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Abstract: People with type 1 diabetes (T1D) have a high cardiovascular disease (CVD) risk, which
remains the leading cause of death in this population. Despite the improved control of several classic
risk factors, particularly better glycaemic control, cardiovascular morbidity and mortality continue
to be significantly higher than in the general population. In routine clinical practice, estimating
cardiovascular risk (CVR) in people with T1D using scales or equations is often imprecise because
much of the evidence comes from pooled samples of people with type 2 diabetes (T2D) and T1D or
from extrapolations of studies performed on people with T2D. Given that T1D onsets at a young
age, prolonged exposure to the disease and its consequences (e.g., hyperglycaemia, changes in lipid
metabolism or inflammation) have a detrimental impact on cardiovascular health. Therefore, it
is critical to have tools that allow for the early identification of those individuals with a higher
CVR and thus be able to make the most appropriate management decisions in each case. In this
sense, atherosclerosis is the prelude to most cardiovascular events. People with diabetes present
pathophysiological alterations that facilitate atherosclerosis development and that may imply a
greater vulnerability of atheromatous plaques. Screening for subclinical atherosclerosis using various
techniques, mainly imaging, has proven valuable in predicting cardiovascular events. Its use enables
the reclassification of CVR and, therefore, an individualised adjustment of therapeutic management.
However, the available evidence in people with T1D is scarce. This narrative review provides and
updated overview of the main non-invasive tests for detecting atherosclerosis plaques and their
association with CVD in people with T1D.

Keywords: type 1 diabetes; cardiovascular risk; atherosclerosis; subclinical atherosclerosis; plaque;
carotid plaque; coronary calcium score; coronary computed tomography angiography; magnetic
resonance; ankle–brachial index

1. Introduction

Cardiovascular disease is the leading cause of mortality and morbidity worldwide.
Although medical advances have reduced the incidence of death over the past decade,
global prevalence and mortality have continued to rise [1]. Atherosclerotic cardiovascular
disease (ASCVD), mainly coronary artery disease (CAD) and atherothrombotic stroke,
represents the leading cause within this group, accounting for over 13 million deaths in
2021 [2].

CVR is often assessed using various equations that estimate the 10-year probability
of suffering an event. This strategy has several disadvantages: (1) most of them are not
applicable in people aged <40 years, and age greatly influences the estimated risk, which
makes it difficult to identify young people at high risk; (2) they are designed to use cross-
sectional data, although the impact of the main risk factors occurs cumulatively; and
(3) they consider only a few classical risk factors (e.g., sex, age, smoking habit, cholesterol
levels or systolic blood pressure) and leave it to the clinician to decide how to weight the risk
indicated by several other variables that modify CVR (e.g., social deprivation, the presence
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of obstetric factors or autoinflammatory diseases). Furthermore, there is no clear consensus
between the different strategies. Several studies show heterogeneous recommendations
depending on the equation used, and a lower than desired discriminatory power [3–5]. All
this underlines the need for additional tools to better assess CVR in each individual.

The prelude to an acute event is the formation of atheromatous plaques in large and
medium-sized arteries, which begins early in life and progresses silently over several years.
The detection of subclinical atherosclerosis, which can be easily assessed using mostly
non-invasive imaging tests, is one of the main strategies employed to individualise this
risk. The presence of atheromatous plaques is associated with incident cardiovascular
events in studies on large population cohorts without diabetes [6–8]. It allows us to identify
young individuals at high CVR who may benefit from a long-term preventive strategy,
knowing that they could benefit most from CVR control such as low-density lipoprotein
cholesterol (LDLc) levels or blood pressure [9,10]. This is important because statins [11]
and PCSK9 inhibitors [12,13] can delay the process of atherosclerosis, stabilise plaques
already formed and reduce the likelihood of cardiovascular events. In this sense, the
main clinical guidelines for cardiovascular prevention consider subclinical atherosclerosis
detection as a risk-modifying factor, primarily in intermediate or borderline risk patients,
both up- and down-regulating, with the consequent changes in treatment and follow-
up that this entails [14,15]. In addition, the visualisation of atherosclerotic plaques by
patients themselves is not only useful for the clinician but can also improve adherence to
lifestyle measures and treatments with proven cardioprotective effects (e.g., lipid-lowering,
antihypertensive and antiplatelet therapy) [16].

