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Abstract: Cholangiopathies include a group of chronic progressive disorders, affecting the cholangio-
cytes, the epithelial cells that line the biliary tree, leading to liver parenchymal fibrosis and eventually
end-stage liver disease necessitating transplantation. Experimental modeling of these multifactorial
cholestatic diseases faces challenges due to the lack of adequate experimental in vitro and in vivo
models. A novel approach employs three-dimensional organoid systems that offer several advantages
for modeling disease and testing drug response in vitro. Organoids mimic intercellular communica-
tion, replicate the architecture of organs, and maintain the cell’s original phenotype. Cholangiocyte
organoids provide an in vitro model to study the pathogenesis and pharmacotherapeutic treatment
of cholangiopathies and show great promise for regenerative therapies. In particular, patient-derived
organoids allow personalized medicine approaches and the study of individual disease character-
istics. This review highlights the significance of cholangiocyte organoid models in advancing our
understanding of cholangiopathies and driving advancements in regenerative medicine strategies.
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1. Introduction

Cholangiopathies are chronic progressive diseases that affect the biliary epithelium
and can cause fibrosis and damage to the liver parenchyma, culminating in end-stage
liver disease, which requires liver transplantation (LT) [1]. Cholangiopathies, such as
primary sclerosing cholangitis (PSC), biliary atresia, and cholangiocarcinoma, are highly
heterogeneous, characterized by unclear pathogenesis, and lacking well-defined therapeutic
approaches to date [2]. In particular, PSC is characterized by biliary obstruction and
damage to the liver itself, as well as by progressive biliary inflammation and fibrosis. The
pathogenesis of PSC is not yet fully understood and appears to be caused by genetic, viral,
and environmental insults, as well as unknown stimuli that contribute to the damage of
cholangiocytes [3]. Evidence suggests the cholangiocyte is not a target of exogenous or
endogenous stimuli but also likely a dynamic actor that, by the interaction with immune
cells, endothelial cells, and mesenchymal cells, plays a key role in the progression of the
disease [4].
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Because of a multifactorial etiology and multiple different features, cholestatic diseases
have limited experimental models. In vitro cell culture models are key in liver research
to supplement the lack of human samples or in vivo animal models [5,6]. However, con-
ventional two-dimensional monolayer cell cultures lack the representation of intercellular
cell-to-cell interaction, and primary human cholangiocytes are difficult to isolate and de-
differentiate after a few passages [7]. On the other hand, three-dimensional cell culture
systems, such as organoids, can effectively mimic cell-to-cell interaction, architecture, com-
munication, and microenvironment among liver different cells. Organoids derived from
primary human cholangiocytes have the advantage of preserving the original phenotypes
of the cells; patient-derived cholangiocytes and cholangiocarcinoma organoids provide a
tool for disease modeling purposes and offer an interesting platform for drug screening
applications [8]. The utilization of healthy donor-derived human cholangiocyte organoids
highlights their potential applications in tissue engineering and regenerative medicine and
have shown the potential to restore damaged biliary epithelia in preclinical models [9].

This review synthesizes the insights into cholangiopathies and investigates cholangio-
cyte organoid models both as advanced tools for understanding cholangiopathies and as a
cornerstone strategy in the field of regenerative medicine. A comprehensive analysis of the
challenges that have to be overcome for organoids’ clinical application is also conducted.

2. Cholangiocytes and the Biliary Tree

The biliary tree is a complex network of tubular structures, or bile ducts, which begins
with the Hering canals in the hepatic lobules and progressively merges into a system of
interlobular, septal, and major ducts that all together form the extrahepatic bile ducts. The
complex is divided into two compartments, intrahepatic and extrahepatic, which differ
both anatomically and functionally [10] (Figure 1).
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Figure 1. The biliary tree complex. The biliary tree consists of small and large bile ducts, which are
responsible for the active transport of electrolytes and solutes through cholangiocytes, which alter
the flow of canalicular bile. The Hering canals connect hepatocytes to cholangiocytes and are lined
by a niche of HPCs.

Hering canals connect the hepatocellular canalicular network that carries primary bile
from the liver to the gallbladder, where it is stored, and which ends in the Vater Ampulla,
from which the bile is poured into the small intestine where it contributes to the digestion
of lipids [11,12]. Hering canals are the site of the hepatic stem cell niche [13]. Instead, the
extrahepatic biliary network presents a niche of hepatic progenitor cells (HPCs), which
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differs from that present in the Hering canals, because the intra- and extrahepatic biliary
trees have different embryonic origins [14].

Cholangiocytes are ciliated and highly specialized epithelial cells that line the intra-
and extrahepatic bile ducts. They play a key role in liver repair, innate immunity, and
progression of cholangiopathies [10]. They represent the first line of defense in the in-
nate immunity of the liver; moreover, they can be both the target of immune-mediated
aggression or the initiators of an inflammatory reaction that progresses to adaptive immune
activation [4]. The contribution of biliary epithelial cells to liver immune responses was
thought to be limited to the secretion of immunoglobulin (Ig) A in bile, but it is clear at
present that the role of cholangiocytes in immune response is much more complex [15].

Cholangiocytes within various compartments of the biliary tree exhibit a distinct
morphology. The small cholangiocytes line the Hering canals and distal branches of the
biliary tree, featuring a cuboidal shape with a round basal nucleus. They exhibit rapid
reactivity to liver and/or biliary damage [16]. On the other hand, large cholangiocytes
line the larger-diameter ducts, displaying a cylindrical shape. These cells are involved in
secretory functions and possess transport capacity, mediating processes such as alkalization,
hydration, and the modification of bile [17].

The apical surface of cholangiocytes has a non-mobile primary cilium, which functions
as a mechanosensor, chemosensor, and osmosensor. The cilia direct the bile flow and,
by bending, activate the calcium ions (Ca2+) channel, allowing the influx of Ca2+ into
the cell [11]. These structures can be involved in cell proliferation and senescence, in the
activation of progenitor cell compartments, and in regeneration and development.

