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Abstract: Background: OpenAI’s ChatGPT (San Francisco, CA, USA) and Google’s Gemini (Moun-
tain View, CA, USA) are two large language models that show promise in improving and expediting
medical decision making in hand surgery. Evaluating the applications of these models within the
field of hand surgery is warranted. This study aims to evaluate ChatGPT-4 and Gemini in clas-
sifying hand injuries and recommending treatment. Methods: Gemini and ChatGPT were given
68 fictionalized clinical vignettes of hand injuries twice. The models were asked to use a spe-
cific classification system and recommend surgical or nonsurgical treatment. Classifications were
scored based on correctness. Results were analyzed using descriptive statistics, a paired two-tailed
t-test, and sensitivity testing. Results: Gemini, correctly classifying 70.6% hand injuries, demon-
strated superior classification ability over ChatGPT (mean score 1.46 vs. 0.87, p-value < 0.001). For
management, ChatGPT demonstrated higher sensitivity in recommending surgical intervention
compared to Gemini (98.0% vs. 88.8%), but lower specificity (68.4% vs. 94.7%). When compared
to ChatGPT, Gemini demonstrated greater response replicability. Conclusions: Large language
models like ChatGPT and Gemini show promise in assisting medical decision making, particularly in
hand surgery, with Gemini generally outperforming ChatGPT. These findings emphasize the impor-
tance of considering the strengths and limitations of different models when integrating them into
clinical practice.

Keywords: artificial intelligence (AI); ChatGPT; Gemini; deep learning; machine learning; hand
surgery; hand trauma; management

1. Introduction

The integration of artificial intelligence (AI) into daily medical practice is an evitable
reality [1,2]. With an expanding repertoire of applications and tools, AI is infiltrating
the healthcare landscape, seeping into every specialty and healthcare domain [3,4]. This
progression is marked by the emergence of large language models (LLMs). Built upon
neural network architectures [5], LLMs are AI systems which are designed to employ deep
learning and natural language processing [6]. These models undergo extensive training
on vast datasets until they are able to comprehend and generate human-like text with
significant predictability [6], even without employing retrieval-augmented generation
(RAG) approaches. Two publicly available LLMs that have garnered recent interest are
Google’s Gemini [7] (built upon its predecessor Bard) and OpenAI’s ChatGPT [8]. Although
not designed specifically for medical purposes, these LLMs have demonstrated potential
in medical decision making [9]. For example, ChatGPT achieved passing scores for both
the United States Medical Licensing Examination [10] and American Society for Surgery of
the Hand self-assessment exam [11], demonstrating a basic level of competence in medical
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reasoning. With the potential to enhance diagnostic accuracy, informed decision making,
and patient outcomes, LLMs like ChatGPT and Gemini show promise in augmenting
healthcare delivery [9,12].

The field of hand surgery stands to benefit greatly from the support of AI tools like
LLMs [1,13]. Achieving favorable outcomes after hand trauma is paramount, given the
critical role that hands play in necessary tasks for daily functioning and independence [14–17].
Effective management relies heavily on correctly identifying the nature and severity of
injuries, as this information guides decisions regarding surgical intervention, rehabilitation,
and ongoing care [18–21]. Inaccurate diagnosis and classification can lead to delays in
treatment, inappropriate interventions, and potentially compromised functional recovery
for patients [22,23]. With their advanced algorithms, LLMs can analyze complex patterns [6]
and thus have the potential to provide rapid and precise injury classifications, enhancing
and expediting the management process.

While the integration of advanced LLMs into healthcare systems is on the horizon,
access may be limited to those within those institutions. Healthcare professionals in
underfunded facilities, medical students, and patients are expected to continue using
publicly available LLMs like ChatGPT and Gemini for medical queries. The continuous
assessment of the value and utility of these LLMs is essential. Early investigations into
LLM applications in hand surgery have shown promising results. Leypold et al. [24]
found that ChatGPT adeptly managed complex hand and arm surgery scenarios, show-
casing the potential of LLMs like ChatGPT to improve patient care and surgical outcomes.
Crook et al. [25] reported ChatGPT’s proficiency in addressing common patient inquiries
regarding common hand surgeries, noting generally high-quality responses. In a similar
study, Seth et al. [26] found that ChatGPT was suitable for nonmedical individuals, but
struggled with accurate and complete references. Additionally, Al Rawi et al. [27] observed
that, while ChatGPT’s responses were correct and useful in most cases, only 57% were
deemed complete by hand surgeon reviewers.