People with T1D have a four to eight times higher risk of CVD than the general
population [17,18]. The physiopathology of T1D is characterised by the rapid and early
autoimmune destruction of pancreatic beta cells, resulting in hyperglycaemia and the
requirement for lifelong insulin replacement therapy. Hyperglycaemia is one of the most
important CVR factors; however, even those with optimal glycaemic control (time-updated
haemoglobin A1c (HbA1c) ≤ 6.9% or 51.9 mmol/mol) have a three-fold increased risk of
CVD death compared with their counterparts without diabetes [19]. This fact suggests the
existence of other factors involved in the pathogenesis of CVD in T1D such as exposure to
hypoglycaemia, glycaemic variability, quantitative and qualitative abnormalities of lipopro-
teins, immune dysfunction, inflammation or cardiac autoimmunity, among others [20,21].
Furthermore, a recent Mendelian randomisation study supports the hypothesis of the
presence of T1D as a CVD causal factor [22]. Previously, we showed how equations for
estimating CVR that are not specific to T1D can have poor diagnostic performance [23].
Although several methods have been developed for this purpose [24,25], most assessments
of CVR and cardiovascular management are based on extrapolations from studies in people
with T2D. The two entities have different pathophysiologies. They share little beyond
hyperglycaemia. These differences highlight the many mechanisms in the mechanisms
leading to CVD. It is essential to develop reliable strategies to classify CVR and implement
preventive strategies early in this vulnerable population.

Against this background, this narrative review aims to evaluate the clinical utility
of using non-invasive techniques to detect subclinical atherosclerosis in people with T1D.
Due to their invasiveness, cost and lower applicability for screening in clinical practice,
diagnostic tests such as angiography, intravascular ultrasound and intravascular optical
coherence tomography will not be reviewed in this manuscript.

2. Methods of Searching

In the present study, a narrative review of the literature was carried out focused
on the different tools for the detection of atherosclerosis and its association with CVD
in people with T1D. A comprehensive search of international the PubMed and Embase
(Elsevier, Amsterdam, The Netherlands) databases was conducted for all articles available
up to 12 January 2024. The suitability of articles collected from the electronic search was
reviewed based on the abstracts. The search criteria were from lowest to highest specificity
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depending on the number of results available. We took all the results into account. We
prioritised articles that evaluated clinical variables and were published in high-impact
journals. Articles that were not related to the objective of the manuscript, conference
abstracts, and duplicate articles were excluded from the review process. Only articles
published in English were considered.

3. Physiopathology of Atherosclerosis in Diabetes

Atherosclerosis is a complex and not fully understood process. In brief, the evidence
seems to state that it begins with the penetration and accumulation of apolipoprotein
B-100-containing particles, mainly LDL particles, into the intimal layer of the arterial wall.
In this new environment, they are oxidised and modified, leading to an inflammatory and
immunogenic activation. Although the exact mechanisms are not fully understood, several
processes, such as increased oxidative stress [26] and the degeneration of the endothelial
glycocalyx [27], have been implicated. Subsequently, circulating T lymphocytes and mono-
cytes enter the intimal layer through a dysfunctional endothelium. The latter mature into
macrophages expressing scavenger receptors that recognise these modified lipoprotein
particles and internalise them, notably increasing the cholesterol content of macrophages,
turning them into foam cells. These foam cells release a plethora of proinflammatory
cytokines that promote the process of atherosclerosis [28].

These leukocytes produce various mediators. The mediators cause smooth muscle
cells to move from the media layer to the intima. There, the smooth muscle cells can grow
and produce extracellular matrix molecules that increase the size of the plaque. From here,
inflammation is perpetuated, and multiple processes occur that influence the progression
of atherosclerosis. Finally, there are mainly two plaque complications: intraluminal growth
with vascular stenosis and rupture or erosion with intravascular thrombus formation [29].

