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Abstract: The management of mechanical ventilation (MV) remains a challenge in intensive care units
(ICUs). The digitalization of healthcare and the implementation of artificial intelligence (AI) and
machine learning (ML) has significantly influenced medical decision-making capabilities, potentially
enhancing patient outcomes. Acute respiratory distress syndrome, an overwhelming inflammatory
lung disease, is common in ICUs. Most patients require MV. Prolonged MV is associated with an
increased length of stay, morbidity, and mortality. Shortening the MV duration has both clinical
and economic benefits and emphasizes the need for better MV weaning management. AI and ML
models can assist the physician in weaning patients from MV by providing predictive tools based
on big data. Many ML models have been developed in recent years, dealing with this unmet need.
Such models provide an important prediction regarding the success of the individual patient’s MV
weaning. Some AI models have shown a notable impact on clinical outcomes. However, there are
challenges in integrating AI models into clinical practice due to the unfamiliar nature of AI for many
physicians and the complexity of some AI models. Our review explores the evolution of weaning
methods up to and including AI and ML as weaning aids.

Keywords: artificial intelligence; machine learning; prediction models; mechanical ventilation
weaning; acute respiratory distress syndrome

1. Introduction

Invasive mechanical ventilation (MV) is required in about 40% of the patients admit-
ted to intensive care units (ICUs) [1,2]. This life-sustaining intervention is indispensable
for the support of patients with a diverse range of critical conditions affecting the pul-
monary, neurological, neuromuscular, and cardiac systems [3,4]. While MV may be crucial
for immediate life preservation, its prolonged use may result in complications such as
ventilator-associated pneumonia, vocal cord injury, and tracheomalacia. These complica-
tions are relatively common, posing a significant clinical risk and contributing to increased
morbidity and mortality in ICU patients [1,5].

While the majority of the intubated mechanically ventilated patients in ICUs un-
dergo easy and uncomplicated weaning from the mechanical ventilator, about 25–30% of
them fail to wean, resulting in prolonged ventilation and increased mortality [1,6,7]. The
weaning process, a crucial step in MV management, involves the process of liberating the
patient from mechanical support and removing the endotracheal tube, commonly known
as extubation [2]. This process can involve a substantial portion, up to 40–50%, of the
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overall duration of MV [7–9]. Several risk factors for respiratory weaning failure have
been investigated over time, including co-morbidities, acute disease severity, and problems
involving physiological systems, such as respiratory pump failure and cardiovascular
instability [7,10].

A distinct and notable subgroup among ICU patients consists of individuals experi-
encing respiratory failure attributed to acute respiratory distress syndrome (ARDS). ARDS
is characterized by the acute onset of pulmonary edema, not caused by heart failure, with
reduced blood oxygen concentrations caused by direct or indirect lung injury. Accord-
ing to the ‘Berlin Criteria’, ARDS is diagnosed as “the ratio of partial pressure of arterial
oxygen to fraction of inspired oxygen [PaO2/FiO2] less than 300 mmHg, with bilateral
infiltrates on chest X-ray, in the absence of left atrial hypertension” [11]. The management
of this condition primarily involves providing supportive care, often requiring mechanical
ventilation [12].

“Lung protective ventilation” is the standard strategy used when mechanically venti-
lating patients with ARDS. This strategy involves providing low tidal volumes, elevated
positive end-expiratory pressure (PEEP), and low end-inspiratory (plateau) airway pres-
sure while allowing for permissive hypercapnia (elevated arterial CO2 partial pressures)
and maintaining a low driving pressure (PPLAT-PEEP, with PPLAT defined as the plateau
pressure after the inspiratory pause). The goal is to not only correct hypoxemia but also
to reduce pulmonary pressures and volumes in order to prevent volutrauma (trauma to
the lung caused by excessive inspiratory tidal volumes) and atelectrauma (a condition
where there is a cyclic collapse and expansion of the alveoli) in the so-called “baby lung”
(a term that highlights the concept that in early ARDS, respiratory compliance seems to
reflect the condition of normally aerated lung tissue; this suggests that the aerated lung
is not “stiff” but instead small) to mitigate ventilator-induced lung injury and to improve
prognosis [13–16]. In the presence of refractory hypoxemia, additional measures such
as neuromuscular blockade [17], prone positioning [18], and extracorporeal membrane
oxygenation (ECMO) [19] may be considered. These initial strategies play a crucial role
in the successful treatment of ARDS patients, contributing to later weaning success and
reducing mechanical ventilation duration [13,20].

The heightened susceptibility of patients with ARDS to Ventilator-Associated Events
(VAEs) is influenced by multiple factors, including prolonged mechanical ventilation
and compromised immunological function. Underlying medical conditions associated
with ARDS, such as fluid imbalance and traumatic injuries like rib fractures, pulmonary
contusion, and pneumothorax, as well as pulmonary aspiration, can result in a greater
likelihood of developing VAEs and pneumonia. This situation can further exacerbate
clinical management challenges. Recognizing the complexity of ventilator weaning in
ARDS and understanding and adhering to best practices for ventilator weaning are crucial
for improving the prognosis of patients with ARDS [20,21].

The timely identification of a patient’s readiness to begin weaning from mechanical
ventilation, choosing an effective weaning technique, and accurately predicting which
patients are ready to be weaned are crucial for managing this challenging process. The aim
is to minimize complications while maximizing the success rates [3,7]. This challenge is
even more pronounced in patients with ARDS [20].

While numerous protocols and clinical practices guide the process of weaning from
mechanical ventilation, there is relatively little information in the literature about ARDS,
particularly about using artificial intelligence (AI)-assisted approaches. In this review, our
aim is to examine the available literature, examine specific AI applications, and explore the
implications of utilizing AI in guiding the weaning from mechanical ventilation of patients
with ARDS.