Although these studies show promise for ChatGPT, there is limited research exploring
Gemini’s potential in hand surgery and few studies comparing LLMs. Furthermore, addi-
tional research to explore the full extent of LLM capabilities in the context of hand injuries
and hand surgery, particularly in specialized tasks like injury classification, is warranted.
The objective of this study is to assess the ability of ChatGPT and Gemini to accurately
classify hand injuries via the use of 12 specific classification systems. Furthermore, this
study aims to determine the ability of these models to accurately recommend surgical or
nonsurgical management for these hand injuries. In doing so, we seek to evaluate the
capabilities of publicly available LLMs without the use of RAG approaches. Through this
investigation, this study endeavors to advance the ongoing discourse surrounding the
applications and limitations of LLMs in hand surgery.

2. Materials and Methods
2.1. Study Design

Sixty-eight unique prompts were developed to test each LLM’s ability to classify hand
injuries. Prompts cover 12 different classification systems [20,21,28–39] covering various
hand injuries. The inclusion criteria prioritized classification systems with well-established
significance, ensuring relevance and familiarity among healthcare providers specializing in
hand surgery. To focus on clinically relevant systems, classification systems lacking direct
treatment correlations were excluded.

Each prompt was prefaced with, “I am a plastic and reconstructive surgeon who spe-
cializes in hand surgery. You are my colleague and I am discussing a case with you.” Each
prompt included a fictionalized vignette and a specific hand injury diagnosis. Additionally,
within each prompt was a request to classify the injury using a specific classification system
and determine if this injury warrants surgical or nonsurgical (conservative) management.
The deliberate inclusion of the specific diagnosis and classification system of interest was
incorporated to focus the evaluation of the LLMs’ classification abilities, rather than their
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diagnostic skills, ensuring a uniform methodology and reducing the likelihood of LLMs
using varying classification systems. Examples of prompts with LLM responses are de-
picted in Figures 1 and 2. Each prompt was provided to ChatGPT-4 (OpenAI, San Francisco,
CA, USA) and Gemini (Google, Mountain View, CA, USA) twice to ensure consistency
and replicability, resulting in a total of 136 prompts. Additionally, each prompt was en-
tered individually in a separate conversation to minimize the possibility of one answer
affecting another. All prompts were provided on 10 March 2024, using the Google Chrome
internet browser.
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Figure 2. An example of a prompt given to ChatGPT-4 (left) and Gemini (right) with the corre-
sponding responses. This prompt asked the models to classify a mallet finger injury using Tubiana’s
classification system.

For the assessment of classification abilities, the LLMs were given points based on
answer correctness. Completely correct classifications were awarded two points, partially
correct classifications were awarded one point, and incorrect classifications were awarded
zero points. Instances of partial correctness typically arose from either indecisiveness on
the part of the LLM or from including subclassifications within the classification system.
For example, in systems like the Gustilo–Anderson classification [20,33] for open fractures,
which have subclassifications (e.g., Type IIIA, IIIB, and IIIC), partial correctness could result
from selecting the wrong subclassification (e.g., selecting Type IIIB when the correct answer
was Type IIIA) or from failing to specify the subclassification altogether (e.g., answering
Type III when the correct answer was Type IIIA). Furthermore, if the LLM struggled to
choose between two options, one of which was correct, it would still receive one point for
partial correctness.