The extracellular vesicles present in the bile can bind to cilia and have been shown
to inhibit the proliferation of bile duct cells, promoting a quiescent state of the biliary
system under normal conditions [15]. Moreover, recent research has shown that exosomes
(small extracellular vesicles ranging in size from 50 to 200 nm, containing genetic material,
such as DNA, mRNA, and various types of non-coding RNAs) are promising diagnostic
tools for cholangiocarcinoma and gallbladder carcinoma, as they are easily and rapidly
accessible [18]. Circulating non-coding RNAs, found within exosomes, can play a significant
role as effective biomarkers for the diagnosis of various diseases. Therefore, the analysis of
exosomes and their genetic contents could represent an innovative approach to the early
and precise diagnosis of various pathological conditions.

Biliary epithelial cells, thanks to their ability to secrete ions in a polarized way and
their selective permeability to solutes and water, actively maintain hepatic homeostasis. In
addition, the biliary epithelium acts as a barrier against the back diffusion of xenobiotics,
toxic metabolites, and bile salts from the bile to the interstitial tissue [19].

The cells of the smaller branches of the bile ducts have different and specific biological
properties, such as phenotypic plasticity, the ability to react to liver damage and behavior
as the progenitors of hepatocytes, and they are awakened to varying degrees only after
liver damage [10].

3. Biliary Injury

The damage to the biliary tree can be various in nature (Figure 2). Most of the disorders
that cause biliary pain are due to calculi, that is, the formation of stones within the bile ducts
and in the gallbladder causing choledocholithiasis and cholelithiasis [20]. These, in turn,
can cause biliary colic and cholecystitis, scilicet inflammation of the gallbladder, which
can be acute if it progresses in a few hours or chronic if it evolves for a longer time [21].
Furthermore, blockage of the bile ducts can also lead to inflammation of the bile ducts
thus causing acute cholangitis. However, the blockage or slowing of the flow of the bile
ducts, known as cholestasis, can also be caused by tumors or strictures following viral
infections [20,22].
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Cholestasis in turn can progress into chronic liver disorders affecting cholangiocytes,
known as cholangiopathies, which can result from proliferative, fibrotic, genetic, immune-
mediated phenomena that can cause portal hypertension and progressive periportal fi-
brosis [23]. The different distributions of cholangiopathies along the biliary tree can be
explained by the different types of damage that can affect cholangiocytes [24]. Cholan-
giopathies can generally be classified into immune-mediated diseases, infectious, genetic,
inflammatory, and fibrosis, which lead to the development of primary biliary cholangitis
(PBC), PSC, IgG4-related sclerosing cholangitis (ISC), and biliary atresia (BA) [19,25,26].

Cholangiocytes are the target of various stimuli of innate and adaptive immune
responses, ischemia, cholestasis, and xenobiotics [27,28]. Their activation causes an increase
in pro-inflammatory and pro-fibrotic mediators, and the recruitment of immune, vascular,
and mesenchymal cells, which all together contribute to the development of biliary fibrosis,
which can ultimately evolve into cholangiocarcinoma [4,29].

3.1. Cholangiopathies

PBC is a chronic and progressive disease mainly observed in females. Its incidence
is 1–2 per 100,000 population per year, prevalence is 1 over 1000 in women older than
40 years, and is strongly associated with autoimmune syndromes, such as Hashimoto’s
thyroiditis, Sjögren’s disease, celiac disease, or systemic sclerosis. PBC is characterized by
anti-mitochondrial (AMA) or specific anti-nuclear antibody (ANA) positivity. Ninety per
cent of PBC patients show AMA positivity. Histology of PBC shows the typical florid duct
lesions and destruction of intralobular bile ducts. The pathogenesis is poorly understood;
however, autoimmunity is likely involved [30].

Instead, PSC is mainly observed in men with a median age at diagnosis of 41 years;
incidence is 0–1.3 cases for 100,000 persons per year. It is strongly associated with inflam-
matory bowel disease (IBD) and gallbladder and colorectal cancers. It represents the major
risk factor for cholangiocarcinoma [31]. Magnetic Resonance Imaging and Endoscopic Ret-
rograde Cholangiopancreatography (ERCP) show the characteristic strictures that confirm
the diagnosis. The structures involve either the entire biliary tract (95%) or only the small
ducts [32]. Pathogenesis is still unknown. The role of activated T cells has been proposed as
a potential cause. Nevertheless, the presence in the liver parenchyma of microbial antigens
could be involved in the early senescence of hepatocytes.

ISC is an uncommon variant of PSC. It has been associated with a worse prognosis,
without IBD, even though the etiology is still not clear. Serum IgG4 is elevated both in ISC
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and in PSC, but ISC is associated with tissue IgG4 deposits and inflammatory disease of
other glands, such as pancreatitis or sialadenitis. Lastly, ISC shows a good clinical response
to glucocorticoid treatment, but the relapse percentage is frequent [33]. Table 1 shows the
epidemiological data of the most widespread cholangiopathies.

Table 1. The most common cholangiopathies.

Incidence/
Prevalence Epidemiology Diagnosis

PBC 1–2 per 100,000 per year 60% Female Autoimmune syndromes, AMA pos,
ANA pos. No need of biopsy.

PSC 0–1.3 per 100,000 per year 60% Male
IBD, multiple, both intra- and

extrahepatic strictures. No need of
biopsy.

ISC 2.18 per 100,000 80% Male Tissue IgG4 deposit, pancreatitis,
sialadenitis. Sudden jaundice.

3.2. Biliary Complications Post-LT

Cholangiopathies are a frequent indication for LT. The European Liver Transplant
Registry (ELTR) reported that 13,241 LTs were performed for cholestatic disease in the
last 50 years (10% of the total): 44% due to PBC, 44% due to PSC, and the remaining due
to secondary biliary cirrhosis. These percentages remained stable over the past 15 years,
except for a slight increase in PSC [34]. About 40% of patients with PSC undergo an LT.
However, a recurrence is observed in 10 to 40% of cases, leading to re-transplantations
in up to 50% of cases. Acute or chronic rejection is frequent (39–71%) requiring a high
immunosuppressive regimen. PSC remains a clinical and surgical challenge, with a 1-year
survival rate of 85% and a 5-year survival rate of 72% [2,3,23,35].