Various factors enhance and/or accelerate several of the above processes in people
with diabetes. For example, hyperglycaemia leads to the glycation of various proteins,
which undergo multiple reactions culminating in the formation of advanced glycation end
products (AGEs). AGEs have been implicated in several steps in the development of athero-
matous plaques, including accelerated monocyte migration, the glycation of lipoproteins
facilitating the recognition by macrophages, an increased production of inflammatory cy-
tokines and procoagulant effects, among others [30]. In addition, the increased productions
of sorbitol and fructose (polyol pathway) also increase the production of AGEs. Further,
AGEs are hardly degradable and may persist over time, which may explain why those who
have had poor glycaemic control are at increased risk of vascular complications despite a
better current control; this is known as the legacy effect [31,32].

Notwithstanding, through various mechanisms, mainly intracellular hyperglycaemia,
there is an increase in oxidative stress with an increased production of reactive oxygen
species, which react with various structures such as nucleic acids and proteins, increasing
the expression of adhesion and inflammatory factors and affect genes involved in the
pathogenesis of atherosclerosis [33,34]. There is an increased synthesis of pro-inflammatory
cytokines in people with diabetes and several inflammatory markers have been associated
with atherosclerosis in T1D [35–37]. In addition, elevated glucose levels and other pro-
cesses increase the production of diacylglycerol, which, together with calcium, activates
protein kinase C. Its activation has been implicated in several steps of atheroma plaque
formation [30,34,38]. Furthermore, people with diabetes have qualitative and quantitative
changes in the lipoprotein metabolism that have been implicated in the process of atheroge-
nesis [39–41]. Most of the above processes are interrelated and promote each other. This
perpetuates and accelerates the process of atherosclerosis.

Finally, people with diabetes not only have a greater atherosclerotic burden than
the general population [42], but also have a greater inflammatory infiltrate, necrotic core
and calcification that have been linked with increased plaque vulnerability [43]. Several
of these changes are due to hyperglycaemia, but the high residual risk indicates that
other agents are also involved. Even a recent Mendelian randomisation study suggests a
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possible causal role of T1D in peripheral and coronary atherosclerosis after adjusting for
confounders (comorbidities, classic CVR factors, lipid and inflammatory variables), with a
partial mediation of the effect through hypertension [22].

4. Screening Methods for Subclinical Atherosclerosis
4.1. Carotid Ultrasound

The carotid territories, and especially the carotid bifurcation, are prone to atherosclero-
sis in predisposed individuals with CVR factors due to physiological changes in blood flow.
As this is a shallow area, ultrasound using high-frequency probes (usually > 9 MHz) allows
for a detailed visualisation of the arterial wall in its entire extracranial extent. The thickness
of the intima and media layers (intima–media thickness or IMT) is measured and, although
various cut-off points have been proposed, the consensus is that plaque is defined as a focal
structure that encroaches into the arterial lumen by at least 0.5 mm or 50% of the surround-
ing IMT value or has an IMT thicker than 1.5 mm [44]. If the plaque is of significant size,
the degree of stenosis is estimated using a variety of methods, most notably through the
use of flow velocities in the stenotic area using pulsed-wave Doppler mode. In addition to
conventional ultrasound, other related tools include contrast-enhanced ultrasound (CEUS),
which allows the characterisation of features associated with plaque vulnerability such as
neovascularisation [45], and 3D volumetric ultrasound (3DVUS), which helps in the spatial
interpretation and calculation of the total area of atheromatous lesions [46].

Unlike other methods, carotid ultrasound does not emit radiation, allows for the
visualisation of plaques in the early stages (Figure 1), is inexpensive and quick to perform,
and it is also common to have an ultrasound scanner in the office, enabling an easy
assessment and the diagnosis and initiation of treatment at the same time. Focusing on
the arterial wall rather than the lumen makes it easier to characterise plaques and identify
those with features associated with a higher risk of complications such as echolucency or
surface ulceration [47,48]. However, its main disadvantages are its operator dependency,
which requires trained personnel, and the lack of standardisation of IMT measurements.
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progresses to atheroma plaque, which, depending on the degree of stenosis and haemodynamic
impact, may yield a pathological ABI result. Over time, the plaques increase their fibrotic content and
may present calcifications. At this point, the use of CAC is sufficiently sensitive for their detection.
Finally, atherosclerotic lesions may become complicated through rupture or erosion and lead to acute
cardiovascular events. ABI: ankle–brachial index; CAC: coronary artery calcium; CCTA: coronary
computed tomography angiography; MR: magnetic resonance; US: ultrasound.

