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Abstract: Artificial intelligence (AI) and deep learning (DL)-based systems have gained wide in-
terest in macular disorders, including diabetic macular edema (DME). This paper aims to validate
an AI algorithm for identifying and quantifying different major optical coherence tomography
(OCT) biomarkers in DME eyes by comparing the algorithm to human expert manual examination.
Intraretinal (IRF) and subretinal fluid (SRF) detection and volumes, external limiting-membrane
(ELM) and ellipsoid zone (EZ) integrity, and hyperreflective retina foci (HRF) quantification were
analyzed. Three-hundred three DME eyes were included. The mean central subfield thickness
was 386.5 ± 130.2 µm. IRF was present in all eyes and confirmed by AI software. The agreement
(kappa value) (95% confidence interval) for SRF presence and ELM and EZ interruption were 0.831
(0.738–0.924), 0.934 (0.886–0.982), and 0.936 (0.894–0.977), respectively. The accuracy of the automatic
quantification of IRF, SRF, ELM, and EZ ranged between 94.7% and 95.7%, while accuracy of quality
parameters ranged between 99.0% (OCT layer segmentation) and 100.0% (fovea centering). The Intra-
class Correlation Coefficient between clinical and automated HRF count was excellent (0.97). This
AI algorithm provides a reliable and reproducible assessment of the most relevant OCT biomarkers
in DME. It may allow clinicians to routinely identify and quantify these parameters, offering an
objective way of diagnosing and following DME eyes.

Keywords: diabetic macular edema; artificial intelligence; biomarker; spectral domain OCT; outcomes;
subretinal fluid; intraretinal fluid; hyperreflective retinal foci; external limiting membrane; ellipsoid zone

1. Introduction

Diabetic macular edema (DME) represents a major cause of vision loss among working-
aged individuals in developed countries [1,2]. At present, approximately 537 million adults
(20–79 years) are living with diabetes, and this number is projected to continuously rise [3].
The prevalence of DME among individuals with diabetes in Europe was estimated to be
3.7%, and its pooled mean annual incidence in type-2-diabetes patients was 0.4% [4]. DME
is a multifactorial and complex disease driven by hypoxia, inflammation, hyperperme-
ability, and angiogenesis [5,6]. As a consequence, it is reasonable to hypothesize different
DME phenotypes with different disease severity, risk of progression, and treatment out-
comes [7]. Therefore, the assessment of the individual morphologic characteristics of DME
may provide a better understanding of the pathophysiology of this disease, which, in
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turn, might help in the selection of the best treatment option in a personalized precision
medicine approach [8].

Optical coherence tomography (OCT), particularly spectral domain OCT (SD-OCT),
has entailed a significant improvement in the diagnostic efficacy of DME [9,10]. Qualitative
and quantitative morphological features obtained via SD-OCT provide relevant information
about changes at the level of the internal and external retina, identifying the biological
limits of therapeutic interventions [11].

Among major OCT features, the presence and amount of intraretinal (IRF) and sub-
retinal fluid (SRF), the integrity of the external limiting membrane (ELM) and ellipsoid
zone (EZ), and the number of hyperreflective foci (HRF) have been identified as the most
currently reliable OCT biomarkers for DME diagnosis and prognosis [12–19].

Over the last several years, significant advances in telecommunications, artificial intel-
ligence (AI), and deep learning (DL)-based systems have opened new horizons for creating
efficient tools for the quantification of major parameters in macular disorders [20–22].
The literature data suggest that AI may achieve high performance in detecting retinal
fluid [23,24] and in assessing anatomic changes over the course of the disease [25]. More-
over, particularly in eyes with age-related macular degeneration (AMD), AI has demon-
strated its capability to detect both qualitatively and quantitatively the presence of IRF and
SRF in a real-world scenario [26].

This study aims to report the validation and applicability of an AI algorithm for the
identification and quantification of the currently most significant OCT biomarkers in DME.