Furthermore, the extension of the criteria for liver donation, with the inclusion of el-
derly donors and donors after cardiac death (DCD), caused an increased risk of developing
complications that could lead to graft failure [36]. Among the most common complications
are biliary complications, which are increasingly the cause of morbidity and mortality after
transplantation, and the most relevant ones are: anastomotic (AS) and non-anastomotic
stenosis (NAS).

NAS occurs due to irregularities of the biliary tree and represents the most common
complication [37]. The origin is often multifactorial, and multiple causes may overlap with
damage to the biliary system, such as bile duct injury and subsequent fibrosis and the
gross narrowing of donor bile ducts. NAS can be further classified as an ischemic-type
biliary lesion (ITBL), which is associated with arterial stenoses or thrombosis and ischemic
cholangiopathy (IC), where normal vascular flows are present [38]. IC is characterized by
an increase in cholestasis indices and bilirubin, often associated with fever and abdominal
pain [39]. Strategies aimed at preventing IC include the implementation of dual (portal and
arterial) perfusion at perfusion at procurement and ex-situ machine perfusion preservation,
which are extremely relevant [36,40,41]. The current main explanations for a higher rate
of NAS in DCD transplants are ischemia-reperfusion injury (IRI), immune processes, and
bile salt toxicity that damage cholangiocytes [42]. DCD livers undergo a period of warm
ischemia in the donor, which, combined with cold storage and other risk factors, makes the
liver more susceptible to the development of ITBL [36,43]. IRI can be classified as a primary
ischemia injury that affects the bile ducts during the transplantation stages, secondary
ischemia that can occur after transplantation due to damage to the peribiliary vascular
plexus, and insufficient regeneration of the biliary epithelium [36,44].

Primary injury can occur at various stages during the transplantation procedure. An
extended warm ischemia time in the donor, particularly when combined with additional
cold storage, represents a key risk factor for the development of biliary strictures [44–46].
Following reperfusion, the damage is aggravated as accumulated oxygen-containing reac-
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tive species (ROS) and damage-associated molecular patterns (DAMPs) proceed to activate
the immune system causing necrosis and apoptosis. It has been shown that cholangio-
cytes are more susceptible to IRI than hepatocytes because of slower ATP regeneration,
higher ROS production, and lower concentration of glutathione, which has an antioxidant
action [47,48].

After that, DCDs undergo a second warm ischemia when the organ is harvested from
ice and placed in the recipient’s abdomen, due to portal reperfusion, which is low in oxygen
saturation, does not contribute sufficiently to biliary perfusion, and each additional minute
of warm ischemia increases the risk of ITBL [49,50]. In addition, hepatic steatosis of the
transplanted liver also contributes to secondary ischemia damage, as it causes the swelling
of lipid-laden hepatocytes that causes the impairment of micro-circulation and increases
the risk of developing biliary complications [44,51].

The IRI of the bile ducts has long been considered the main determinant of the
development of ITBL. However, several clinical studies have shown that extensive injury
and loss of the biliary epithelium can be found in more than 90% of transplanted livers,
and only a minority of these develop post-transplant cholangiopathy [44,52]. This brings
us back to the hypothesis that the insufficient regeneration of the biliary epithelium, rather
than the initial amount of injury, determines whether a liver donor develops post-transplant
cholangiopathy [52]. Currently, the treatment of post-transplant cholangiopathy consists
of the use of antibiotics, endoscopies, resection of extrahepatic bile ducts, and liver re-
transplantation, but these are often challenging and unsuccessful.

In recent years, attention has shifted to the use of mechanical perfusion as an emerging
strategy to counteract IRIs [8,52]. Studies have indicated that the use of the normothermic
machine perfusion (NMP) in cases of DCDs is associated with a reduced incidence of
post-transplant biliary damage, due to the supply of oxygen and nutrients and consequent
reduction in ischemic damage in the bile duct [36]. Using DCD livers from pigs, the
positive effect of NMP on biliary damage and regeneration has been demonstrated [53,54].
But, it was also confirmed by the de Jong study [55], which found an increase in the
proliferation of cholangiocytes during NMP and better preservation of the peribiliary glands
(PBGs) containing progenitor cells that differentiate into mature cholangiocytes for biliary
regeneration. Compared to NMP, hypothermic perfusion (HMP) also presents advantages.
Multiple studies have demonstrated that HMP significantly reduces IRI. Furthermore, it
appears to “resuscitate” mitochondrial function, thereby decreasing the formation of ROS and
the activation of the immune system [42,44]. Additionally, studies on pigs regarding HMP
showed the enhanced preservation and protection of the bile ducts, ultimately leading to
an improved hepatobiliary function [56]. Moreover, MP can act as a platform for the direct
release of therapeutic agents to organs before transplantation and for testing new therapeutic
approaches and their effectiveness in repairing liver damage [36,56–59].

A new strategy would involve transplanting cholangiocyte organoids directly into
intrahepatic ducts before organ transplantation, during machine perfusion (MP) [60].
Cholangiocytes play an important role in the etiopathogenesis of post-transplant cholan-
giopathies [42,49,61], and given the high incidence of biliary system disorders following
transplantation, the use of cholangiocyte organoids has been proposed. The study by
Sampaziotis et al. [8] highlights the high plasticity of cholangiocytes: cells taken from differ-
ent regions of the biliary tree contain different transcriptional profiles, but cholangiocytes
lose these differences by allowing cells from one region to repair a different region of the
biliary tree.