In our investigation into the LLM’s ability to differentiate between surgical and nonsur-
gical management options for hand injuries, we relied on clinically pertinent classification
systems as our gold standard. These classification systems were chosen for their compre-
hensive treatment recommendations which were associated with each categorized injury.
As such, the recommendations provided within the classification systems served as the
definitive ‘correct’ answers for our study. Furthermore, to ensure the accuracy of our
assessments, all responses were verified by a board-certified hand surgeon. By adhering
to these established guidelines, we aimed to maintain consistency and objectivity in our
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evaluation process. This approach not only provided a clear framework for comparing
LLM performance, but also ensured the clinical relevance and validity of our findings.

2.2. Data Collection and Analysis

Prompts and corresponding LLM responses were collected in Microsoft Excel (Red-
mond, WA, USA). Each response was graded based on classification correctness. These
values were analyzed using descriptive statistics including the mean, standard deviation
(SD), and range. Comparisons between ChatGPT and Gemini classification abilities were
evaluated using paired, two-tailed t-tests. This test controls for variability across different
clinical vignettes and allows for the detection of significant differences, without assuming
directionality. Subgroup analyses were conducted to compare scores for each classification
system. An alpha level of 0.05 was used to determine statistical significance.

In addition to classification accuracy, the evaluation of the LLMs’ capacity to rec-
ommend surgical versus nonsurgical management involved the calculation of sensitivity
(also known as recall), specificity, positive predictive value (PPV; also known as precision),
accuracy, and the F1 score. Sensitivity and specificity offer insights into the models’ ability
to accurately identify true surgical and nonsurgical cases, respectively, while PPV and
accuracy shed light on the precision and correctness of the models’ recommendations.
Furthermore, the F1 score serves as a synthesized measure, capturing the balance between
precision and recall, and offering a more nuanced understanding of the models’ overall
performance. This multifaceted evaluation approach ensures that the strengths and weak-
nesses of the LLMs’ recommendations are thoroughly explored, providing valuable insights
for healthcare providers and researchers alike in navigating the complexities of decision
making in hand surgery.

3. Results
3.1. Classification Results

In the classification of hand injuries, Gemini exhibited superior performance over
ChatGPT, with an average score of 1.46 (SD 0.87), whereas ChatGPT yielded an average
score of 0.67 (SD 0.87) (p-value < 0.001). Classification results are displayed in Table 1
and Figure 3. Gemini provided completely correct classifications for 96 (70.6%) hand
injuries, but partially correct and incorrect for six (4.4%) and 34 (25.0%) injuries, respectively.
ChatGPT provided correct, partially correct, and incorrect classifications for 36 (26.5%),
19 (14.0%), and 81 (59.6%) hand injuries, respectively.

ChatGPT exhibited its strongest performance in utilizing the Lichtman classifica-
tion [38] for Kienböck disease (osteonecrosis of the lunate), correctly classifying eight cases
(66.7%) with a mean score of 1.58 (SD 0.67). Additionally, its next best performance was
in employing the Gustilo–Anderson classification [20,33] for open fractures, accurately
categorizing seven cases (70%) with a mean score of 1.50 (SD 0.85). However, its perfor-
mance was notably poorer when using Hintermann et al.’s classification [35] system for
Gamekeeper’s thumb, where all of its classifications were incorrect. Similarly, ChatGPT
struggled with the classification of scaphoid fractures, where it inaccurately classified all
cases according to the Mayo classification [28,29] system. Furthermore, in classifying volar
plate avulsion injuries using the Eaton classification [30] system, ChatGPT demonstrated
unacceptable performance, failing to correctly classify any cases. In contrast, Gemini dis-
played superior classification capabilities, providing accurate classifications for all volar
plate avulsion injuries using the Eaton classification [30] system and all scaphoid fractures
using the Herbert and Fisher Classification [34]. Despite this, Gemini’s weakest perfor-
mance was observed when classifying flexor tendon injuries using Kleinert and Verdan’s
Zone classification [36] system. Notably, ChatGPT narrowly outperformed Gemini only in
the Gustilo–Anderson classification [20,33] of open fractures, Kleinert and Verdan’s Zone
classification [36] of flexor tendon injuries, and the Lichtman classification [38] for Kienböck
disease (osteonecrosis of the lunate).
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Table 1. Hand injury classification results from the LLMs.