2. Materials and Methods
2.1. Study Design and Dataset

A multicenter AI algorithm validation study was performed in DME eyes. The study
was conducted in accordance with the rules of the Declaration of Helsinki. Since all
scans were completely anonymized, informed consent was waived by the Istitutional
Review Board for the image analysis. SD-OCT scans of eyes affected by DME from type
1 and 2 patients were collected from four different Italian reference centers for diabetic
retinopathy and maculopathy. All SD-OCT scans images were obtained using the Spectralis
HRA + OCT2 platform (Heidelberg Engineering, Heidelberg, Germany). For each study
eye, a volumetric map and a linear scan were analyzed. Inclusion criteria for OCT scans
were as follows: volumetric scan of 49 scans in High-Speed (HS) mode >12 Automatic
Real-Time Tracking (ART) (quality index > 28) and linear scan passing through the fovea
acquired in High-Resolution (HR) mode >90 ART (quality index > 30) were analyzed.
Exclusion criteria were any sign of chorioretinal diseases other than diabetic macular
edema (e.g., drusen).

At any site, the scan of each eye was separately analyzed by the automatic quantifica-
tion AI software and by clinical evaluation.

2.2. AI Algorithm Description and Analysis

The AI algorithm is based on adversarial generative networks, which is a DL technique
that uses a small portion of labeled data (manually defined by the clinicians) and lots of
unlabeled data to build a fully labeled dataset propagating the labels throughout the
database. It is a semi-supervised learning AI capable of training itself on previously
labeled datasets and predicting possible variations or noises that can characterize these
datasets to perform effective diagnoses in a real-world context [27]. The AI algorithm is
capable of evaluating separately different OCT biomarkers at the same time (Figure 1). The
hardware/technical requirements for using the software have been summarized in Table 1.
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Operating system Windows 10 or higher 64-bit 
RAM memory in the computer  8 GB or more 

Input images 
Horizontal B scans and/or volumetric scans composed of 

parallel horizontal B scans 
Linear scans (High Resolution mode) ART > 90, Quality Index > 30 
Volumetric scans   ART > 12, Quality Index > 28 

GB: gigabytes; RAM: random access memory; ART: automatic real-time tracking. 

All OCT scans of each study eye were segmented using the AI automatic software. 
The data collected from the whole volumetric scan included IRF and SRF volumes; the 
percentage of IRF volume in the central 1 mm (IRF-1) circle, in the ring between 1 and 3 

Figure 1. Overview of the different spectral domain optical coherence tomography biomarkers
evaluated: (A) intraretinal fluid (red) and subretinal fluid (blue); (B) hyperreflective retinal foci
(yellow dots) localized within the central 3 mm (yellow lines); (C) external limiting membrane
(orange) and ellipsoid zone (yellow) localized within the central 1 mm (green lines).

Table 1. Overview of the hardware/technical requirements for using the AI software.

Hardware/Technical Features Requirements

Physical memory space available in the computer At least 4 GB

Operating system Windows 10 or higher 64-bit

RAM memory in the computer 8 GB or more

Input images Horizontal B scans and/or volumetric scans composed of parallel horizontal B scans

Linear scans (High Resolution mode) ART > 90, Quality Index > 30

Volumetric scans ART > 12, Quality Index > 28

GB: gigabytes; RAM: random access memory; ART: automatic real-time tracking.

All OCT scans of each study eye were segmented using the AI automatic software.
The data collected from the whole volumetric scan included IRF and SRF volumes; the
percentage of IRF volume in the central 1 mm (IRF-1) circle, in the ring between 1 and 3 mm
(IRF-3), and between 3 and 6 mm (IRF-6) was obtained. The percentage of external limiting
membrane (ELM) and ellipsoid zone interruption (EZ) was analyzed in the central 1 mm
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of the central scan of the map, passing through the fovea. From the HR linear scan, the
number of HRF (as previously described) in the central 3 mm was calculated [16].