4. Regeneration in Response to Biliary Damage

In response to biliary damage, cholangiocyte proliferation is activated to maintain
normal homeostasis of the biliary tree. In physiological conditions, small cholangiocytes
are quiescent, but in case of liver damage, they activate a marked proliferation as part
of the hepatic reparative complex [62] (Figure 3). Moreover, cholangiocytes are involved
in cell cycle phenomena that maintain tissue homeostasis in the biliary system through
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modulators of apoptosis and senescence, and damage to cholangiocytes can lead to cholan-
giopathies [19].
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increase, and the transdifferentiation of hepatocytes into biliary-like cells and/or cholangiocytes.
HPCs: hepatic progenitor cells; SOX9: SRY-box transcription factor 9.

Based on the type of damage, a specific population of cholangiocytes is activated to
start proliferating. The proliferation of cholangiocytes can be divided into three types:
the “typical” type results in an increase in the number of intrahepatic bile ducts deriving
from older pre-existing ducts [63]; the “atypical” type occurs in chronic liver injury as well
as alcoholic liver disease and chronic extrahepatic biliary obstruction, and results from
the transdifferentiation of hepatocytes into cholangiocytes [64]; and the last type is type
III and it is the first step towards carcinogenesis in the liver, which leads to disorganized
proliferation and distorted liver architecture [65].

Inflammation, caused by the activation of cholangiocytes following damage, is at the
basis of the biliary repair process and biliary fibrosis known as the ductal reaction (DR),
which involves inflammatory cells, HPCs, and activated cholangiocytes [66]. The DR is
defined as a bile duct hyperplasia commonly observed in liver diseases and the cellular
phenotypic profile that characterizes it is influenced by the location of the liver lesion and
the etiology of the disease that causes the lesion [66,67]. Therefore, in case of damage
to the biliary tree, the reaction is characterized by the proliferation of cells with a biliary
profile, while damage to hepatocytes causes a proliferation of cells with a hepatocytic
profile [67,68].

HPCs are stem cells that begin to proliferate and expand rapidly following severe
liver damage and have bidirectional differentiation potential as they can differentiate into
hepatocytes and/or cholangiocytes [69]. There are two distinct populations of progenitor
cells: hepatic progenitor cells (HPCs) and biliary tree progenitor cells (BTPCs).

HPCs are found in the smallest branches of the biliary tree, in the Hering canals and
bile ducts. Their activation is associated with the appearance of the ductular reaction
and in the context of cholangiopathies support the renewal of cholangiocytes that are
compromised in their proliferative abilities [70].

BTPCs, which are found in the PBGs of the large intrahepatic and extrahepatic bile
ducts [71], proliferate in response to biliary damage to give rise to the progeny of cholangio-
cytes [72]. Furthermore, damage to PBGs at the time of transplantation is a risk factor for the
development of biliary complications. Therefore, it is plausible to think that post-transplant
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cholangiopathies are determined by the effective regenerative capacity of the bile ducts,
rather than the amount of epithelial damage [73].

In case of cholestatic liver diseases, such as PSC or PBC, an “atypical” proliferation
occurs where hepatocytes transdifferentiate into cholangiocytes and/or cholangiocyte-like
cells, contributing to functional repair and regeneration in liver damage. This transdiffer-
entiation is a result of cellular reprogramming observed through the expression of biliary
transcription factors and other specific markers [64,74].

5. “Old” Therapies for the Regeneration of the Biliary Tree

Over the years, several treatments have been designed to prevent the progression of
cholangiopathies, but unfortunately, they have failed and almost always the only solution
is LT (Table 2).

Ursodeoxycholic acid (UDCA) has been, for a long time, and is still the gold standard
for the treatment of cholangiopathies [25,26]. It is a hydrophilic bile acid naturally present
in bile, which is effective in preventing the progression of inflammation and fibrosis when
taken early in the disease [75]. However, this treatment appears to be ineffective in 40%
of patients [76]. UDCA efficacy in PSC is still debated, as it determines an improvement
in blood chemistry without increasing survival. According to other studies, UDCA may
even determine a worsening of the prognosis, with a higher incidence of cirrhosis and
cholangiocarcinoma and the need for LT.

In general, even if UDCA is the main treatment for these pathologies, their effectiveness
is limited, and also in PBC—where the evidence is stronger—there are no differences in
symptoms, liver-related mortality, or transplant-free survival [77].

Obeticholic acid (OCA), 24-Norursodeoxycholic acid (norUDCA), and antibiotics are
widely used, but they are still under study or have limitations/complications, like the risk
that elevated serum fibroblast growth factor 19 (FGF19) levels lead to the development of
hepatobiliary malignancy and the high dosage that is toxic [31,32,78,79].

It is not indicated in patients with decompensated cirrhosis or portal hypertension, but
only in patients with Child–Pugh Class A. The dosage must be titrated progressively and is
often not tolerated by patients due to the onset or worsening of itching, fatigue, nausea,
and headache [77]. The data regarding the long-term impact on survival in patients treated
with OCA are limited.

Other treatments are the application of immunosuppressants, glucocorticoids com-
bined with UDCA, and B-cell depletion, but potential treatments, such as signal regulatory
protein 1 and 4 (S1RP1, S1RP4) agonists and NADPH oxidase 1 and 4 (NOX1, NOX4)
inhibitors, are under clinical evaluation [75]. Glucocorticoid and azathioprine represent
the first-line therapy, however other antimetabolite drugs or calcineurin inhibitors can be
administered. The response rate is high, but relapse is frequent. Transplantation may be
necessary in cases of severe acute hepatitis [80].

Table 2. Mechanisms of action of some treatments for cholangiopathies.

Treatment Mechanism References

UDCA Protection of biliary epithelial cells and mitochondrial integrity,
reduction in pro-inflammatory cytokines. [76,79]

OCA
FXR agonist that suppresses bile acid synthesis, inflammation, and
hepatic fibrosis, and induces the endogenous synthesis of FGF19. It is
a promising potential therapy for PBC patients.

[81,82]

norUDCA Increases resistance to biliary damage induced by bile acids and has a
pleiotropic effect on inflammation, apoptosis, and fibrosis. [83,84]

Antibiotics Improvement in liver biochemistry observed with vancomycin,
metronidazole, azithromycin, and minocycline. [78]
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The ineffectiveness of the treatments used at present leads to the only therapeutic
option of a transplant [85]. So, the lack of definitive therapies and the high cholangiocytic
disease incidence have prompted the exploration of new alternatives, such as the utilization
of organoids to repair biliary damage.