Classification System LLM Correct Partially
Correct Incorrect Mean Score Standard Deviation

Eaton classification for volar plate
avulsion injuries

ChatGPT-4 0 1 7 0.13 0.35
Gemini 8 0 0 2.00 0.00

Geissler arthroscopic classification for
carpal instability

ChatGPT-4 3 0 5 0.75 1.04
Gemini 4 0 4 1.00 1.07

Green and O’Brien’s classification of thumb
metacarpal fractures

ChatGPT-4 1 1 10 0.25 0.62
Gemini 11 1 0 1.92 0.29

Gustilo-Anderson classification of
open fractures

ChatGPT-4 7 1 2 1.50 0.85
Gemini 5 3 2 1.30 0.82

Herbert and Fisher Classification of
scaphoid fractures

ChatGPT-4 4 6 10 0.70 0.80
Gemini 20 0 0 2.00 0.00

Hintermann et al.’s classification of ulnar
collateral ligament (UCL) injury of the thumb

ChatGPT-4 0 0 12 0.00 0.00
Gemini 10 0 2 1.67 0.78

Kleinert and Verdan’s Zone classification of
flexor tendon injuries

ChatGPT-4 3 6 7 0.75 0.77
Gemini 4 2 10 0.63 0.89

Leddy and Packer classification of avulsion
injury of the flexor digitorum profundus (FDP)

ChatGPT-4 4 0 8 0.67 0.98
Gemini 6 0 6 1.00 1.04

Lichtman classification of Kienböck disease
(osteonecrosis the lunate)

ChatGPT-4 8 3 1 1.58 0.67
Gemini 8 0 4 1.33 0.98

Mayfield classification for carpal instability ChatGPT-4 4 1 3 1.13 0.99
Gemini 6 0 2 1.50 0.93

Mayo Classification of scaphoid fractures ChatGPT-4 0 0 10 0.00 0.00
Gemini 8 0 2 1.60 0.84

Tubiana classification for mallet finger ChatGPT-4 2 0 6 0.50 0.93
Gemini 6 0 2 1.50 0.93

Total
ChatGPT-4 36 19 81 0.67 0.87
Gemini 96 6 34 1.46 0.87
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3.2. Surgical Management Results from Sensitivity Testing

Based on the clinical vignettes and classification, 98 (72.1%) injuries warranted surgical
intervention, and 38 (27.9%) justified nonsurgical management. ChatGPT recommended
surgical intervention for 108 (79.4%) cases, as compared to Gemini, which recommended
surgery for only 89 (65.4%). The results of the sensitivity testing are shown in Table 2.
ChatGPT demonstrated higher sensitivity (recall) in recommending surgical intervention
when compared to Gemini (98.0% vs. 88.8%). However, Gemini demonstrated a specificity
of 94.7%, which was higher than ChatGPT’s specificity of 68.4%. Additionally, Gemini
demonstrated a PPV (precision) of 97.8%, which was higher than ChatGPT’s PPV of 88.9%.
Both models exhibited comparable F1 scores, with ChatGPT achieving an F1 score of 0.932
and Gemini achieving an F1 score of 0.930.

Table 2. Results of sensitivity testing.

Value ChatGPT Gemini

Sensitivity 0.980 0.888
Specificity 0.684 0.947

Positive Predictive Value (PPV) 0.889 0.978
Negative Predictive Value (NPV) 0.929 0.766
Positive Likelihood Ratio (LR+) 3.102 16.867

Negative Likelihood Ratio (LR−) 0.030 0.118
Accuracy 0.897 0.904
F1 score 0.932 0.930

3.3. Replicability Results

To ensure consistency, each of the 68 prompts was presented twice. Gemini’s clas-
sification response differed in six instances (8.9%). In contrast, ChatGPT showed more
variability, with its classification changing in 17 cases (25.0%), indicating a lower level of
consistency and replicability. Among ChatGPT’s changes, 12 (70.5%) resulted in a more
accurate classification (e.g., changing from incorrect to partially correct, changing from in-
correct to correct, or changing from partially correct to correct). In terms of recommending
surgical or nonsurgical management, ChatGPT modified its answer for six (8.9%) injuries,
five of which were corrected in the subsequent response. However, Gemini’s response
changed only once (1.5%), albeit to the incorrect management choice.