The usefulness of IMT measurement and the detection of carotid plaque in T1D
has been poorly studied, and the results are controversial. Data from the Diabetes Con-
trol and Complications Trial/Epidemiology of Diabetes Interventions and Complications
(DCCT/EDIC) cohort are consistent in that various CVRs such as age, male sex, systolic
blood pressure, smoking, HbA1c and albuminuria are predictors of IMT progression and
that intensive diabetic treatment slows such progression [49]. Subsequently, the association
between measures of IMT and CAD events was analysed after 17 years of follow-up with
more than 1300 subjects [50]. Increased common carotid artery IMT was consistently as-
sociated with CVD events incidence in models adjusted individually for age, sex, HbA1c,
systolic blood pressure, HDL cholesterol, total cholesterol and smoking. However, despite
a trend, this association did not remain significant after adjusting for all variables, nor did
internal carotid artery IMT. It should be noted that they analysed baseline ultrasound data
from a young sample (mean age 35 years) without information on atherosclerotic progres-
sion, which is, if anything, a more important measure than the mere presence of plaque [51].
In addition, the number of events was low (n = 135), which may affect the power of the
study. However, carotid atherosclerosis in T1D is associated with many pathologies and
alterations linked to a higher risk of CVD. These include high systolic blood pressure [52],
preeclampsia [53,54], retinopathy [55,56], insulin resistance [57,58], excess weight gain [59],
enlarged left ventricular mass [60], cerebral microbleeds [61], cognitive impairment [62],
inflammation and endothelial dysfunction [36,63]. The aforementioned, in addition to
the proven predictive capacity of CVD events in the general population [7,64], lead us to
believe that, pending more properly designed prospective studies, there is no reason not
to consider carotid ultrasound as a useful tool in the evaluation of these patients. Finally,
the use of this technique is not limited to the phenotyping of CVD risk but may serve as a
marker of treatment response [65–67] and may even lead the clinician to intensify cardio-
protective treatment and the patient to adopt a healthier lifestyle and be more compliant
with treatment [68].

4.2. Coronary Artery Calcium (CAC) Scan

When using non-contrast computed tomography (CT), the CAC of the epicardial
arteries is measured, with an area of ≥ 1 mm2 and > 130 Hounsfield units being considered
a lesion [69]. The product of the calcified area and the score of the lesion itself (ranging
from 1 to 4) are known as the calcium score. The total CAC score is the sum of all calcium
score units and is reported in Agatston units (AU), considering no CAC (0), minimal CAC
(1–10), mild CAC (11–100), moderate CAC (101–400) and severe CAC (>400).

CAC scanning is a relatively fast, economical, reproducible and easy-to-interpret
method. One of its limitations is that it emits radiation, albeit a small amount. In addi-
tion, it measures coronary calcification, an advanced stage of atherosclerosis, and misses
obstructive and non-calcified lesions, the latter generally representing an earlier stage that
may be present in young people with high CVR that might go unnoticed through this
method. Also, statin treatment, despite its proven cardiovascular benefits, may lead to an
increase in CAC due to the regression of non-calcified areas and promotion of intraplaque
calcification [70,71], so it is unclear whether the CAC score may be useful as an additional
tool for monitoring treatment. Calcifications are associated with higher plaque stability
and lower event probability [72]. However, a higher CAC volume is positively associated
with multiple CVR factors [73]. As a product that takes into account calcification and lesion
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area, an increased CAC score usually indicates a higher total atherosclerotic burden [74].
This is why it now stands as a powerful predictor of cardiovascular events [75].

In people with T1D, its usefulness as a predictor of CVD has been studied more
than with other methods. In the DCCT/EDIC cohort [76], a consistent and proportional
association between CAC score and CVD events was demonstrated after 10–13 years of
follow-up. After adjusting for HbA1c and other CVR factors, a CAC score of >100 AU
was associated with subsequent CVD and major adverse cardiovascular events (MACE).
However, it did not show a significant incremental value in ROC analyses after adding
it to the model that already took into account the variables mentioned above. In the
Pittsburgh Epidemiology of Diabetes Complications (EDC) study [77], similar results
were observed. The baseline CAC score and CAC score progression 4–8 years later were
independently associated with CVD events in childhood-onset T1D. The former showed
increased predictive ability when associated with other established CVR factors. It should
be noted that CAC score increases with age, with a positive CAC occurring in >80% of the
general population aged 65 years or more [78]. The previously reported cohorts are from
studies initiated more than 30 years ago that subscribe only to the USA, and the prevalence
of a positive CAC score was 30–40% [76,77].