6. Cholangiocyte Organoids as a New Strategy for the Regeneration of the Biliary Tree

The failure of regeneration and limited treatments for advanced liver disease highlight
the urgent need for new strategies in regenerative approaches that activate the body’s natu-
ral repair mechanisms and explore options such as cell-based therapies or bioengineered
tissue for liver replacement.

The strategies of regenerative medicine, for the liver as well as for other organs, can
be captured through the R3 paradigm: replacement, regeneration, and rejuvenation [6]
The replacement strategy involves LT, the only clinically available regenerative medicine
therapy in end-stage liver disease. However, this paradigm helps guide the development
and implementation of complementary strategies, such as cell-based therapies (e.g., liver
organoids) and bioengineered tissues. In contrast, regeneration involves the delivery and
engraftment of stem cells or progenitor cells that then undergo growth and differentiation
in vivo (e.g., stem cell transplant or stem cell-coated stents) [9–11]. Lastly, rejuvenation
involves inducing tissue self-renewal through the activation of endogenous stem cells (e.g.,
gene therapy or exosome delivery) [14].

The hepatic, pancreatic, and biliary Organoid Consortium recently published a con-
sensus document that defines an organoid as a “three-dimensional structure derived from
(pluripotent) stem cells, progenitor, and/or differentiated cells that self-organize through
cell–cell and cell–matrix interactions to recapitulate aspects of the native tissue architecture
and function in vitro” [86]. The organoids are then classified according to single or multiple
germ lines in epithelial, multi-tissue, and multi-organ organoids, and also subclassified
according to cell type of origin.

6.1. Generation of Cholangiocyte Organoids

Cholangiocyte organoids can derive from the epithelial cells of different compart-
ments of the biliary tree (intrahepatic, extrahepatic, and bile); therefore, a nomenclature
has been proposed that allows us to identify the organoids based on their origin: intra-
hepatic cholangiocyte organoids (ICOs), gallbladder cholangiocyte organoids (GCOs),
extrahepatic cholangiocyte organoids (ECOs), and cholangiocyte organoids derived from
bile (BCOs) [60]. All of these structures share similar phenotypic characteristics when
grown, but they have different identities based on the location and composition of the
bile [87]. It has been observed that cholangiocytes have a plastic identity and lose some
characteristics of the subpopulation of origin to assume a single common organoid identity,
but if exposed to different bile concentrations and compositions, they can regain the identity
of the original location [8,88]. Cholangiocyte organoids can be derived from both healthy
and diseased individuals and can be generated from a variety of sources, including stem
cells (iPSCs), organ-derived primary tissues, or body fluids, such as bile [86] (Figure 4).

Organoids derived from tissue-derived primary cells have greater stability and ease of
propagation than organoids derived from iPSCs, but require access to the primary tissue,
and this is not always possible [89]. For organoid generation from tissue-derived primary
cells or bile (a schematic representation is shown in Figure 4A), the Scaffold technique that
exploits the extracellular matrix (ECM)-based hydrogel or Matrigel is used [90,91]. It is
commercially available, and, through different growth factors in the culture medium and
signaling pathways, recreates a bioactive micro-environment in which the cells differentiate
and generate spherical structures and finally mature into cholangiocytes or hepatocyte
organoids [60,90].
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derived primary cells and bile. (B) Organoid generation from ESCs/iPSCs and HPCs. Act A, Activin
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tumor necrosis factor alpha.

Pluripotent stem cells (iPSCs), do not require access to primary tissue, as they allow
us to easily obtain cholangiocytic organoids with minimally invasive procedures from
different materials, such as the blood, urine, or skin [92]. The resulting cells differentiate
into hepatoblasts, which can give rise to the monolayer of HPCs [93] (Figure 4B). Then,
single-cell or multicellular approaches can be used to obtain cells that exhibit the key
functions of mature cholangiocytes [92]. The multicellular approach involves the inter-
action of HPCs with OP9 cells, a stromal cell line that expresses the Notch ligand (of the
bile duct regeneration pathway), which form cells that express primary biliary and cilia
functions [70]. The single-cell approach is less variable, as it relies only on key factors
of biliary regeneration pathways (such as Wnt, Notch, and TGFβ), which lead to the for-
mation of cells expressing markers (cytokeratin19, SOX9, and CFTR), primary cilia, and
stimuli secretors [94]. Despite the presence of many features of mature cholangiocytes,
iPSC-derived cholangiocyte organoids are characterized by incomplete maturation, some
fetal characteristics, and the genetic instability associated with iPSC [48]. To overcome this
challenge, Ogawa et al. [70] devised a monolayer-based differentiation strategy, enabling
the generation of a significant number of mature and ciliated cholangiocytes from various
pluripotent stem cell lines, thus paving the way for exciting opportunities to develop
targeted cellular therapies for regenerating compromised and/or diseased bile ducts in
patients with cholangiopathies [95].

Cholangiocyte organoids that are derived from HPCs are an exciting area of research
in the fields of regenerative medicine and modeling liver diseases and their use to produce
cholangiocyte organoids has several advantages: these cells have significant proliferative
potential, which means they can multiply quickly in vitro and provide a generous source
of material for experiments; the genomic stability is crucial in ensuring the consistency of
results in organoid cultures; and the intrinsic re-differentiation capacity of HPCs within
organoids guarantees the flexibility to transform into various cell types, including cholan-
giocytes, and this feature enhances the organoids’ ability to reflect the complexity and
heterogeneity of liver tissue [96,97].