2.3. Clinical Evaluation

The clinical evaluation, which was performed by blinded, experienced examiners (TT,
ML, LT, GC), assessed the presence of IRF, SRF, ELM, and/or EZ interruption (0 = absent,
1 = present). Moreover, for each of them, the quantification accuracy, according to the
images, was evaluated as accurate or inaccurate. The number of HRF was manually
counted (for all eyes) by one blinded, trained medical retinal expert, who worked in one
reference center. Finally, for both volumetric and linear scans, quality parameters, namely
the accuracy of the automated fovea centering and of the segmentation of retinal layers,
were evaluated by a blinded medical retinal expert (accurate/non accurate) (Figure 2).
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Figure 2. Retinal layer segmentation.

2.4. Outcomes

The primary outcome was the degree of agreement between the AI and the clinical
evaluation for assessing the presence of IRF, SRF, ELM/EZ interruption, and the number of
HRF. Secondary outcomes included the accuracy of the quantification of OCT biomarkers
and quality OCT parameters.

2.5. Statistical Analysis

For all the analyses, SAS-STAT v.9.4 (SAS Institute, Cary, NC, USA) was used.
The following parameters were considered in the present study: IRF, SRF, ELM, EZ,

and HRF. Such parameters were summarized according to the usual indexes provided by
descriptive statistics: mean and standard deviation for quantitative variables and absolute
frequency and percentage for qualitative ones.

The validation process was conducted by comparing the assessment obtained by the
AI system with the clinical evaluation. Moreover, the ROC curve of SRF versus clinical
evaluation (gold standard) was calculated. The performance was expressed by means of
the area under the curve (AROC). A SRF cutoff was identified considering the following:
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Youden index, Euclidean distance from 0,1, difference between sensitivity and specificity;
and the total number of concordant evaluations (percentage over sample size). Kappa,
PABAK, and AC1 indexes and their 95% confidence intervals were computed for the
best cutoff. Agreement between AI system and clinical evaluations was calculated by
means of kappa coefficient and two other indexes: PABAK, that is, prevalence- and bias-
adjusted kappa coefficient, and Gwet’s AC1. Cohen’s kappa results are interpreted as
follows: values ≤ 0 are interpreted as indicating no agreement, and values of 0.01–0.20 are
interpreted as none to slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial,
and 0.81–1.00 as almost perfect agreement [28].

HRF, which is a quantitative measure, was analyzed by means of the Bland–Altman
graphic procedure. Intraclass Correlation Coefficient (ICC) and its 95% confidence interval
were calculated as well [29].

3. Results

A total of 303 DME eyes were included in this analysis. Mean central subfield thickness
was 386.5 ± 130.2 µm (range: 172–881 µm). By definition of macular edema, IRF was
detected by the AI software in all eyes. The mean IRF volume, which was assessed by the
AI software, was 0.898 ± 1.367 mm3 (range: 0.001–11.070 mm3): 0.069 ± 0.089 mm3 in the
central 1 mm circle, 0.291 ± 0.422 mm3 in the 3 mm ring, and 0.538 ± 0.919 mm3 in the
6 mm ring. The distribution, in terms of percentage, of IRF was 13.9 ± 18.0% in the central
circle, 34.4 ± 21.9% in the 3 mm ring, and 51.3 ± 30.2% in the 6 mm ring. IRF density
(%/relative surface area) was 0.088 ± 0.114 in the central circle, 0.047 ± 0.068 in the 3 mm
ring, and 0.025 ± 0.043 in the 6 mm ring.

Regarding SRF, the volume was computed as SRF if the likelihood of SRF presence
was above a predetermined threshold (≥ 0.002 mm3, sensitivity: 89.7%, specificity: 97.0%;
Youden index: 0.867). SRF was detected in 43 eyes by the software, and the mean volume
was 0.111 ± 0.191 mm3 (range: 0.002–0.848 mm3).