2. Traditional Approaches to Weaning

The process of weaning patients from mechanical ventilation is complex, with multiple
stages from the initiation of ventilation to liberation and extubation. Delayed or failed
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weaning leads to increased complications and mortality [7]. According to the recommen-
dations of the 6th International Consensus Conference, patients can be categorized into
three groups based on ease of weaning: simple weaning (successful extubation at the first
attempt), difficult weaning (up to three spontaneous breathing trials or 7 days to complete
weaning), and prolonged weaning (more than three trials or 7 days until successful wean-
ing). The prognosis for patients in the first group, constituting 69% of those undergoing
weaning, is favorable, with ICU and in-hospital mortality rates of 5% and 12%, respectively.
The remaining 31% of patients, representing groups 2 and 3, have ICU mortality rates as
high as 25% [8,9].

Standard clinical practice involves initiating ventilation in full-support mode using
Pressure-Controlled Ventilation or Volume-Controlled Ventilation. Following this, specific
clinical criteria must be met before progressing further in the weaning process. The essential
clinical parameters include the resolution of, or a significant improvement in, the under-
lying cause for ventilation and ensuring adequate gas exchange, typically reflected by an
arterial oxygen saturation > 90% with FiO2 < 0.4 or PaO2/FiO2 > 200 with PEEP ≤ 5 cmH2O.
Additional criteria include: the absence of fever, satisfactory neurological and muscular
status, stable cardiovascular function, appropriate hemoglobin concentrations, and the cor-
rection of metabolic and/or electrolyte disturbances [1,7,9]. Factors predicting extubation
failure include but are not limited to excessive secretions, a mechanical ventilation duration
exceeding 72 h, and upper airway disorders. Previous unsuccessful weaning attempts
should also be taken into account [8].

Once patients meet these clinical criteria, the decision as to the readiness for weaning
is typically guided either by the physician’s clinical expertise and experience or a system-
atic assessment of respiratory weaning criteria based on established protocols [5,22,23].
Various respiratory parameters with diverse sensitivity and specificity, such as Airway
Occlusion Pressure (P0.1), Maximal Inspiratory Pressure (MIP), the rapid shallow breathing
index (RSBI), CROP (Dynamic Compliance, Respiratory Rate, Oxygenation, and MIP),
respiratory rate, and vital capacity have all been proposed as predictors of weaning success
or failure [5,7]. Among these parameters, the respiratory frequency/tidal volume ratio
(RSBI) has been found to be especially useful [7,20]. The inclusion of P0.1 in conjunction
with the RSBI appears to enhance its specificity [7]. However, it is important to note that
none of these parameters alone is deemed sufficient for an accurate prediction of successful
weaning at the individual patient level [23].

Patients exhibiting positive indications of probable successful weaning according to
one or more of the predictive parameters mentioned above often proceed to a spontaneous
breathing trial (SBT). This method is currently regarded as the most reliable diagnostic
test [1]. It involves allowing the patient to breath spontaneously for 30–120 min, either
through a T-piece, which provides supplemental oxygen, connected to the endotracheal
tube [7], or while providing minimal respiratory support through the mechanical ventilator
using Pressure Support Ventilation (PSV) or Continuous Positive Airway Pressure (CPAP).
Successful completion of the SBT, as evidenced by successful extubation, is achieved in
some patients. However, approximately 25–40% of patients fail the first SBT, and 10–25%
experience extubation failure, which necessitates re-intubation [9,22,23].

It is worth noting that assessing the impact of spontaneous ventilation in ARDS pa-
tients during weaning from mechanical ventilation presents a complex scenario. Although
spontaneous efforts can contribute to maintaining diaphragmatic strength, consequently
lowering the risks linked to diaphragm atrophy and dysfunction, they might also encourage
regional variations in stress and strain, potentially playing a part in the advancement of
lung injury [20,24]. Initial studies suggest beneficial effects of spontaneous ventilation on
hypoxemia improvement and pulmonary compliance, with reductions in both the duration
of mechanical ventilation and the length of stay in the ICU [20,25,26]. However, conflicting
results from animal studies highlight potential risks of this approach, including increased
transpulmonary pressure and respiratory complications. The balance between positive
outcomes and potential disadvantages such as diaphragmatic injury and inflammatory
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response emphasize the need for cautious consideration in patients with ARDS under-
going weaning from mechanical ventilation. Despite the significant interest in this area,
conclusive studies on the true impact of spontaneous ventilation during weaning in ARDS
patients remain limited [26].

In recent decades, new modes of mechanical ventilation that include advanced closed-
loop systems have emerged. These are a useful adjuncts to the clinical/criteria-based
approach described above. Notable modes include Adaptive Support Ventilation (ASV,
Hamilton Medical, Rhazuns, Switzerland [27]), SmartCare (Dräger, Lübeck, Germany [28]),
Neurally Adjusted Ventilatory Assist (NAVA, Getinge, Gothenburg, Sweden [29]), and
Proportional Assist Ventilation (PAV, Medtronic, Minneapolis, MN, USA [30]) (Table 1).
What sets these innovative ventilation modalities apart is their patient-adaptive nature,
improving synchronization between the patient’s effort and the level of support provided
by the mechanical ventilator. Additionally, they can function as intelligent devices that
aid in the weaning process [31–33], reducing support automatically as the patient’s effort
improves, essentially making the weaning process automatic, based on mechanical indices
and gas exchange parameters such as SpO2 and end-tidal CO2.

Table 1. Types of new modalities of mechanical ventilation include advanced closed-loop systems.

Proprietary Ventilation Mode Company Country of Origin

ASV Hamilton Medical Switzerland

SmartCare Dräger Germany

NAVA GETINGE Sweden

PAV Medtronic USA
ASV—Adaptive Support Ventilation, SmartCare, NAVA—Neurally Adjusted Ventilatory Assist,
PAV—Proportional Assist Ventilation.