4. Discussion

With the correct classification of 70.6% of hand injuries, Gemini demonstrated superior
performance to ChatGPT, which correctly classified just over a quarter of the injuries.
ChatGPT’s poor performance, specifically when using the Eaton [30], Hintermann [35],
and Mayo [28,29] classification systems, may suggest a lack of information relating to these
classification systems in the dataset on which it was trained. The results of this study
demonstrate Gemini’s superior performance over ChatGPT, which contrasts the few prior
comparative studies involving Gemini, where ChatGPT was found to demonstrate greater
accuracy [40,41]. Similarly, previous studies comparing ChatGPT to Gemini’s predecessor,
Bard, have shown varied results, with some studies favoring ChatGPT [42–45] and others
favoring Bard [46,47]. Without a definitive accuracy threshold, neither model is currently
reliable enough as a classification tool to be used in clinical practice, but this situation is
expected to change shortly. While neither ChatGPT nor Gemini were designed for medical
use, the findings reveal promising potential in hand injury classification, which is just
one of its potential applications in hand surgery (Figure 4). With the further expansion
of datasets and the refinement of algorithms, these models are anticipated to reach the
required level of accuracy for practical use.
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The findings from sensitivity testing indicate that ChatGPT leans towards recom-
mending surgical intervention more quickly, whereas Gemini takes a more cautious and
conservative approach, showing hesitation in recommending surgical intervention. These
differing behaviors carry significant implications, particularly in clinical decision-making
scenarios. While ChatGPT’s promptness may offer a sense of urgency, it also raises concerns
regarding the potential for the over-recommendation of surgical procedures. On the other
hand, Gemini’s reluctance may contribute to a more conservative approach, minimizing
the risk of unnecessary interventions, but possibly at the expense of timely action when
surgical intervention is indeed warranted. Healthcare providers must carefully consider
these nuances when incorporating AI decision-support tools into clinical practice, balancing
the need for prompt action with the importance of exercising prudence and minimizing
unnecessary interventions.

When compared to ChatGPT, Gemini also demonstrated greater consistency in its
answers. This is not unsurprising, as previous studies [48–50] have reported concerns
regarding ChatGPT’s consistency. To be a reliable medical resource, an LLM must ensure
that its prompts and recommendations are reproducible, replicable, and consistent across
diverse interactions and contexts. Achieving this ensures that healthcare providers can trust
the model’s outputs consistently, thereby streamlining their decision-making processes [50].
This enhanced reliability not only instills confidence in the LLM’s capabilities, but also
translates into more efficient and effective patient care, as clinicians can rely on the model
to provide accurate and consistent guidance in various medical scenarios.

Although not the main focus of this study, it was evident that ChatGPT tended to
generate lengthy and verbose responses, whereas Gemini provided more concise ones. In
a clinical environment, where healthcare providers are frequently pressed for time and
efficiency is paramount, the ability to deliver concise responses can be highly beneficial.
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Given that every minute counts in such settings, the succinctness of Gemini’s responses
may offer a practical advantage, enabling healthcare professionals to quickly grasp essential
information without unnecessary verbosity. In the high-pressure setting of the emergency
department (ED), where healthcare providers are often inundated with urgent cases, the
rapid delivery of concise, accurate information would be especially beneficial. Gemini’s
capability to provide succinct responses can support emergency providers in quickly
assessing and prioritizing cases, thus enabling efficient resource allocation and expediting
critical interventions.