ELM and/or EZ interruption were detected by the AI software in 70 (23.1%) and
111 (36.6%) eyes, respectively. The mean percentage of interruption in the central 1 mm
was 38.4 ± 30.4 and 41.4 ± 34.9 for ELM and EZ, respectively.

The mean number of HRF automatically counted by the AI software in the central
3 mm of the HR linear scan were 71.9 ± 22.8.

Table 2 shows the main OCT findings.

Table 2. Overview of the main spectral domain optical coherence tomography (SD-OCT) features.

AI algorithm Clinicians p Value a

IRF, mm3

Mean ± SD
Range

8.98 ± 13.67
0.00–110.7

N.A. N.A.

SRF *, n (%)
Absent
Present

260 (85.8)
43 (14.2)

264 (87.1)
39 (12.9)

0.9811

ELM interruption, n (%)
Absent
Present

233 (76.9)
70 (23.1)

236 (77.9)
67 (22.1)

0.1660

EZ interruption, n (%)
Absent
Present

192 (66.4)
111 (36.6)

195 (64.4)
108 (35.6)

0.1646

HRF, n
Mean ± SD
Range

71.9 ± 22.8
22.0–161.0

71.9 ± 22.7
25.0–151.0

1.0000 b

a Fisher exact test. b Independent sample Student t-test. * Cut-off value: 0.02 mm3. AI: artificial intelligence; IRF:
intraretinal fluid; SRF: subretinal fluid; ELM: external limiting membrane; EZ: ellipsoid zone; HRF: hyperreflective
foci; SD: standard deviation; n: number; N.A.: not applicable.
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3.1. Agreement between AI Software and Clinical Evaluation

The observed agreement between AI software and clinical evaluation ranged between
0.960 for SRF volume and 0.977 for ELM integrity. Kappa inter-rater agreement (95%
confidence interval) was 0.831 (0.738–0.924) for SRF volume, 0.934 (0.886–0.982) for ELM
integrity, and 0.936 (0.894–0.977) for EZ integrity (Table 3).

Table 3. Inter-rater agreement κ between artificial intelligence (AI) software and clinical evaluation.

Parameter + + + − − + − − p0 BI PI Kappa PABAK AC1

SRF 35 8 4 256 0.96 0.01 0.73 0.83 (0.74–0.92) 0.92 (0.88–0.97) 0.95 (0.92–0.98)

ELM 65 5 2 231 0.98 0.01 0.55 0.93 (0.89–0.98) 0.95 (0.92–0.99) 0.96 (0.94–0.99)

EZ 105 6 3 189 0.97 0.01 0.28 0.94 (0.89–0.98) 0.94 (0.90–0.98) 0.95 (0.91–0.98)

++ = classified “Present” by both modalities; − − = classified “Absent” by both modalities; + − and − + =
discordant classifications: classified “Present” by AI software and “Absent” by clinical evaluation, and classified
“Absent,” by AI software and “Present” by clinical evaluation, respectively; p0 = observed agreement; BI = bias
index; PI = prevalence index; PABAK = prevalence-adjusted and bias-adjusted kappa; AC1 = Gwet’s first-order
agreement coefficient. SRF: subretinal fluid; ELM: external limiting membrane; EZ: ellipsoid zone.

Bland–Altman plot analysis was used to assess the agreement between AI software
and clinical evaluation for HRF count (Figure 3). In the Bland–Altmann plot, almost all
measured differences were in the range (±2 SD), with a mean difference between the clinical
and automatic count of 0.03 ± 5.277. No significant trend was evident. The intraclass
correlation coefficient was 0.973 (95% confidence interval: 0.966 to 0.979).
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Figure 3. Bland–Altman plot analysis comparing the number of hyperreflective foci (HRF) assessed
by artificial intelligence (AI) software and clinical evaluation. AI: artificial intelligence; SD: stan-
dard deviation.