Data from different demographics, geographies and periods show widely differing
prevalences, ranging from 18 to 94% [79–82], so studies assessing its predictive utility for
CVD events in different settings are needed. In addition, it appears that people with T1D
tend to have a greater progression of CAC compared to people without diabetes [83,84].
Data from the EDC study show that CAC progression increases with BMI, non-high-density
lipoprotein cholesterol levels, the duration of diabetes and albuminuria [85]. From the same
sample, it was published years later that baseline CAC and, above all, CAC progression
were associated with cognitive impairment [86]. Similar results are also available from
the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study. CAC progression
was associated with insulin sensitivity [87], nephropathy [88], menopause [84], markers
of inflammation [89] and obesity [90]. CAC progression has also been associated with
suboptimal glycaemic control [91]. Finally, intensive diabetes treatment in a DCCT trial was
associated with lower CAC scores, an effect mainly mediated by the reduction in HbA1c
during the study and the legacy effect seen 7–9 years later, when CAC was determined [92].

4.3. Coronary Computed Tomography Angiography (CCTA)

CCTA is a non-invasive technique using intravenous iodinated contrast. It allows the
detection of CAD and the characterisation of atherosclerotic plaques in the epicardial arte-
rial tree. After contrast administration, CT images are acquired during inspiratory breath
hold to avoid artefacts resulting from chest motion [93]. To optimise the quality of the im-
ages, it is necessary not to exceed a certain pulsation threshold (usually < 60–65 beats/min),
which sometimes requires the use of negative chronotropic drugs such as beta blockers,
and makes their application difficult in the case of a high heart rate and/or non-sinus
rhythm [94].

CCTA can be used as a prognostic tool to characterise calcified and non-calcified
plaques, the latter of which may be present in young people and may even indicate greater
plaque vulnerability and risk of complications [95,96]. It is also indicated in symptomatic
patients, as one of its main advantages is that it detects obstructive lesions and allows
the measurement of the stenosis degree. It is a reliable and reproducible technique, easy
to interpret, and its results can be used to decide whether an invasive or therapeutic
approach is required. Among its drawbacks is being a more costly, laborious technique,
with radiation and contrast exposure. The use of iodinated contrast may limit its use in
cases of nephropathy and/or allergy. Further, calcified lesions may incur false positives
due to blooming artefacts. Also, image quality may be suboptimal in cases of obesity [94].

The FACTOR-64 clinical trial [97] evaluated the usefulness of screening with CCTA
versus standard national guidelines-based optimal diabetes care in 900 people with diabetes
(12% with T1D) and no symptoms of CAD. Based on the screening results, the decision
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was made to use standard, aggressive therapy with more adjusted control targets for
various CVR factors or aggressive therapy associated with invasive coronary angiography,
subsequently assessing the incidence of MACE. After 4 years of follow-up, although there
was a trend in favour of the use of CCTA, it was not significant compared to the control
group. It should be noted that (1) the number of events in both groups was lower than
expected and (2) the control group had a good management of several CVR factors (baseline
mean LDLc 87.7 mg/dL and mean systolic blood pressure 130.5 mmHg). Both of these
points could have compromised the power to detect differences between the groups. There
are no other studies available that assess CCTA as a screening test in this population;
however, some indirect information is available. For example, a prospective study on over
2000 patients showed an association between atherosclerotic lesions detected by CCTA and
several specific CVR factors such as glycaemic control, diabetic neuropathy or repeated
hypoglycaemias [98]. In individuals with long-standing T1D, it has also been associated
with LDLc levels [99,100] and glycaemic control [100]. Finally, it should be emphasised that
in young adults, the identification of subclinical atherosclerosis is significantly more likely
using CCTA compared to the CAC score, enabling earlier detection and intervention [101].