ED applications of LLMs thus far have mostly focused on evaluating ChatGPT’s ability
to triage and diagnose. Berg et al. [48] examined ChatGPT’s capacity to generate differential
diagnoses, concluding that, while it can aid clinicians, its inconsistent responses limit its
potential to replace clinical judgment. Meanwhile, Fraser et al. [51] compared ChatGPT-3.5
and ChatGPT-4 in triage and diagnosis, finding that ChatGPT-3.5 possessed high diagnostic
accuracy but insufficient triage abilities. ChatGPT-4 showed improved triaging capability
but lower diagnostic accuracy. The authors advised against unsupervised patient use and
advocated for efforts to improve diagnostic and triage accuracy. Further studies highlight-
ing ChatGPT’s potential in emergency medicine include its role in suggesting diagnostic
imaging [52] and providing diagnostic recommendations based on electrocardiography
data [53]. Given that hand injuries are often first seen and evaluated in the ED [1,23,54],
equipping emergency providers with resources like LLMs can help expedite triage and
diagnostic workup.

The potential of LLMs to expedite diagnostic workup and management presents
a promising solution for supporting emergency and primary care providers in manag-
ing hand injuries rapidly while waiting for a hand surgeon. This application could be
especially advantageous in rural or underserved areas lacking on-site hand specialists.
LLMs can empower these frontline providers to initiate diagnostic processes and treatment
strategies, serving as a valuable resource until a hand specialist can evaluate the patient.
This concept of using LLMs as a specialty consult has been previously discussed in the
literature [50,51,55,56]. However, it is important to note that, while LLMs can support
providers and bridge the gap between the initial presentation and hand surgery evaluation,
they should not be used to replace an actual consultation with a hand specialist [1,11,13,24].

4.1. Ethical Considerations

As the integration of LLMs into medical practice becomes increasingly prevalent, it
is imperative to address the ethical considerations and limitations associated with their
use. While LLMs offer immense potential to enhance patient care and medical decision
making in hand surgery, they also pose ethical challenges that necessitate careful attention.
Upholding ethical principles, such as autonomy, beneficence, nonmaleficence, and justice,
is paramount in the development and deployment of these models.

• Autonomy: Healthcare providers must ensure that LLMs respect a patient’s autonomy
by facilitating informed decision making and respecting their preferences and values,
especially throughout the surgical process [57,58]. A patient’s autonomy may be
compromised if they are not adequately informed about the limitations, biases, and
role of LLMs in their care [1,59].

• Beneficence: LLMs have the potential to significantly benefit patient care by providing
timely and accurate information that can empower both healthcare professionals
and patients to make more informed decisions. However, the implementation of
LLMs must be guided by a commitment to maximizing these potential benefits while
minimizing harm [48,59].

• Nonmaleficence: While LLMs can offer valuable assistance, they also carry inherent
risks, including the potential for errors, biases, and misinformation [1,3,11,48]. Health-
care providers must critically evaluate and verify LLM-generated recommendations.
Additionally, measures should be in place to mitigate the risk of LLMs propagating
misinformation or perpetuating bias and healthcare disparities [57,59]. This entails the
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ongoing monitoring and evaluation of LLM performance, as well as efforts to address
any identified issues or limitations.

• Justice: The fair distribution of resources requires equitable access to this technology
and its benefits [2]. Failing to address LLM bias and disparities in LLM utilization
could exacerbate existing inequities in healthcare access and outcomes [1,2,52,57].
Therefore, it is imperative for healthcare systems to implement policies and initiatives
aimed at promoting equitable access to LLM technology.

By paying careful attention to issues such as data privacy, transparency in decision-
making processes, liability, and the mitigation of biases, healthcare can navigate the integra-
tion of LLMs in a manner that prioritizes ethical integrity. By proactively addressing these
ethical considerations, healthcare can harness the full potential of LLMs while safeguarding
patient autonomy, well-being, and justice in medical practice.