One example is ASV. This mode integrates measurements of respiratory mechanics
and utilizes closed-loop pressure control algorithms to sustain a specific target minute
ventilation. The ventilator automatically determines the target ventilatory pattern by
considering user inputs and respiratory mechanics data from the monitoring system (resis-
tance, compliance, auto-PEEP). ASV is suitable for the initiation, maintenance, and weaning
phases of mechanical ventilation [8,34,35]. SmartCare operates on three core principles:
maintaining the patient within a respiratory ‘comfort zone’ by adjusting pressure support
levels, gradually decreasing pressure support in stable conditions, and conducting auto-
mated spontaneous breathing trials with minimal pressure support. The algorithm relies on
parameters like respiratory rate, tidal volume, and end-tidal CO2 obtained from ventilator
monitoring. Automated weaning trials using SmartCare have demonstrated a positive
predictive value of 89%, surpassing conventional weaning procedures (77%) and the RSBI
(81%) [31].

While ASV and SmartCare automate weaning by transitioning from controlled to as-
sisted ventilation or implementing continuous weaning protocols, PAV and NAVA provide
assisted ventilation proportionate to the patient’s effort [31]. A recent systematic review
and network meta-analysis examining the impact of various mechanical ventilation modes
in critically ill patients revealed no significant differences in the duration of mechanical
ventilation, ICU stay, or hospital stay between PSV, NAVA, synchronized intermittent
mandatory ventilation, ASV, PAV, and Smartcare/PS. However, in comparison to PSV, each
of the mentioned modes enhanced the success rate of ventilator withdrawal, with PAV
standing out notably and NAVA demonstrating a reduction in ICU mortality [36]. These
findings are in accordance with an earlier meta-analysis, indicating moderate-certainty
evidence that PAV enhances weaning success rates, reduces mechanical ventilation dura-
tion, and shortens ICU length of stay (LOS) compared to PSV. Additionally, it is worth
noting that NAVA appears to improve in-hospital and ICU survival [33]. Conversely, Lin-
ton et al. [37] conducted weaning trials in chronic respiratory patients, demonstrating that
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ASV is a cost-effective mode, leading to reduced requirements for respiratory therapists
and intensive care personnel [35].

The automation of mechanical ventilation is gaining prominence due to the previously
noted clinical benefits regarding ventilation duration and support in the weaning process
for patients in general. Also, the increasing proportion of elderly patients and, consequently,
an increase in the number of patients requiring ventilation in the future are several more
reasons for automatic ventilation. The forecasted shortage of clinicians and increasing
ICU-related costs contribute to the rationale for this system. While managing critically ill
patients, especially patients with ARDS, with the challenge of adjusting suitable low tidal
volumes and PEEP and oxygen levels and targeting a lower driving pressure, automated
ventilation, adjusting breath by breath, offers a safer and more efficient approach. This
system has the potential to reduce the morbidity associated with prolonged mechanical
ventilation and reduce the costs associated with patients on mechanical ventilation, which
represent a major financial burden [8,31,32]. This poses a significant benefit in environments
facing constraints in staffing and resources, such as in developing countries, and also during
pandemic conditions such as those seen in the recent COVID-19 outbreak.

In recent years, impressive advancements have occurred in the field of AI across
various domains. Within this evolving area, the application of AI is undergoing exploration
in numerous medical disciplines, including weaning from mechanical ventilation.

3. Role of Predictive Modeling in Weaning

The diverse factors influencing the success or failure of the weaning process are ex-
tensive, ranging from the patient’s medical history and the initial reason for mechanical
ventilation to respiratory predictors, meaning that none of them alone are deemed suffi-
cient for an accurate prediction of weaning success, as previously discussed. Despite the
cumulative advancements in the weaning process, including the utilization of sophisticated
closed-loop machines, the rate of extubation failure has not changed dramatically over
recent years [22].

Delays in evaluating the readiness of the patient for weaning are a common cause
of late weaning. As a consequence, patients with prolonged ventilation might experience
airway trauma, dysphagia, delirium following extubation, drug dependencies, ventilator-
associated pneumonia, diaphragm and muscle wasting, other forms of increased morbidity,
and even higher mortality rates [2,23]. On the other hand, a withdrawal of MV that is too
rapid may trigger respiratory collapse, impeding the patient’s recovery and exposing them
to the associated risks of ventilator-associated pneumonia or other injuries to the lungs
induced by the ventilator [3].

Identifying the right time for weaning from mechanical ventilation is essential, given
the associated risks and the lack of a standardized protocol. Variability in protocols across
institutions reflects uncertainty, highlighting the potential value of an automated or AI-
guided prediction model for informed decision making by clinicians [2,22].

Employing personalized parameters for predictive purposes represents a future trend
in precision medicine. Machine learning (ML) techniques offer a practical solution for
enhancing this predictive approach [38]. AI is a combination of computer science and
physiology aimed at enabling computers to mimic human behavior more efficiently and
rapidly than a human. Machine learning, as a field of study in AI, refers to the scientific
study of the algorithms and statistical models utilized by computer systems to carry out
specific tasks [39], often with higher predictive model quality than traditional statistics.

Recent technologies using machine learning have made significant progress in dealing
with complex decision-making challenges across various healthcare domains, resulting in its
application in acquired immune deficiency syndrome, cancer, diabetes, anemia, schizophre-
nia, epilepsy, and the administration of anesthesia. In the ICU, the efficacy of early warning
systems predicting the likelihood of physiological decline in critically ill patients has shown
success. These systems have proven valuable in anticipating the onset of conditions such
as ARDS, sepsis, and pneumonia, achieving noteworthy milestones [22,40–43].
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AI or ML techniques offer promising possibilities for enhancing patient outcomes and
supporting clinical decision making by analyzing extensive digital information automati-
cally generated in medical settings, particularly in the ICU. This information may include
patient characteristics, arterial blood gas readings, respiratory pattern parameters (pressure,
volume, flow, etc.) and even graphical data such as waveforms from electrocardiographs or
electroencephalographs [1,6,22,44]. This could facilitate the completion of the clinician’s
task, enabling the accurate integration of numerous variables to predict the patient’s wean-
ing potential and helping to make informed decisions. For instance, considerations may
include discontinuing paralysis, reducing sedation, or determining the need and correct
timing for tracheostomy.