4.4. Ankle–Brachial Index (ABI)

The ankle–brachial index (ABI) estimates the presence of ischaemia in the lower
extremities. It is a screening method for peripheral arterial disease (PAD) that provides
indirect evidence of the presence of systemic atherosclerosis. According to the European
Society of Cardiology (ESC) Peripheral Arterial Disease guidelines [102], it is performed
in the supine position, with a cuff placed just above the ankle. After a 5–10-min rest, the
systolic blood pressure is measured with a Doppler probe (5–10 MHz) in the posterior and
the anterior tibial (or dorsalis pedis) arteries of each foot and on the brachial artery of each
arm. The ABI of each leg is calculated by dividing the highest ankle SBP by the highest
arm SBP. A value < 0.9 indicates ischaemia; between 0.9 and 1 is considered borderline;
between 1 and 1.4, normal; and >1.4 is indicative of arterial stiffness or calcification.

Its main advantages are that it is inexpensive, standardised, easy to interpret and quick
to perform. Yet, its results are operator-dependent and, as it does not directly visualise
atherosclerosis, it does not allow the characterisation and quantification of plaques. In
addition, it detects disease with haemodynamic repercussions and therefore cannot have
sufficient sensitivity for early subclinical stages. A low performance has also been described
in the case of arterial calcification, a fairly common occurrence in people with diabetes [103],
and in haemodialysis patients in whom other alternatives such as the toe–brachial index
could offer better results, as the measurements are performed on digital vessels that rarely
suffer calcifications [104,105].

It should be noted that PAD is one of the most frequently occurring CVDs in people
with T1D [18,106]. In screening for this complication, the use of ABI is recommended in
the presence of consistent signs and symptoms [107]. ABI’s sensitivity is questionable in
an asymptomatic population and/or at early stages of the disease [108,109]. Several meta-
analyses associate high and low ABI values with CVD in the general population [110–112]
and in people with T2D [113,114], although studies on T1D are scarce. In a cross-sectional
study on 289 adults with T1D without PAD symptoms, an ABI < 0.9 was detected in
6% and ABI > 1.2 in 26%. Of those with abnormal ABI, 15% had ultrasound-assessed
carotid atherosclerosis, and 40% had silent PAD confirmed through lower extremity arterial
Doppler ultrasound and/or the toe–brachial index [115]. Another cross-sectional study
conducted in 185 adults with T1D from the EDC study analysed the association between ABI
scores and medial arterial calcification (MAC) assessed using lower extremity radiographs,
as a proxy CVD. In total, 57% had MAC, 8% had ABI > 1.3 and another 8% had an
ankle–brachial difference (ABD) >75 mmHg. The predictive ability of MAC using the
ABI or ABD was modest, suggesting a higher diagnostic yield of ABD as opposed to ABI.
However, in using these cut-off points, more than 40–50% of cases with MAC remained
undiagnosed [116]. In summary, the designs of the above studies yielded results that
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should be considered exploratory, and studies analysing the incidence of CVD based on
ABI results in the asymptomatic T1D population are required.

4.5. Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging (MRI) includes many techniques used in different vascu-
lar beds and provide information on both morphology and functionality (mainly cardiac).
Its excellent resolution in soft tissues enables the distinction of plaque features (Table 1).
The use of intravenous contrast with gadolinium is common and permits the assessment
of neovascularisation and other vulnerability traits such as intra-plaque haemorrhage or
fibrous cap thickness. One of its main drawbacks is that it is susceptible to motion-related
artefacts (e.g., cardiac and respiratory movements). Therefore, its main application is in
large vessels (e.g., carotid arteries or the aorta), which are relatively immobile. Its use in
smaller vessels such as coronary arteries is complex, although advances in motion artefact
correction, image acceleration and reconstruction techniques have improved [117]. It is also
useful as a myocardial perfusion study as it has a higher spatial resolution than classical
radionuclide studies [118]. In general, despite the versatility of MRI, its widespread clinical
application is hampered by extended acquisition times, intricate scan planning and cost.

Table 1. Characteristics of the main non-invasive imaging methods for detecting subclinical atheroscle-
rosis.