Primary cholangiocytes can be grown using two main complementary platforms,
based on canonical or noncanonical Wnt signaling, resulting in a different cell phenotype.
Wnt seems to be a master regulator of a mature versus stem cell phenotype [98,99]. Cells
grown in the canonical Wnt signaling condition have a stem cell-like phenotype and can
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differentiate toward both the hepatic and biliary lineage, but do not fully recapitulate the
functions of mature cholangiocytes or hepatocytes in vitro. Primary cholangiocytes grown
in conditions based on noncanonical Wnt signaling give rise to mature primary cholan-
giocyte organoids in the long term while maintaining genetic stability, expression of key
mature biliary markers, and cholangiocyte functions in vitro, maintaining their plasticity.

6.2. Applications of Cholangiocyte Organoids

The use of cholangiocyte-derived organoids in the context of cholangiopathies and
bile system disorders holds great promise. This is attributed to the regenerative potential of
bile epithelia distributed throughout the liver and the unique plasticity of cholangiocytes,
endowing these cells with a unique potential for tissue repair while retaining the functions
and characteristics of the original tissue [8]. Fundamentally, organoids are well-suited
for basic research on liver pathophysiology, disease modeling, pharmacological treatment
assessment, and the development of personalized treatments, as well as applications in
regenerative medicine for repairing deficits in the bile epithelium [100]. Additionally, the
three-dimensional structure of organoids offers the opportunity to develop multi-organ
systems and evaluate the contribution of various organs through platforms like the liver on
chip (Figure 5).
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Figure 5. Biomedical applications of cholangiocyte organoids. Cholangiocyte organoids can be
derived from intrahepatic bile duct biopsies (intrahepatic cholangiocyte organoids; ICOs), extrahep-
atic bile duct biopsies (extrahepatic cholangiocyte organoids; ECOs), and bile samples (bile-derived
cholangiocyte organoids; BCOs). Organoids offer a broad spectrum of applications, including basic
research on liver physiopathology, disease modeling, biobank establishment, pharmacological screen-
ing, implementation of personalized therapies, utilization in organ-on-chip systems, and application
in regenerative medicine.

6.2.1. Basic Research and Disease Modeling

Cholangiocyte organoids can be employed in basic research, enabling the study of liver
cell differentiation, including the development and maturation stages of cholangiocytes [60].
Furthermore, 3D cultures derived from healthy patient samples allow the modeling of liver
diseases, including cholangiopathies, by recreating the physiological microenvironment
(including cell–cell and cell–ECM interactions) [7].

For instance, bile-derived organoids (BCOs) have been identified as a novel method
for studying the pathogenesis and therapy of cholangiopathies, such as PSC. While tissue-
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derived organoids are limited by sample availability (usually collected during transplants),
BCOs are easier to obtain since bile can be regularly collected [88,101]. Additionally,
they exhibit a biliary phenotype and altered expression of genes associated with immune
regulation [102]. BCOs from PSC patients, when stimulated with the pro-inflammatory
cytokine IL-17A, were observed to secrete high levels of chemokine CCL20, confirming its
key role in biliary duct damage in patients with chronic liver inflammatory diseases [103].
This discovery is valuable as it opens avenues for studying pharmacological therapies for
these organoids, making them more amenable to susceptibility testing. However, while
BCO technology presents limitations due to the not fully matured origin epithelia and
the ability to obtain them only from patients with biliary duct stenosis, these organoids
preserve more properties of the biliary tree compared to iPSCs; hence, further comparative
studies are warranted [104].

Moreover, Chen et al. [105] utilized primary cholangiocytes isolated from mouse bile
ducts and decellularized liver scaffolds to develop functional ductal organoids (FDOs)
and construct a network structure resembling a biliary tree. The study demonstrated that
cholangiocytes in FDOs could have a future in clinical therapy, as they can be used for
disease modeling and generating bioengineered livers [105].

The simulation of pathological conditions is a widely explored area for organoid
use, even enabling the replication of congenital and hereditary diseases through genetic
manipulation techniques [100]. Additionally, organoids derived from bile ducts open up
the possibility of creating human organoid biobanks (healthy or diseased), thus enabling
future studies on diseases, pharmacological screenings, and personalized medicine [9].

6.2.2. Drug Screening and Organ-on-Chip System

Organoids derived from the cells of diseased individuals can be used to develop
personalized gene therapies [90]. In fact, cells within the organoid can be employed to test
the effects of drugs, thus aiding in identifying potential therapies and possible hepatotoxic
effects they can cause, also thanks to the secretion of enzymes into the bile, which are useful
for the hepatic metabolism of many hydrophobic drugs [7,106,107].

The lack of adequate in vitro models prompted the group of Shi et al. to use intra-
hepatic cholangiocyte organoids to recreate necroptosis, a common mode of programmed
cell death in cholangiopathy [108]. They demonstrated that ICOs can serve as a useful
platform for the in vitro study of biliary cytotoxicity and preclinical assessment of drugs,
with significant implications for the development of therapies for cholangiopathies.

Recently, organ-on-chip (OOC) technology has been developed, representing an inno-
vative preclinical system for the in vitro evaluation of human organ responses to anti-tumor
therapies [109]. Combined with organoid cultures, it can enable in vivo drug screen-
ing [110]. The advantage of chips lies in their ability to recreate the multicellular structure,
chemical gradients, vascular systems, and mechanical properties of human organs [111,112].

Organoids for tumor studies are limited as they lack components of the immune
system, can be contaminated by normal organoids, and require components necessary for
organoid development (growth factors, extracellular matrix, and serum). On the other
hand, OOCs also presents various limitations due to their lower 3D complexity compared to
organoids and longer processing times [113,114]. The combination of organoids and OOCs
can allow the integration and combination of different tumor cell lines and immune cells,
recreating and assessing immune microenvironment interactions in a more physiologically
relevant and comprehensive manner. This has the potential to predict targeted therapy for
the patient, revolutionizing preclinical tools in precision medicine [115,116].