Various ML techniques have been employed to predict weaning from mechanical
ventilation. These will be further explored in the following section.

4. AI/ML in MV Weaning Prediction
4.1. Introduction to AI/ML

Modern medical practice generates massive amounts of data. Such data include
high-resolution images, biomarkers, continuous physiologic metrics, genome sequencing,
and medical records. The analysis of these data exceeds human capabilities and requires
automated processes such as AI to deal with this mass of information [45]. AI is defined as
a machine’s ability to possess characteristics of intelligent beings such as environmental
perception and the ability to solve problems on its own. Machines can gain their intelligence
through algorithms, neural networks, or complex program functions.

ML utilizes algorithms to generate a prediction based on finding specific patterns
and relations in given dataset. ML can further be divided into supervised learning, in
which data labeling is an inert feature, and unsupervised learning, in which algorithms are
trained on unlabeled data [46]. Supervised ML models are mainly used for the classification
(identify categories/subpopulations) and regression (predicting continuous values) of a
new observation based on a training set, while unsupervised ML models are used for
clustering (identification of groups within data) and dimensionality reduction (reducing
unnecessary data while keeping the principal components of the data) [47].

Deep learning (DL) and neural networks (NNs), in particular, are considered advanced
or more sophisticated forms of ML. NNs mimic the nervous system by constructing neural
layers such as input, output, and in-between hidden layers. These AI models enable
analyses of complex information such as image recognition. DL is characterized by NNs
with multiple hidden node layers, making the network sizes larger and allowing the
model to be more accurate [47] on the one hand but requiring a larger dataset to train the
model [48].

ML models should, on the one hand, provide values or predictions that are close to the
training set observations; otherwise, the model is considered to be an underfitted model.
On the other hand, ML models should be generalized beyond the scope of the training set
or an overfitted model.

The amount of data available will determine the way a supervised ML model will be
generated. In cases where there is a sufficient amount of data, the data are divided into
three subsets: a training set that will be used to build several models, a validation set that
will be used to choose the best-fit model that was built on the training set, and a test set that
will evaluate the model’s generalization error. A fully independent test set is considered
the gold standard for model validation.

In case the amount of available data is limited, a K-fold cross-validation technique
is used. The data are divided into a training set and a test set. The training set is further
divided into K subsets, one of which is used for validation and the other, the K-1 subset, is
used for training. After K repetitions of this process, wherein in each repetition, a different
validation subset is used, the best model is chosen and assessed versus the test set [49].
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There are several methods available to generate an ML model. Each method has its
own interpretability–performance balance. Each one has its own strengths and weakness.
The main methods are listed in Table 2.

Table 2. Common machine learning methods.

Machine Learning
Method Description Usage Strengths Weaknesses

Linear regression

Estimates the linear
relationship between

dependent and independent
variables.

Regression
Simple model to
implement and

understand.

Outliers can affect the
regression.

Assumes independence
between attributes.

Not a complete
description of

relationships among
variables.

Logistic regression Sigmoid function to assign a
probability for an event. Classification

Simple model.
Makes no assumptions

about distributions.
Measures the predictor’s

coefficient size and its
direction of association.

Interpret model coefficients
as indicators of feature

importance.

Less suitable for complex
situations.

Assumption of linearity
between the dependent

and independent
variables.

Can only be used to
predict discrete functions.
Cannot solve non-linear

problems because it has a
linear decision surface.

Decision trees

A flowchart-like tree
structure that splits the

training data into subsets
based on the values of the
attributes until a stopping

criterion is met.

Classification and
regression

Simple to understand and
interpret.

Deals with unbalanced
data.

Variable Selection—can
identify the most

significant variables and
the relation between

variables.
Handles missing values.

Non-parametric
nature—keeps the model
simple and less prone to

significant errors.

Overfitting.
Sensitive to small

variations and alterations
in the input data that can

drastically change the
structure of the decision

tree.
Biased learning—without
proper parameter tuning,
decision trees can create

bias if some classes
dominate.

Random forest

Combination of many
overfitted

algorithm-generated deep
decision trees outputs in

order to deal with the bias
and overfitting of a single

decision tree.

Classification and
regression

Reduced risk of overfitting
Flexibility—can handle

both regression and
classification.

Can determine feature
importance.

Time-consuming process.
Requires more resources.
More complex model to

interpret.
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Table 2. Cont.

Machine Learning
Method Description Usage Strengths Weaknesses

Boosting

A strong classifier model
built by a series of weak

classifiers in order to
decrease the error. Each
weak classifier tries to

correct the errors present in
the previous classifier. This
continues till the training

dataset is predicted
correctly or the maximum

number of models are
added.

Gradient
Boosting—boosting

technique that builds a final
model from the sum of
several weak learning
algorithms that were

trained on the same dataset
(numerical or categorical

data).
XGBoost (v2.0.3) —a

regularized version of the t
gradient boosting technique.
Outperforms the standard

gradient boosting method in
speed, and the dataset can

contain both numerical and
categorical variables.

Classification and
regression

Improved
Accuracy—reduced risk for

bias.
Reduce the risk of

overfitting—reweighting
the inputs that are
classified wrongly.
Better handling of

imbalanced data—focusing
more on the data points

that are misclassified.
Better

Interpretability—breaking
the model decision process

into multiple processes.

Vulnerable to the outliers.
Difficult to use boosting
algorithms for real-time

applications.
Computationally

expensive for large
datasets.

K-nearest
neighbors

The algorithm places new,
unclassified data near its
K-nearest neighbors in a

field of labeled data points.