3.2. Quantification Accuracy

The automatic quantification was defined clinically accurate in 289 (95.38%) eyes for
IRF and 287 (94.72%) for SRF. Regarding ELM and EZ, the rate of interruption was found
clinically (qualitatively) accurate in 290 (95.71%) and 288 (95.05%) eyes for ELM and EZ,
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respectively. The degree of accuracy did not show any difference among the different study
centers (Table 4).

Table 4. Biomarker quantification accuracy and quality parameters in the overall study sample and
among the different study centers.

SD-OCT Measurements

Biomarker, n (%)
Among Centers

p a Overall
Center 1 Center 2 Center 3 Center 4

IRF
Accurate
Not-accurate

71 (94.7)
4 (5.3)

77 (98.7)
1 (1.3)

71 (94.7)
4 (5.3)

70 (93.3)
5 (6.7)

0.3543 289 (95.4)
14 (4.6)

SRF
Accurate
Not-accurate

71 (94.7)
4 (5.3)

74 (94.9)
4 (5.1)

68 (90.7)
7 (9.3)

74 (98.7)
1 (1.3)

0.1808 287 (94.7)
16 (5.3)

ELM
Accurate
Not-accurate

72 (96.0)
3 (4.0)

74 (94.9)
4 (5.19

71 (94.7)
4 (5.3)

73 (97.3)
2 (2.7)

0.9241 290 (95.7)
13 (84.3)

EZ
Accurate
Not-accurate

72 (96.0)
3 (4.0)

74 (94.9)
4 (5.1)

71 (94.7)
4 (5.3)

71 (94.7)
4 (5.3)

1.0000 288 (95.1)
15 (4.9)

SD-OCT Quality Parameters

Among Centers
p a Overall

Center 1 Center 2 Center 3 Center 4

FCM
Accurate
Not-accurate

75 (100.0)
0 (0.0)

78 (100.0)
0 (0.0)

74 (98.7)
1 (1.39)

75 (100.0)
0 (0.0)

0.7426 302 (99.7)
1 (0.3)

FCL
Accurate
Not-accurate

75 (100.0)
0 (0.0)

78 (100.0)
0 (0.0)

75 (100.0)
0 (0.0)

75 (100.0)
0 (0.0)

1.0000 303 (100.0)
0 (0.0)

LSM
Accurate
Not-accurate

72 (96.0)
3 (4.0)

78 (100.0)
0 (0.0)

75 (100.0)
0 (0.0)

75. (100.0)
0 (0.0)

0.0441 300 (99.0)
3 (1.0)

LSL
Accurate
Not-accurate

74 (98.7)
1 (1.39)

78 (100.0)
0 (0.0)

75 (100.0)
0 (0.0)

75 (100.0)
0 (0.0)

0.7426 302 (99.7)
1 (0.3)

a Fisher exact test. SD-OCT: spectral domain optical coherence tomography; IRF: intraretinal fluid; SRF: subretinal
fluid; ELM: external limiting membrane; EZ: ellipsoid zone; FCM: fovea centering at map; FCL: fovea centering at
linear scan: LSM: layer segmentation at map; LSL: layer segmentation at linear scan; n: number.

3.3. Quality Parameters

In foveal identification, 1 eye in the map and no eye in the linear scan were as-
sessed as inaccurate on all of the 303 eyes. The automatic retinal layer segmentation was
identified as clinically inaccurate in 3 and 1 of 303 eyes in the map and the linear scan,
respectively (Table 4).

4. Discussion

As the global population ages, many relevant medical and social demographic prob-
lems emerge. It leads to an increase in population morbidity and mortality because the
prevalence of chronic and degenerative diseases increases with age [30]. This entails that
health systems must cope with increasing demand with limited resources, both human
and material [31].
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As previously mentioned, the prevalence of diabetes and diabetes-related complications
has continued to increase globally [3]. The high prevalence of DME not only seriously affects
people’s life quality but also lays a heavy economic burden on healthcare budgets [3,4].