Imaging Modality Strengths Limitations

Carotid US

Identifies atherosclerosis in early stages
Enables the differentiation of some plaque

characteristics (better characterisation if CEUS or
3DVUS is used)

Low cost
No radiation exposure

Operator-dependent
Lack of methodological standardisation of IMT

measurements

CAC
Reproducible and standardised

Strong CVD predictor
Low cost

Radiation exposure (low)
Does not identify plaque in early stages (only

detects calcified plaques)
Doubtful usefulness for monitoring treatment

(promotion of plaque calcification with statin use)

CCTA

Reproducible and standardised
Detects obstructive coronary lesions and degree of

stenosis (direct detection of CAD)
Plaque characterisation

Expensive
Radiation exposure

Iodinated contrast exposure (allergy,
nephrotoxicity)

Imaging is limited if arrhythmias and/or obesity
Blooming artefact in calcified lesions

ABI

Standardised
Easy-to-interpret results

Inexpensive
No radiation exposure

Quick to perform

Does not visualise atherosclerosis
Primarily picks up hemodynamically significant

lesions and therefore may miss subclinical disease
Limited interpretation in certain patient
populations (high calcification burden,

haemodialysis)

MR

Excellent soft tissue resolution for plaque
characterisation

Multiparametric (morphology, functionality)
No radiation exposure

Motion artefacts (mainly limited to large-calibre
vessels)

Expensive
Time consuming

ABI: ankle–brachial index; CAC: coronary artery calcium; CAD: coronary artery disease; CCTA: coronary com-
puted tomography angiography; CEUS: contrast-enhanced ultrasound; CVD: cardiovascular disease; IMT: intima-
media thickness; MR: magnetic resonance; US: ultrasound; 3DVUS: 3D vascular ultrasound.

In this regard, MRI’s use as a screening method in the T1D population is infrequent.
Weckbach et al. performed whole-body MRI and MR-angiography on 65 patients with
diabetes duration >10 years (31% with T1D) and 200 healthy individuals and observed
a markedly higher prevalence of atherosclerosis in almost all territories studied in those
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with diabetes. Of note, >50% of clinically significant changes (e.g., carotid, vertebral or
renal artery stenosis, pattern compatible with myocardial infarction or cerebral ischaemic
infarction) were previously unknown, suggesting the usefulness of using their screening
protocol in this population [119]. Further, a cross-sectional study in 136 adult patients with
long-standing T1D suggested a higher plaque burden in the right coronary artery in those
with albuminuria >300 mg/24 h. There were no differences when assessing the abdominal
and thoracic aorta [120]. The results of the above studies are in line with expectations and
evidence from other screening tests for subclinical atherosclerotic disease.

4.6. Other Screening Methods

The main non-invasive tools used in clinical practice for the detection of atherosclerotic
plaques have been described. However, there are other available techniques that are either
novel or do not directly study atherosclerosis itself. For example, increased arterial stiffness
or arteriosclerosis, a different process but often associated with atherosclerosis, has been
associated with micro- and macrovascular complications in T1D [121]. Furthermore, molec-
ular imaging using positron emission tomography (PET), PET-CT, PET-MRI or nuclear MRI
are promising tests that allow the study of multiple early processes involved in atheroscle-
rosis using radiotracers (e.g., targeting different markers of inflammation, extracellular
matrix components or macrophages) [37,122–124]. Finally, perfusion and functional cardiac
imaging could enhance the accuracy of detecting CAD in subjects with high CVR, such
as people with T1D. Resting global longitudinal strain has also been highlighted as an
early marker of myocardial damage in people with chronic coronary syndromes, and stress
echocardiography has been used to detect coronary artery disease burden [125,126].

5. Future Directions

The current healthcare system is mainly focused on the advanced stages of atheroscle-
rosis, showing that we act “too late and too little” in the early stages. Atheroma plaque
formation starts in childhood and adolescence and is consistently associated with the pres-
ence of multiple modifiable CVRs [127]. The Progression of Early Subclinical Atheroscle-
rosis (PESA) study showed that the prevalence of subclinical atherosclerosis was >60%
in middle-aged men, lagging behind the disease (atherosclerosis) by that time [128]. In
people with T1D, the need for biomarkers to identify those most likely to benefit from
pharmacological and non-pharmacological treatments with proven cardiovascular benefits
becomes even more apparent.