Classification

Interpretable results since
it relies on proximity

calculations.
Simple method.

No learning steps.
Does not identify the

most relevant features to
place new

data—influenced by
noise.

Choosing the right K.
Computing and
time-consuming.

Neural networks

Model that mimics the
complex functions of the

human brain—activation of
a group of neurons from
one neural layer activates
other neurons in the next

layer until the output layer
gives the final interpretation

of the model.

Classification

Adaptability—the model
can adapt to new situations

and learn from data.
Pattern recognition—excel

in audio and image
identification, as well as

natural language
processing.

Parallel processing—can
process numerous
processes at once,

improving computational
efficiency.

Non-linearity—can use
non-linear activation

functions in order to model
and comprehend
complicated data.

Computational
intensity—training
demands a lot of

computing power.
Black box

Nature—difficult to
understand how

decisions were made.
Overfitting.

Large training datasets.
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Table 2. Cont.

Machine Learning
Method Description Usage Strengths Weaknesses

Support vector
machines

Algorithm used for linear or
nonlinear classification or

regression.
Algorithms find the

maximum separating
hyperplane in an

N-dimensional space
between the different

classes available in the
target feature.

Classification and
regression

Perform well with
high-dimensional data.

Require less memory and
use it effectively.

Perform well when there is
a large gap between

classes.

Long training period—
not practical for large

datasets.
Inability to handle

overlapping classes and
noise.

Poorly performed when
the number of features
for each data point is

greater than the number
of training data samples.

4.2. AI/ML MV Weaning Models

In recent years, several studies have been performed in order to generate ML/AI-
based MV weaning prediction models. These studies used the ML methods described
above. Table 3 summarizes the results of these studies.

Many studies used NNs in order to develop an MV weaning prediction model.
Hsieh [50] developed an artificial NN (ANN) model using 37 parameters that was trained
on data from 3602 ICU patients and had an Area Under the Receiver Operating Curve
(AUROC) of 0.85. The same group later developed a 47-feature ANN model that classified
the weaning process into categories: simple, prolonged, and difficult weaning. For these
categories, this model has AUROCs of 0.910, 0.849, and 0.942, respectively [51].

Kuo [52] developed an ANN for predicting MV weaning based on data from 121 ICU
patients that has an AUROC of 0.83 and that was found to be superior to traditional
weaning assessment tools such as SBT. Another NN model, designed by Kim [23], used
a novel DL model called FT-GAT in order to predict a successful SBT and, eventually,
extubation. The AUROC of this model was 0.8, with a similar AUROC being found upon
temporal validation.

Menguy et al. [9] used a data-mining process and AI on a prospective database of
108 medical ICU patients in order to find predictors of a successful SBT and weaning from
MV for at least 72 h after extubation. In their analysis, cardiovascular parameters (reflected
in heart rate variability) had a substantial impact on SBT success in addition to respiratory
and systemic parameters (respiratory drive and BMI, respectively). Although the associa-
tion between heart rate variability and ventilation weaning outcome is established [53], not
many AI modals use this parameter in their algorithms.

The support vector machine model developed by Fabreget [54] attempts to predict
the likeliness of extubation failure, advising ICU physicians to reconsider their decision to
extubate. This model, based on data reflecting the state of the patient 2 h before a planned
extubation, showed excellent predictive capabilities, with an AUROC of 98.3%.

Hung [55] developed a real-time AI model for predicting successful extubation using
only six ventilator-derived features. This random forest model exhibited a strong predictive
performance, with an AUROC of 0.976. This model enables the prediction of MV weaning
success every 3 min and is easily applicable in clinical practice in the ICU.

Many studies have used many parameters in order to predict the success of MV
weaning using their AI models. The addition of many parameters to AI models can
increase the AUROC of the model, as can be seen in the two studies by Hsieh [50,51]
mentioned above and in a study by Otaguro [56] that used 57 parameters to generate an AI
model that had an AUROC of 0.95. However, the high number of parameters used in these
models makes them more difficult to use in clinical practice since not all parameters are
easily available.



J. Clin. Med. 2024, 13, 1505 10 of 18

Chen [6] et al. developed a simplified AI model using only 7 parameters (expiratory
minute ventilation, expiratory tidal volume, ventilation rate set, heart rate, peak pressure,
pH, and age), reporting an AUROC comparable to a previously built 28-parameter AI
model that predicts the success in MV weaning in the coming 24 h among cardiac care unit
patients (AUROCs: 0.86 vs. 0.88, respectively).

In addition, Kim and colleagues discovered, during the development of their AI model,
that the performance of the model does not increase (in terms of accuracy and AUROC)
when more than 21 features are included in the analysis [4].

Jia [2] and partners developed a convolutional NN (CNN) explainable prediction
model that can assist clinicians in deciding the feasibility of MV weaning within the next
hour. This model incorporates an advanced DL approach in addition to classic AI models
(e.g., CNN). This aims to provide physicians with an importance assessment of the relevant
clinical factors that can assist them in understanding which treatable factors can lead an
individual patient to successful MV weaning.

Another explainable prediction model was designed by Pai et al. [57] using the ex-
treme gradient boosting (XGBoost) algorithm; this model had an AUROC of 0.912. In
this model, Pai used 20 parameters, of which 6 of them were considered the most impor-
tant factors in predicting the success of extubation: the Glasgow Coma Scale, Richmond
Agitation-Sedation Scale, urine output, injected fluids, Ppeak, and MAP. These parameters
are generally thought to be important when treating critical care patients. The use of
explainable AI models can reduce the concerns regarding the use of the ‘black box’ nature
of AI.

Liu et al. [22] developed a model that predicts the success and timing of MV weaning
in two stages: from intubation to the change in the ventilator mode, and from assist control
to support mode and the following stage that includes the weaning itself. Each stage was
divided into 11 time frames, and the AI system provides the probability of weaning success
in the nearest time frames. The implementation of this system in clinical practice led to a
shortening of the MV duration by 21 h and a shortening of ICU LOS by 0.5 days compared
to previous data, although the weaning success rates were similar.