6.2.3. Regenerative Medicine

The incidence of liver diseases is on the rise globally, and currently, LT is the only
therapeutic option for end-stage liver diseases. The development of regenerative medicine
techniques holds great potential, with the biliary system being a particularly interesting
target due to its significant regenerative potential throughout the liver and its minimally
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invasive accessibility through ERCP [117,118]. Organoid culture allows the propagation
of highly functional cells that retain their original functions and demonstrate the ability
to engraft and regenerate the liver or bile ducts [119]. Notably, organoids adapt well to
large-scale expansion, enabling the generation of autonomous mini-liver structures with a
vascular network, addressing many challenges in regenerative medicine [120]. The presence
of hepatic organoids fuels the prospect of implementing autologous organ transplants,
where healthy patient liver tissues can be expanded and subsequently transplanted, thereby
reducing the risk of adverse immune reactions [121].

Furthermore, exogenous cell therapy has emerged as an alternative to LT to understand
and harness the regenerative capacity of hepatocytes and biliary epithelial cells, acting as
stem cells to restore damaged epithelial populations. Identifying key signals can provide
targeted therapeutic pathways and enable the development of therapies to enhance liver
regeneration [74,122].

In 2013, Huch et al. pioneered the generation and implantation of bile duct-derived
organoids in nude Balb/c mice, which differentiated into functional hepatocytes [123]. A
study showed the use of extrahepatic cholangiocyte organoids for the reconstruction of
the extrahepatic biliary tree in mice: ECOs transplanted into immunocompromised mice
were observed to maintain gene expression and express key biliary markers, which allow
for self-organization into bile duct-like tubes and repair of damaged biliary epithelia [99].
Subsequent studies demonstrated the high engraftment rate (80%) and survival (90 days)
of liver organoids generated from both murine and human primary hepatocytes after
transplantation into immunodeficient mice with damaged livers [124,125].

Cholangiocyte plasticity represents the strong point of this technique and potentially
the future of regenerative medicine. Cholangiocytes have different transcriptional profiles,
based on their location within the biliary tree, but the organoids lose these properties as
they lack stimuli [120]. Following various local and environmental stimuli, it is possible
to reconstitute the expression of specific markers and restore the different regional con-
formations [11]. Organoids derived from cholangiocytes have demonstrated the ability to
regenerate up to 50% of the biliary tree in mice with injuries, and they have been success-
fully transplanted into ex situ perfused human livers, providing the first demonstration of
the efficacy of organoids in regenerative medicine in human organs [8]. Sampaziotis et al.
demonstrated that the transplantation of cholangiocytic organoids in a different region,
compared to the original one, still allows the damage to be repaired. It was observed that
the transplanted organoids (ICOs) at the level of the intrahepatic biliary tree formed a
cell population made up of native and transplanted cholangiocytes, with the potential for
regeneration of about 40–85%. As demonstrated, ICOs represent an important experimental
tool for cholangiopathy pathogenesis investigation [126].

The development of cholangiocyte organoid systems can overcome the limitations
of in vitro cholangiocyte cultures. There are significant challenges, as cells intended for
transplantation must be highly functional to survive in hostile environments, such as bile,
integrate into the vascular system, and engraft in the long term. Additionally, cell therapies
are limited by the lack of integration with large-scale automated production platforms,
but the use of robotic systems and bioreactors can overcome this limitation [127,128].
Finally, the use of a matrix, such as Matrigel, which can be potentially risky due to its
chemically undefined nature [129], is driving the development of hydrogel matrices based
on biological or synthetic polymers showing an acceptable safety profile, including genetic
stability without the risk of carcinogenesis, to transition from clinical experimentation to
practical applications [118].

The use of scRNA-seq (single-cell RNA sequencing) to characterize the transcriptional
profile and phenotypic state of cells during regeneration can be crucial to solving another
problem: understanding whether cholangiocytes undergo direct transdifferentiation or
pass through an “intermediate progenitor” state after dedifferentiation [74]. Several re-
cent studies have applied scRNA-seq to organoids to model organ development, tissue
regeneration, and diseases. These studies demonstrate that the combination of these two
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cutting-edge technologies allows for the identification of rare or novel cell types and ge-
netic markers in an organ, opening new perspectives in understanding and applying these
technologies [122].

6.3. Challenges in Organoid Clinical Applications: From Bench to Bedside

There are several translational barriers, including regulatory, ethical, and technical
challenges, which currently need to be addressed for the translation of organoid technology
into clinical applications [130]. These challenges require a multidisciplinary approach
among scientists, clinicians, ethicists, and regulatory agencies to develop standardized
protocols, ameliorate culture techniques, and establish clear ethical guidelines. Table 3
resumes these multifaceted issues and recommends measures that need to be taken to
ensure the clinical application of this technology.

Table 3. Organoids from bench to bedside: regulatory, ethical, and technical challenges.

Issues/Challenges Description

Regulatory issues

Standardization To establish standardized protocols for the generation, maintenance, and characterization of
organoids, and ensure consistency and reproducibility.

Regulatory Approval To demonstrate the safety, efficacy, and reliability of organoid-based therapies, regulatory agencies
define guidelines and standards for the use of organoids in research and clinical applications.

Classification Organoids may fall into regulatory gray areas, as they do not neatly fit into existing regulatory
frameworks designed for traditional drugs or medical devices.

Ethical issues

Source of Stem Cells Organoids derived from induced pluripotent, embryonic, and adult stem cells raise ethical concerns
about the source of these cells, consent, and privacy.

Informed Consent of Cell
Donors

Ensure that donors of biological materials used to generate organoids provide informed consent. This
includes understanding the purpose of the research, potential risks, and benefits involved.

Privacy and Data Security To adhere to ethical guidelines regarding the use and sharing of sensitive data, ensuring the privacy
and confidential information of donors and research data.

Creation of Chimeras Organoid research may involve the creation of human–nonhuman chimeras, which raises ethical
questions about the moral status and the boundaries between humans and other species.

Gene-Editing Tools

Unintended consequences and off-target effects can impact the safety and efficacy of gene-edited
organoids. Ethical research practices should include a thorough evaluation of potential risks and
long-term effects on both organoids and human health and ensure compliance with ethical standards
and safety guidelines.

Organoid Transplantation Off-the-shelf organoids of clinical-grade quality (size, degree of maturity, and functionality) to ensure
safe clinical use.

