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Chronic kidney disease (CKD) poses a significant public health challenge, affecting
approximately 11% to 13% of the global population [1]. This accounts for over 800 million
people worldwide [2]. Over the past two decades, the burden of CKD has grown at a faster
rate than that of other noncommunicable diseases [3,4]. This is likely due to a considerable
rise in cardiovascular events, kidney failure requiring renal replacement therapy, poor
quality of life, and mortality [1]. CKD is projected to become the fifth-leading cause of death
worldwide by 2040, with an estimated 5 to 10 million deaths annually [1,2]. Survivors of
CKD often experience a range of systemic complications, including cardiovascular disease,
hypertension, anemia, mineral bone disorder, volume overload, electrolyte and acid-base
abnormalities, malnutrition, sexual dysfunction, and pruritus, which can adversely affect
their quality of life [1,2].

The top three leading causes of CKD are diabetes mellitus (DM), hypertension, and
primary glomerulonephritis, which account for 70–90% of all cases worldwide [1,2]. Ad-
ditionally, numerous factors influence the progression of CKD, including modifiable risk
factors such as diabetes, hypertension, proteinuria, body mass index, smoking, and nephro-
toxic medications, as well as non-modifiable factors such as age, gender, ethnicity, family
history of kidney disease, and low socioeconomic status [1,2]. Early detection of patients
at risk is crucial to delaying kidney disease progression. This can be achieved through
the measurement of eGFR and the urinary albumin-to-creatinine ratio (ACR), as well as
interventions related to nutrition, lifestyle, and medications to control blood pressure and
glucose levels and reduce albuminuria [1,2].

Despite the existence of evidence-based guidelines for managing CKD and the demon-
strated ability of current treatment care models to delay CKD progression and improve
patient outcomes, the global nephrology community recognizes that these approaches are
inadequate for addressing the growing burden of CKD [1,2]. Given the multitude of risk fac-
tors and diagnostic tests involved, accurately diagnosing, predicting the prognosis of, and
optimally managing CKD can be challenging for clinicians [5]. In response to this complex
problem, artificial intelligence (AI) has been introduced as a potential solution [6–9].

AI is the ability of a human-made machine to display complex decision-making or
data analysis compared to human intelligence [6,10–14]. Machine learning is a subset of
AI that involves teaching machines to recognize patterns and make predictions from data
without explicit programming [15–19].

As shown in Figure 1, the two primary categories of machine learning are supervised
and unsupervised learning [20–22]. Supervised learning uses labeled data to train machine
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learning models to recognize patterns and make predictions. Examples of supervised
learning in the context of CKD include the diagnosis of CKD solely from kidney ultra-
sound or fundus imaging, predicting kidney progression, mortality, and hemoglobin level
in hemodialysis patients receiving erythropoietin stimulating agents (ESAs), as well as
identifying optimal treatment for patients [20–23].
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On the other hand, unsupervised learning uses unlabeled data to identify patterns or
clusters without prior knowledge of the outcome. Examples of unsupervised learning in
CKD include clustering patients based on similar clinical and demographic characteris-
tics [7,9] or discovering unknown biomarkers or subtypes of the disease [8].

The use of machine learning and AI has the potential to revolutionize the manage-
ment of CKD [20–22]. These technologies can help with early detection and diagnosis by
analyzing large datasets of patient health records, identifying patterns, and predicting
those at risk of developing CKD [20,24]. Machine learning algorithms can also aid in de-
tecting kidney damage through the analysis of medical images and personalize treatment
by identifying the most effective treatment for each patient based on their clinical and
demographic characteristics [20–22]. Predictive analytics can help identify patients at risk
of developing complications, and remote monitoring can allow clinicians to track patient
health in real-time. Additionally, machine learning and AI can help identify new treatment
and prevention strategies and provide personalized treatment plans for CKD treatment.

While several pharmacological treatments, including sodium–glucose cotransporter-2
(SGLT2) inhibitors, renin–angiotensin system (RAS) inhibitors, glucagon-like peptide-1
(GLP-1) agonists, nonsteroidal mineralocorticoid receptor antagonists (MRAs), and com-
bination therapies, have demonstrated potential in attenuating the progression of CKD
and improving cardiovascular outcomes [4], the efficacy of these treatments can differ
depending on the characteristics of individual patients. Thus, utilizing machine learning in
future research could help tailor treatments for CKD patients and determine which patients
may derive the most benefit from each intervention. Machine learning algorithms can
assess vast amounts of patient data to identify correlations and associations between patient
features and treatment responses, resulting in personalized treatment recommendations
that could enhance outcomes for CKD patients.
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Recently, a language model, ChatGPT (https://chat.openai.com/), has been devel-
oped and will require additional study to validate if ChatGPT can accurately provide a
variety of resources and information related to CKD that could potentially enhance pa-
tient care in the future. It can potentially offer educational resources to both patients and
healthcare providers, including details on CKD causes, symptoms, and treatment options.
The language model can also facilitate communication between patients and healthcare
providers, ensuring that patients receive the information they require to manage their
condition effectively. Furthermore, ChatGPT can improve access to information on CKD,
including the latest research and treatment options. Despite its limitations in the ability
to diagnose or treat CKD, ChatGPT’s resources and support could potentially improve
patient care for this chronic condition in the future.

Overall, machine learning has the potential to improve our understanding of CKD
and provide personalized treatment plans for individual patients.
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