Many models are based on single-center data obtained from local medical records.
However, some studies used an open-access ICU database in order to developed their AI
prediction model. The studies by Jia [2] and Kim [4] described above used the Medical
Information Mart for Intensive Care (MIMIC) III and IV databases, respectively, which
contain clinical data on thousands of admissions to the Beth Israel Deaconess Medical
Center in Boston.

Chen et al. [58] used the MIMIC III database to develop their ML predictive model,
but in contrast to other studies, this model was developed in order to predict MV weaning
failure and not weaning success. This light gradient boosting machine (LightGBM) model
was based on 68 features at the initial stage and narrowed down to 36 features with a
negligible difference in AUROC (0.8130 vs. 0.8198) and no impact on the feature importance
analysis (duration [hours] of ventilation, PaO2, PaCO2).

Zhao et al. [59] also developed an ML model that predicts the failure of MV weaning.
This CatBoost model is based on MIMIC IV data and includes 19 features. This model has
an AUROC of 0.835. Feature importance analysis revealed, as in Chen’s study [58], that
MV duration and PSV level were the most important factors for predicting the outcome of
extubation. Interestingly, this group applied prospective external validation in addition to
the conventional internal validation. The AUROC of the validation cohort was 0.803.

Data from the Dutch Data Warehouse, a multicenter database on COVID-19 ICU
patients, was used to developed an MV weaning failure predictive XGBoost model designed
especially for these patients. This model has an AUROC 0.7, lower than that reported
in previous studies. The low AUROC was attributed to the fact that this database is a
multicenter database and the fact that each center has its own treatment and monitoring
protocol [60].
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In contrast to previously described studies which describe the utility of AI in weaning
patients from mechanical ventilation during the acute phase of their disease or after surgery,
Liao et al. [44] developed an AI system that predicts the optimal timing for the successful
weaning of chronically ventilated patients. In this single-center study from Taiwan, seven
AI/ML models were evaluated, and XGBoost was the most effective, with an AUC of 0.868.
PS, FiO2, T-piece trial, mPaw, PEEP, and Acute Physiology and Chronic Health Evaluation
(APACHE) II score were the factors that correlated with successful weaning. Applying this
model led to a 3% reduction in re-intubation in the first 120 h following extubation and led
to a reduction in the ventilation period of 0.5 days compared to historic data.

Another application of pre-intubation MV weaning AI models is the pre-operative as-
sessment of surgical patients in order to plan their postoperative treatment. Chang [38] and
colleagues developed a preoperative risk assessment tool for the prediction of immediate
postoperative MV weaning of patients undergoing lung resection surgery using a naïve
Bayes classifier algorithm. Applying this algorithm led to more time-efficient preanesthetic
consults and improved patient satisfaction scores from these consults compared to previous
data. In addition, it was found that the use of sugammadex as a reversal agent had a
tremendous impact on successful extubation compared to neostigmine.

Most AI models covered in this review deal with patients already intubated and
ventilated or patients that are surgical candidates undergoing preoperative evaluation and
consultations. However, the application of AI/MV weaning prediction models before the
initiation of MV could assist physicians in their decision-making process. A retrospective
study by Kim [4] et al. attempted to address this issue. They developed a voting classifier
model that predicts the feasibility of successful weaning up to 14 days post-intubation
using pre-intubation data. This model has an AUROC of 0.861. Feature importance analysis
revealed that lactate concentration, age, the presence of cerebrovascular disease, and blood
urea nitrogen are the most important factors that influence the desired outcome.

Table 3. Summary of artificial intelligence/machine learning mechanical ventilation models.

Study AI/ML
Model

Type of
Patients/

Cases

Number of
Partici-

pants in
Training

Phase

Factors That
Correlate with

Outcome

AUROC of
Training

Phase

External
Valida-
tion?

AUROC
of Vali-
dation
Phase

Clinical
Use

Model Effect on
Clinical Practice

Liao et al.
[44] XGBoost Chronic

ventilation 670
PS, FiO2, T-piece
trial, mPaw, PEEP,
APACHE II score

0.868 No NA Yes

• A 3%
reduction in
re-
intubation
in the first
120 h after
extubation.

• A reduction
of 0.5
ventilation
days.

Menguy
et al. [9] ZGPD Medical

ICU 108 BMI, heart rate
variation, P0.1

83% global
perfor-
mance

No NA No NA

Chang
et al. [38]

Naïve
Bayes

classifier
algo-
rithm

Surgical
patients

(lung
resection)

709

Estimated
postoperative
lung function,
exercise load

0.912 No NA Yes

• More time-
efficient
preanes-
thetic
consults.

• Improved
patient
satisfaction
scores.
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Table 3. Cont.

Study AI/ML
Model

Type of
Patients/

Cases

Number of
Partici-

pants in
Training

Phase

Factors That
Correlate with

Outcome

AUROC of
Training

Phase

External
Valida-
tion?

AUROC
of Vali-
dation
Phase

Clinical
Use

Model Effect on
Clinical Practice

Chen
et al. [6] LR Cardiac

ICU 1439

Expiratory
minute

ventilation,
expiratory tidal

volume,
ventilation rate
set, heart rate,
peak pressure,

pH, age

0.86 No NA No NA

Jia et al.
[2] CNN ICU 2299

Richmond
Agitation-

Sedation Scale,
SBT, FiO2,

ventilator mode,
PIP, PEEP

0.94 No NA No NA

Kim et al.
[23] GF-GAT ICU 832 NA 0.8

Yes (tem-
poral

valida-
tion)

0.8 No NA

Kim et al.
[4] VC ICU 23,242

Lactate
concentration,

age, presence of
cerebrovascular

disease, and BUN

0.861 No NA No NA

Otaguro
et al. [56] LightGBM ICU 117

Duration of MV,
age, PEEP, LDH,

APTT, GCS, BUN,
A-a gradient,

CRP

0.95 No NA No NA

Liu et al.
[22] LightGBM ICU

5873 in 1st
stage

4172 in 2nd
stage

First stage—FiO2,
APACH II score,

PEEP, mPaw
Second stage—n

of SBT, n of
suctions

1st stage
0.860

2nd stage
0.923

No NA Yes

• Shortening
of MV in 21
h.