These facts have generated a growing interest in the development of software-based
analysis using AI. DL algorithms empower computers to suggest diagnosis or clinical man-
agement without direct human intervention by extracting clinically relevant information
from medical data [31].

Therefore, there is a need to develop tools that carry out fast, accurate, reliable, safe,
and cost-effective evaluations that allow for the optimization of health resources.

The current paper evaluated the effectiveness and reproducibility of new AI software
for identifying and quantifying different SD-OCT biomarkers in DME.

According to our results, there was an almost perfect agreement between the AI soft-
ware and clinical evaluation for the SRF volume and ELM and EZ integrity. Additionally,
the analysis comparing the number of HRF assessed by AI and clinical evaluation showed
excellent reliability. The clinical relevance of these findings depends critically on the rela-
tionship between OCT biomarkers and clinical diagnosis and outcomes. OCT imaging has
become the gold standard for the diagnosis and grading of DME. Current evidence shows
that different OCT biomarkers (IRF, SRF, ELM/EZ integrity, and HRF) are particularly
related to DME outcomes, even more than the central retinal thickness [12–19,25,26,32,33].
Although these OCT biomarkers have been correlated with both pre-treatment and post-
treatment anatomic and functional outcomes (e.g., retinal thickness and visual acuity),
they have different pathogenetic characteristics and, therefore, represent different aspects
(phenotypes) of DME. Additionally, current unassisted identification and quantification of
these OCT biomarkers, although clinically useful, are still subjective and manual forms of
assessment, and in particular, quantification of imaging biomarkers becomes difficult to
implement in daily clinical practice, making it unfeasible in the clinical setting, as shown in
AMD [34]. Therefore, automatic image analysis is needed in order to provide objective and
reproducible measurements of quantitative features.

AI has been successfully used for diabetic retinopathy screening, using fundus photos,
even if with variable protocols, allowing early detection, with the subsequent reduction in
blindness and cost savings [35,36].

AI previous algorithms have been considered to follow changes of IRF and SRF
volumes over time, which may aid clinicians to assess disease activity and treatment re-
sponse [25,26,33]. Although it is incredibly difficult to make comparisons between different
algorithms used in the different studies, our results about an AI quantification approach
have shown excellent accuracy and reproducibility of this AI algorithm in DME. Further-
more, this AI software simultaneously provides the quantification of the currently most
recognized biomarkers in DME. A number of other OCT biomarkers have been proposed in
the literature, e.g., the disorganization of inner retinal layers (DRIL); however, the biomark-
ers analyzed by the reported AI software were the ones with the most robust evidence
in terms of physiopathological and clinical meaning and defined OCT characteristics for
detection. Finally, our findings clearly confirmed a center and operator independence.

The main purpose of this study was to assess the effectiveness of this AI algorithm for
quantifying OCT biomarkers in DME, but it has not yet been applied on follow-up data of
the same eyes obtained from different time points. This subject will be addressed in the
ongoing follow-up study in order to analyze the performance of monitoring modifications
of biomarkers over time, with the possible onset, for example, of more significant atrophic
changes, which may represent a challenging issue for clinical practice. Another limitation of
the study is that it did not evaluate any relationship between OCT and functional outcomes
or other morphologic parameters. In fact, the aim of the study was to investigate the
performance of the AI software in comparison with clinical evaluation by analyzing the
most recognized DME biomarkers in the currently most frequently used scans (map and
linear) in clinical practice.
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5. Conclusions

The results of this study suggest that the proposed AI algorithm is a reliable and
reproducible tool for detecting and quantifying different OCT biomarkers in DME eyes,
which is currently considered prognostic even for the treatment outcomes.

Artificial intelligence may facilitate the quantification of these biomarkers in daily
practice since it has been shown to be as accurate and precise as clinical evaluation but
less time-consuming. Further studies are needed to implement this AI software in large
real-world settings to assess changes over time and the clinical relationship between those
changes and the course of the disease.
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