
pediatric
transplantation

ML algorithms
demonstrated a fair
predictive ability but had a
poor sensitivity; incomplete
and missing registry data
limit prediction; AUCs for
1-, 3-, and 5-year mortality
were 0.72, 0.61, and 0.60,
respectively.

(B)

Study Authors
and Reference # Study Type Study Method Subjects Duration

(Months) Conclusions of the Study

Yoon et al.,
2018 [56]

Multicenter
(UNOS),
retrospective

Trees of predictors 95,275 1-, 3-month, and
10-year mortality

ToP improves survival
prediction both post- and
pre-transplant and performs
better than existing clinical
models and other ML
methods; AUC for 3 months
was 0.660 and best clinical
risk score was 0.587; ToPs is
practical and adaptable to
clinical practice.

Medved et al.,
2018 [65]

Multicenter
(UNOS),
retrospective

International
Heart
Transplantation
Survival
Algorithm
(IHTSA), Index
for Mortality
Prediction After
Cardiac
Transplantation
(IMPACT)

27,705

Compares
IHTSA and
IMPACT models
in prediction of
short- and
long-term
mortality after
transplant

IHTSA showed better
discriminatory power at
1 year and overall survival;
IHTSA was more accurate
than the IMPACT model;
c-index for IHTSA was 0.627
and for IMPACT was 0.608.
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Table 3. Cont.

(B)

Study Authors
and Reference # Study Type Study Method Subjects Duration

(Months) Conclusions of the Study

Medved et al.,
2018 [3]

Multicenter
(UNOS),
retrospective

International
Heart
Transplantation
Survival
Algorithm
(IHTSA) and
Lund deep
learning
transplant
algorithm
(LuDeLTA)

49,566

Predicts status of
patients on list
and
post-transplant
survival

The predicted mean
survival for allocation
according to the wait time
was 4300 days, with clinical
rules was 4300 days, and
using neural networks was
4700 days.

Medved et al.,
2017 [64]

Multicenter
(UNOS),
retrospective

Artificial neural
network, Keras
framework

27,444

180, 365, and
720 days after
entering heart
transplant list
(outcome:
waiting,
transplanted,
or dead)

Identified top ten weighted
parameters affecting the
outcome.

Nilsson et al.,
2015 [63]

Multicenter
(ISHLT registry),
retrospective

Flexible nonlinear
artificial neural
network model
(IHTSA)

56,625 1-, 5-, and
10-year survival

The IHTSA model can
predict short- and long-term
morality with a high
accuracy (ROC 0.650);
recipients matched to
donors under 38 years had
an additional survival of
2.8 years; model accuracy
was excellent (0.6) at 1-, 5-,
and 10-year survival.

AI-based models may perform better than those developed using traditional statistics,
but the risk of bias, the need for external validation, and lesser-known applicability at this
time may affect AI-based tools. More investigations are needed using large, high-quality
databases for AI-driven models to become a mainstay [67–69].

4.2. Future Directions for AI Risk Prediction

The main barrier to improved AI risk prediction for both durable MCS and CT is the
need for higher quality, complete, and accurate data from a diverse population to input
into datasets. Current datasets, such as INTERMACS, would benefit from validation and
standardization procedures to improve the quality and availability of the clinical data. As
transplant and durable MCS implants occur relatively frequently, the entered data must be
granular and error-free. For example, most databases do not consistently collect granular
data regarding immunosuppressive regimens, which were identified as a predictive variable
in graft failure and mortality. AI models often require extensive clinical data to achieve a
satisfactory performance. Smaller databases inherently encourage overfitting to inaccurate
data points and result in less generalizable analyses. Broader data collection may be
considered by registries to optimize ML prediction. The ability to interpret ML and AI
models needs to improve to broaden their applications in clinical practice. Although these
models demonstrate a superior performance compared to traditional regression analysis,
the majority of them operate as black boxes, making it challenging to trace and explicitly
articulate the logic behind risk computations. Enhancing the interpretability of ML/AI
models is important for deriving clinical implications from risk predictions.
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The cost and staffing remain barriers to optimal data collection. Prospective registries
eliminate the bias associated with current retrospective datasets, offering a solution to
current data issues, but at a significant cost. Once reliable and accurate models are devel-
oped, their accessibility and ease of use by clinicians will be critical in ensuring that the
models are used in the real world. This could involve their incorporation into electronic
medical records, smartphone apps, and web-based sites. Finally, AI and ML models should
be developed to predict additional post-operative outcomes. Many models for durable
MCS focus on RV failure and survival. The current models of durable MCS do not address
additional significant complications of durable MCS, including driveline infections, cere-
brovascular events, and bleeding. The AI models did not address significant complications
such as graft vascular disease and stroke but could further explore the predicted roles of
immunosuppressive regimens. Future AI models should further investigate additional
adverse events for a more accurate prediction of post-implantation outcomes. Figure 1
summarizes the future perspectives on using AI technology for risk prediction.
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5. Conclusions

Currently, ML model implementation in durable MCS and HT reveals superiority
over linear models in predicting the endpoints of each. The existing models of durable
MCS and HT primarily focus on mortality. Additional models of durable MCS predict
RV failure, cerebrovascular accidents, and aortic insufficiency. The models of HT predict
waitlist mortality and pre-transplant rejection. The main limitations of the current models
are due to missing data, data imbalances, and the uneven distribution of variables in the
datasets from which the models are derived. There is an urgent need for predictive models
that can integrate a large number of clinical variables from multicenter data to account for
the variability in patient characteristics that influence the patient outcomes and survival
for both durable MCS and HT.
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