• Shortening
of ICU stay
in 0.5 day.

Hsieh
et al. [50] ANN ICU 3602

Therapeutic
intervention

scoring system
score, chronic
hemodialysis,

RSBI, heart rate,
P/F ratio, MEP

0.85 No NA No NA

Pai et al.
[57] XGBoost ICU 5940

GCS, RASS, urine
output, injected

fluids, Ppeak,
and MAP

0.921 No NA No NA

Chen
et al. [58] lightGBM ICU 3636

Duration [hours]
of ventilation,
PaO2, PaCO2

0.8198 No NA No NA

Zhao
et al. [59] CatBoost ICU 16,189

Duration of
ventilation, PS

level
0.835 Yes 0.803 No NA

Fleuren
et al. [60] XGBoost

ICU
COVID-19

patients
883

FiO2, Vt,
duration of
controlled

ventilation, CRP,
WBC, PLT, BMI

0.7 No NA No NA

Fabregat
et al. [54] SVM ICU 697 ∆t, GCS, BMI,

ROX, and Pplat 0.983 No NA No NA

Kuo et al.
[52] ANN ICU 121

Mean inspiratory
time, mean

expiratory time,
mean Vt, and

mean breathing
frequency

NA Yes 0.83 No NA
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Table 3. Cont.

Study AI/ML
Model

Type of
Patients/

Cases

Number of
Partici-

pants in
Training

Phase

Factors That
Correlate with

Outcome

AUROC of
Training

Phase

External
Valida-
tion?

AUROC
of Vali-
dation
Phase

Clinical
Use

Model Effect on
Clinical Practice

Huang
et al. [55] RF ICU 233

FiO2, Ppeak,
PEEP, Pmean,

RR, Vt
0.976 No NA No NA

Hsieh
et al. [51] ANN ICU 3602

Older age,
APACHE II, and

comorbidities
(mainly DM)

0.849–0.942 No NA No NA

ICU—intensive care unit, AUROC—Area Under the Receiver Operating Curve, BMI—body mass index, PS—
pressure support, FiO2—fraction of inspired oxygen, PEEP—positive end-expiratory pressure, BUN—blood urea
nitrogen, P0.1—airway closure pressure, mPaw—mean airway pressure, APACHE II—Acute Physiology and
Chronic Health Evaluation, PIP—peak inspiratory pressure, Vt—tidal volume, Ppeak—peak pressure, Pmean—
mean pressure, RR—respiratory rate, Pplat—plateau pressure, GCS—Glasgow Coma Scale, ROX—respiratory
rate–oxygen index, WBC—white blood count, PLT—platelets, CRP—C-reactive protein, PaCO2—arterial partial
pressure of carbon dioxide, PaO2—arterial partial pressure of oxygen, MV—mechanical ventilation, RF—random
forest, XGBoost—extreme gradient boosting, LightGBM—light gradient boosting machine, ANN—artificial
neural network, CNN—convolutional neural network, SVM—support vector machine, MEP—maximal expiratory
pressure, MAP—mean arterial pressure, SBT—spontaneous breathing trial, LR—logistic regression, GF-GAT—
feature tokenizer graph attention network, VC—voting classifier, RASS—Richmond Agitation-Sedation Scale.

5. Discussion

In recent years, there has been a significant shift toward the digitalization of medical
data. This transformation enables clinicians to rapidly retrieve extensive medical informa-
tion, creating a basis for deeper exploration. This exploration involves harnessing medical
big data to formulate precise prediction models regarding the management of a patient
in the ICU. Improved accuracy in predictions translates to more effective and consistent
healthcare outcomes, helps reduce clinical uncertainty, and enhances patient safety. In
this context, AI emerges as a valuable tool in reducing instances of medical errors and
minimizing the need for extensive human resource allocation [38].

AI prediction models contribute to a comprehensive risk assessment by evaluating var-
ious factors. When these models exhibit notable accuracy, predictive power, and consistent
reproducibility, they empower clinicians to conduct personalized risk assessments. This is
achieved by exploring information from prior medical records to offer tailored evaluations
for individual patients [22,38].

In our review of AI- and ML-based models, we emphasize the need for a reliable
tool to assist the physician in decision making for weaning from mechanical ventilation,
particularly in the challenging-to-wean ARDS population. Clinical studies employing ML
as a tool have demonstrated promising outcomes, including reduced ML durations and
shorter LOSs in critical care units in diverse populations [22,44].

An important aspect to note is our specific focus on the ARDS population in predicting
weaning from mechanical ventilation through modeling. Although we made efforts to
emphasize the application of these models in ARDS patients, we found a limited amount
of studies in the literature focusing on this population.

5.1. Limitations of Artificial Intelligence

Despite the great possibilities and benefits, it is essential to address concerns regard-
ing decision-making applications involving AI and ML. First, it may be challenging to
incorporate the wide array of individual opinions and beliefs that influence patients’ per-
sonal choices, along with cultural differences and diverse perceptions of intensive care
interventions.

Additionally, ML models may erroneously interpret false associations as real relation-
ships between events. Human oversight is essential to prevent such misinterpretations.

Furthermore, the quality and resolution of data significantly impact the effectiveness of
AI models, and the reliance on natural language in clinical documentation poses challenges
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for AI algorithms. Variations in software systems, local protocols, and medical practices
can influence the wide-ranging data that are used to train ML models, further complicating
the performance of AI techniques [48,61].