The ideal screening method should detect atherosclerotic lesions in their earliest
stages. It should also reliably predict cardiovascular events. It should also be efficient and
applicable regularly to assess CVR longitudinally and dynamically. A tool that meets all
these requirements is not yet available or it does not have the scientific evidence to support
its usefulness with certainty. Anyway, given the pathophysiological complexity of CVD and
the multiple factors involved, the optimal approach probably lies in the combined use of
imaging techniques, the assessment of classical risk factors (e.g., conventional lipid profile,
high blood pressure), polygenic scoring and tests aimed at detecting other alterations
associated with early atherosclerosis (e.g., endothelial dysfunction, inflammatory markers
[e.g., C-Reactive Protein, IL-1, IL-6, IL-18], proteomic or transcriptomic analyses and leptin
and ghrelin dysregulations) (Figure 2). Advances must be aimed not only at detecting the
earliest alterations of atherosclerotic lesions but also at identifying subjects at greater risk
of plaque development, progression and acute complications. Longitudinal studies are
needed to assess an appropriate screening strategy in these cases. Pending further and
better evidence, in light of what is available, we advocate for early and systematic screening
for subclinical atherosclerosis in this vulnerable population.



J. Clin. Med. 2024, 13, 1097 10 of 16

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 10 of 18 
 

 

or nuclear MRI are promising tests that allow the study of multiple early processes in-

volved in atherosclerosis using radiotracers (e.g., targeting different markers of inflam-

mation, extracellular matrix components or macrophages) [37,122–124]. Finally, perfusion 

and functional cardiac imaging could enhance the accuracy of detecting CAD in subjects 

with high CVR, such as people with T1D. Resting global longitudinal strain has also been 

highlighted as an early marker of myocardial damage in people with chronic coronary 

syndromes, and stress echocardiography has been used to detect coronary artery disease 

burden [125,126]. 

5. Future Directions 

The current healthcare system is mainly focused on the advanced stages of athero-

sclerosis, showing that we act “too late and too little” in the early stages. Atheroma plaque 

formation starts in childhood and adolescence and is consistently associated with the pres-

ence of multiple modifiable CVRs [127]. The Progression of Early Subclinical Atheroscle-

rosis (PESA) study showed that the prevalence of subclinical atherosclerosis was > 60% in 

middle-aged men, lagging behind the disease (atherosclerosis) by that time [128]. In peo-

ple with T1D, the need for biomarkers to identify those most likely to benefit from phar-

macological and non-pharmacological treatments with proven cardiovascular benefits be-

comes even more apparent. 

The ideal screening method should detect atherosclerotic lesions in their earliest 

stages. It should also reliably predict cardiovascular events. It should also be efficient and 

applicable regularly to assess CVR longitudinally and dynamically. A tool that meets all 

these requirements is not yet available or it does not have the scientific evidence to support 

its usefulness with certainty. Anyway, given the pathophysiological complexity of CVD 

and the multiple factors involved, the optimal approach probably lies in the combined use 

of imaging techniques, the assessment of classical risk factors (e.g., conventional lipid pro-

file, high blood pressure), polygenic scoring and tests aimed at detecting other alterations 

associated with early atherosclerosis (e.g., endothelial dysfunction, inflammatory markers 

[e.g., C-Reactive Protein, IL-1, IL-6, IL-18], proteomic or transcriptomic analyses and lep-

tin and ghrelin dysregulations) (Figure 2). Advances must be aimed not only at detecting 

the earliest alterations of atherosclerotic lesions but also at identifying subjects at greater 

risk of plaque development, progression and acute complications. Longitudinal studies 

are needed to assess an appropriate screening strategy in these cases. Pending further and 

better evidence, in light of what is available, we advocate for early and systematic screen-

ing for subclinical atherosclerosis in this vulnerable population. 

 
Figure 2. Future directions.

6. Conclusions

Little evidence is available on the usefulness of screening for subclinical atherosclerosis
in the T1D population. So far, studies suggest similar results to those found in the general
population. The use of the CAC score is probably the best predictor of future cardiovascular
events, especially CAD. However, since it detects lesions at a more advanced stage, it is not
useful in the younger population. The use of other techniques such as carotid ultrasound,
CCTA and MRI may be useful in these earlier stages of atherosclerosis; however, more
studies are needed to recommend their routine use as a screening test in T1D. Finally,
ABI is useful as a first diagnostic test for PAD, but its ability to detect lesions without
haemodynamic impact is low.
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