4.2. Limitations

We acknowledge multiple limitations to the study and the generalizability of its results.
The clinical scenarios depicted in this study adhered closely to textbook examples. This
prompts the question: how would these models fare when faced with less straightforward
vignettes? Real-life patient encounters frequently involve atypical or complex presentations,
which may diverge from the expected norms. Models trained solely on textbook-like cases
may struggle to accurately interpret and respond to the complexities inherent in real-world
medical practice. Evaluating these models’ adaptability to a wide range of clinical scenarios
is essential for their effectiveness. Failing to do so risks undermining their reliability
and applicability in real-world healthcare settings, potentially compromising patient care
outcomes. Therefore, future research endeavors should prioritize testing these models
against a wider range of clinical vignettes to comprehensively assess their real-world utility
and identify areas for improvement.

Although this study included 68 unique patient vignettes covering 12 classification
systems, it is by no means comprehensive. While these vignettes offer valuable insights into
the classification abilities of the models under examination, they may not fully encapsulate
the diverse spectrum of hand injuries encountered in clinical practice. As such, the study’s
findings should be interpreted within the context of its inherent constraints. Despite
these challenges, our study serves as a starting point for future investigations to delve
into these nuances and to advance our understanding of LLM performance in real-world
clinical practice.

Furthermore, the success of using LLMs in medicine depends entirely on their ability
to provide accurate and reliable information. The speed at which an LLM can respond to
queries becomes irrelevant if it offers incorrect and potentially harmful recommendations.
Misinformation can lead to adverse patient outcomes and the erosion of trust in technology
and healthcare providers [9,57,60]. As previously mentioned, we acknowledge that neither
ChatGPT nor Gemini was designed specifically with medical applications in mind. The
datasets on which these models were trained likely lack significant medical information
and data. This inherent limitation underscores the importance of further refining LLMs
specifically for healthcare applications in order to mitigate such shortcomings.

4.3. Future Research and Next Steps

Moving forward, it is imperative to address the limitations highlighted in this study to
maximize the potential of LLMs in healthcare. While ChatGPT and Gemini have exhibited
promising capabilities in classifying hand injuries and offering management recommenda-
tions, there remains a need for further research to refine and enhance their performance for
real-world clinical applications. One crucial area of focus for future investigation involves
expanding the training datasets of these LLMs with more comprehensive medical infor-
mation and clinical data. This would allow these models to better navigate the intricacies
of medical decision making. Additionally, future studies should aim to evaluate the per-
formance of ChatGPT, Gemini, and other LLMs in classifying atypical or complex hand
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injuries, as well as extending their assessment to encompass a broader spectrum of injuries
and medical conditions. Most current studies focus exclusively on ChatGPT, but with
Gemini’s superior performance in hand injury classification, further studies examining this
model’s ability are warranted. By systematically examining LLM performance in diverse
clinical scenarios, researchers can identify areas for improvement and tailor these models
to address the specific challenges encountered in medical practice.

Furthermore, the advancement of LLMs in medicine necessitates ongoing research
and development. By continually refining and validating AI tools like ChatGPT and
Gemini, healthcare professionals can harness their full potential as invaluable resources
in clinical practice. Further investigation into the use and performance of additional AI
tools like RAG, especially when used in conjunction with LLMs, is indicated. Through
collaborative interdisciplinary efforts between developers, healthcare institutions, and
medical professionals, the development of robust and reliable medical-focused LLMs can
pave the way for a new era of personalized and efficient healthcare delivery.

5. Conclusions

This study evaluates the performance of ChatGPT and Gemini in classifying hand
injuries and suggesting management. While both models show potential, Gemini gener-
ally performs better than ChatGPT in classification, although not currently at a suitable
level for current use. For treatment recommendations, ChatGPT leans towards recom-
mending surgical intervention more readily, albeit with lower specificity than Gemini.
These findings stress the need to carefully weigh the strengths and limitations of different
LLMs when incorporating them into clinical practice. Both ChatGPT and Gemini hold
promise as valuable resources for hand surgeons. This potential is expected to translate into
enhanced diagnostic accuracy and treatment decisions, ultimately improving patient out-
comes. However, further development and research are necessary to ensure the reliability of
these models.
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