The methods used in AI can sometimes produce nontransparent results, where pre-
dictions by algorithm are made without clear explanations of the underlying reasons. The
lack of explanatory power and related potential bias is hard to identify. The complexity of
AI algorithms, often referred to as black-box systems, can pose challenges for building the
trust of the clinical staff and their understanding of the predictions made by AI systems.
Consequently, there is a need for ongoing research to enhance the explainability of AI.
Moreover, intensivists anticipate that AI can be utilized to develop a decision support tool
that considers the overall condition of the patient, going beyond mere predictions about a
single condition [22,61].

Various methods exist to achieve explainability, with two pertinent and complemen-
tary methods: feature importance and counterfactual explanations. Feature importance
involves identifying the most significant features in a model for making predictions, typi-
cally ranking these features by importance. To simplify interpretation, complex ML models
often employ feature importance methods to build a more understandable model com-
pared to the original. This method is the most common method for achieving explainability.
Counterfactual explanations, which were presented by Wachter et al. [62], are explanations
after predictions that help clinicians understand ML outputs. Counterfactual explanations
suggest changes in patient features and alternative inputs into the ML model in order to
yield a more favorable outcome. Having diverse counterfactuals provides flexibility for
clinicians to choose feasible changes that could lead to the desired outcome [2].

It is worth highlighting that even with the suggested solutions mentioned above,
which help to clarify the intricacies of the models, and while ML can offer valuable insights,
these ML tools should be viewed as adjuncts in decision making. They are not substitutes
for a thorough clinical evaluation and the consideration of other relevant parameters by
the healthcare provider.

Publications detailing innovative ML methodologies in medical applications often rely
on data collected retrospectively. As a consequence, evaluating the direct impact of ML
methods on clinical outcomes becomes challenging. This review reveals that only a limited
number of studies have validated their ML models on a sperate cohort and assessed the
practical benefits of ML in real-world clinical scenarios [3,23,59]. Findings suggest that
ML holds promise in addressing crucial clinical challenges related to weaning, including
predictions for SBT and extubation failures, blood gas predictions, and adjustments in
ventilator settings [3].

Further research is necessary to establish effective validation methods for the perfor-
mance of these systems.

5.2. Ethical Considerations

In addition to address the limitations of the MV weaning AI/ML models described
above, it is important to recognize the ethical and moral aspect of AI in medicine, which
might limit the implementation of AI in clinical practice. A review by Murphy et al. [63]
lists four major ethical concerns related to AI implementation in healthcare:

Privacy and security—concern about the collection and use of personal data without
the consent of the patients and the potential for these data to be be hacked or reidentified
to a specific person.

Trust in AI applications—trust regarding the safety, security, privacy, and appropriate
use of personal data in AI applications by both patients and healthcare providers. Hesitancy
and mistrust by physicians to use AI technology due to the difficulty to understand and to
explain the ML technology (the black box effect, as mentioned above). In addition, there is
a fear of us becoming dependent on AI technology, even if the data are inconclusive.

Accountability and responsibility—the question of responsibility for the errors made in
clinical practice arise when AI applications are involved in decision-making processes. The
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complex nature of AI technology combined with the fact that these models were developed
by private companies make it more difficult for physicians to inspect and scrutinize them.
Since physicians are responsible for their clinical practice, they bear the responsibility for
their decisions, including the use of AI. However, AI application developers also share this
responsibility to some extent.

Bias—since AI/ML algorithms were developed by humans, bias is embedded in them
and in the data used to train them. Developers tend to reflect their or society’s values in
their algorithms, and these values might be different from those of other societies around
the globe. There is also a fear of the overrepresentation of one group over other groups.
The lack of generalizability can influence the performance of AI models.

It is worth highlighting that while AI offers valuable insights and shows promise in
disease classification, patient stratification, and precision medicine, it should be viewed as
a supportive tool in decision making. It cannot substitute thorough clinical evaluation and
the consideration of other relevant parameters by the healthcare provider. AI also cannot
replace the human touch in patient communication [48].

5.3. Future Directions

As described in this review, the ability of AI algorithms to sift through vast data and
uncover complex correlations makes them essential aids to clinicians. Looking ahead,
a notable advancement that could greatly impact the implementation of AI into clinical
practice is the potential for upcoming models to feature user-friendly interfaces. This would
enable healthcare professionals to effortlessly input data via mobile apps and seamlessly
receive recommendations, bypassing the complex mathematical aspects involved in the
development of ML models. To effectively integrate and implement AI methods in the
clinical realm, collaboration among experts from various disciplines, including computer
science, engineering, and healthcare providers, will be essential.

AI/ML models for weaning from mechanical ventilation are in a nascent stage of
development. As such, these models have not yet been developed or trained in all possible
population groups. Clearly, once a general model for weaning has been developed by AI,
it will have to be further trained and validated in individual population groups defined
by pathophysiological underlying processes and, indeed, other factors such as nutritional
status, genetics, and frailty, amongst others. Additionally, it is imperative to meticulously
analyze disparities among diverse populations to ensure precise model application and
accurate predictions.

6. Conclusions

Assessing the optimal timing for weaning from MV in patients is an important task
for ICU practitioners. Although weaning from MV is a commonly performed procedure
in the ICU, there is still a need to easily identify patients prone to extubation or weaning
failure. The medical literature has identified a variety of physiological parameters that have
varying abilities to successfully predict weaning outcomes [9]. In this review, we examined
AI and ML models that integrate diverse parameters in order to increase the accuracy of
weaning predictions. We found that these methods promise to improve MV management.

Our focus on the ARDS population revealed that there is a dearth of studies on the
use of MV and AI models in this group of patients. Therefore, future research should aim
at validating these models in clinical settings so that clinicians can make data-informed
evidenced-based decisions. The ultimate goals are to improve patient outcomes and reduce
healthcare costs.
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