Biobanking

To define the legal status of organoids for the governance of biobanks. Protection of the privacy and
confidentiality of donors’ information and storage of sensitive biological data. To ensure the
long-term sustainability of biobanks, implement best practices for sample preservation, and quality
assurance and control.

Technical Issues

Complexity and
Heterogeneity

To Improve the structural and functional heterogeneity of organoids, to standardize their properties,
and to better mimic the in vivo microenvironment of organs, recapitulating the complexity of their
in vivo counterparts.

Scale-Up and Automation Scaling-up organoid production and implementing automation for large-scale applications, such as
high-throughput drug screening or transplantation therapies.

Functionality and
Long-Term Stability

To optimize organoid culture conditions to increase functionality and ensure long-term stability and
quality of organoids in in vitro setting. Vascularization is essential for organoid viability.

The potential of organoid-based approaches to improve patient care and outcomes
in diverse disease settings poses regulatory and ethical issues [131]. Regulatory agencies
are needed to define and implement guidelines and standards for the use of organoids
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in research and clinical applications through preclinical studies and clinical trials. Major
ethical concerns are related to the use of human tissues or stem cells, development of
an informed consent model for organoid donors, protection of donors’ identities and
their personal information, and commercialization and patentability of organoids [132].
Moreover, the transplantation of organoids [131], use of gene editing [133], creation of
chimeras [134], and long-term storage in biobanks [135,136] raise psychological and ethical
concerns in society that should be considered and regulated to allow the bench-to-bedside
translation of organoids.

Advances in culture techniques and biomaterials hold promise for overcoming these
challenges and unlocking the full potential of organoid research. A major limitation is
the maintenance of cellular functionality and viability over time due to culture conditions,
such as media composition and growth factors; as the volume of organoids increases, so
does the demand for nutrients and oxygen [130,137]. At the same time, the accumulation
of toxic metabolites causes cell death and necrosis. The integration of a vascular system
into organoids to allow the transport of nutrients and metabolic waste is important for
recapitulating normal human physiological conditions and for long-term organoid cul-
ture [126,138,139]. This problem can be addressed using bioreactors that improve nutrient
supply, and co-culturing organoids with endothelial cells or progenitors can promote vas-
cularization during organoid formation. It has already been observed by Jin et al. [140]
that vascularized hepatic organoids cultivated using chip technology have improved in-
tercellular interactions and metabolic activity. It seems that the matrix, such as Matrigel,
also influences organoid development, limiting their clinical applications, as it has a non-
human origin, variable biochemical properties, and potential contamination risks [141–143].
Therefore, significant efforts are underway to develop synthetic matrices or hydrogels
that are safer and more effective for organoid culture and their use in preclinical and
therapeutic studies.

7. Conclusions

Biliary tract diseases, including primary sclerosing cholangitis, are a major cause
of fibrosis, cirrhosis, and, in severe cases, LT. The lack of effective therapies for biliary
diseases has led to the evaluation of new therapeutic options in the field of biliary regen-
erative medicine, which have the potential to radically change our management of these
patients [144,145].

Significant advancements in the culture of hepatic and cholangiocyte organoids, along
with in-depth regenerative medicine techniques, hold considerable promise for improving
the lives of patients with advanced liver diseases. Cholangiocyte organoids represent
a formidable technology for better understanding the molecular pathways underlying
cholangiopathies and allows for the exploration of personalized therapeutic approaches for
each patient and the repair of damaged biliary epithelia.

The application of organoids is still under investigation in humans, and there are still
many challenges regarding the adaptation and translation of regenerative concepts and
tools into truly regenerative therapies. This includes the development of reproducible
methods for the composition and functionality of organoids and the enhancement of cellular
maturation to ensure greater resemblance to pathophysiological processes. However, the
results obtained to date are promising and represent a potential paradigm shift in the
management of acute and chronic liver and biliary diseases [146].
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Abbreviations

Act A Activin A
AdSCs organ-restricted adult stem cells
AMAs anti-mitochondrial antibodies
ANAs specific anti-nuclear antibodies
AS anastomotic stenosis
BA biliary atresia
BCOs organoids and cholangiocyte organoids derived from bile
BMP bone morphogenic protein
BTPCs biliary tree progenitor cells
CFTR cystic fibrosis transmembrane conductance regulator
DAMPs damage-associated molecular patterns
DCDs donors after cardiac death
DR ductular reaction
ECM extracellular matrix
ECOs extrahepatic cholangiocytes
EGF epidermal growth factor
ELTR liver transplant registry
ERCP endoscopic retrograde cholangiopancreatography
ESCs embryonic stem cells
FDOs functional ductal organoids
FGF19 fibroblast growth factor 19
FSK forskolin
GCOs gallbladder cholangiocyte organoids
HGF hepatocyte growth factor
HMP hypothermic machine perfusion
HNF1β hepatocyte nuclear factor 1β
HPC hepatic progenitor cell
IBD inflammatory bowel disease
IC ischemic cholangiopathy
ICOs intrahepatic cholangiocyte organoids
Ig immunoglobulin
IL-6 interleukin-6
iPSCs pluripotent stem cells
IRI ischemia-reperfusion injury
ISC IgC4-related sclerosing cholangitis
ITBLs ischemic-type biliary lesions
LT liver transplantation
MP machine perfusion
NAS non-anastomotic stenosis
NMP normothermic machine perfusion
norUDCA 24-norursodeoxycholic acid
NOX NADPH oxidase
NRP normothermic regional perfusion
OCA obeticholic acid
OOC organ on a chip
OSM oncostatin M
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PBC primary biliary cholangitis
PBGs peribiliary glands
PDGFB platelet-derived growth factor
PSC primary sclerosing cholangitis
ROS oxygen-containing reactive species
S1RPs signal regulatory proteins
scRNA-seq single-cell RNA sequencing
SOX9 SRY-box transcription factor 9
TGFβ transforming growth factor beta
TNFα tumor necrosis factor alpha
UDCA ursodeoxycholic acid
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