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Abstract: Intraoperative adverse events (iAEs) impact the outcomes of surgery, and yet are not
routinely collected, graded, and reported. Advancements in artificial intelligence (AI) have the
potential to power real-time, automatic detection of these events and disrupt the landscape of
surgical safety through the prediction and mitigation of iAEs. We sought to understand the current
implementation of AI in this space. A literature review was performed to PRISMA-DTA standards.
Included articles were from all surgical specialties and reported the automatic identification of iAEs
in real-time. Details on surgical specialty, adverse events, technology used for detecting iAEs, AI
algorithm/validation, and reference standards/conventional parameters were extracted. A meta-
analysis of algorithms with available data was conducted using a hierarchical summary receiver
operating characteristic curve (ROC). The QUADAS-2 tool was used to assess the article risk of bias
and clinical applicability. A total of 2982 studies were identified by searching PubMed, Scopus, Web
of Science, and IEEE Xplore, with 13 articles included for data extraction. The AI algorithms detected
bleeding (n = 7), vessel injury (n = 1), perfusion deficiencies (n = 1), thermal damage (n = 1), and
EMG abnormalities (n = 1), among other iAEs. Nine of the thirteen articles described at least one
validation method for the detection system; five explained using cross-validation and seven divided
the dataset into training and validation cohorts. Meta-analysis showed the algorithms were both
sensitive and specific across included iAEs (detection OR 14.74, CI 4.7–46.2). There was heterogeneity
in reported outcome statistics and article bias risk. There is a need for standardization of iAE
definitions, detection, and reporting to enhance surgical care for all patients. The heterogeneous
applications of AI in the literature highlights the pluripotent nature of this technology. Applications
of these algorithms across a breadth of urologic procedures should be investigated to assess the
generalizability of these data.

Keywords: artificial intelligence; intraoperative adverse events; systematic review; PRISMA; adverse
effects; intraoperative period

1. Introduction

Intraoperative complications account for 48% of all preventable adverse events in
hospitalized patients [1] and may have a significant clinical and fiscal impact on the post-
operative course [2–4]. Despite their ubiquity, intraoperative adverse events (iAEs) are
inadequately collected in practice and serially underreported in the literature [5,6], limiting
our understanding of their role in determining surgical outcomes and limiting our efforts
at mitigating their occurrence.

The paucity of data surrounding iAEs stems from several limitations in the way that
we routinely detect and capture these events. Traditional efforts to study iAEs have relied
on retrospective review of medical records, incident/operative reports, and patient safety
databases, often in the setting of a significant post-operative complication (i.e., death or
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re-operation) [2,7]. This approach is often limited by recall bias, selection bias, and by
incomplete records [2]. Retrospective iAE detection makes it challenging to capture and
evaluate clinically significant events that may have caused patient harm without leading
to a pre-defined outcome of interest (i.e., “near-miss events”) [2]. Prospective, real-time
observation and capture of iAEs is a more sensitive and accurate method for capturing
the full range and impact of iAEs [7] but is limited by logistical, technological, and cost
constraints. Furthermore, the lack of standardized definitions and guidelines for reporting
iAEs hinders the collection and study of iAEs, even when performed in a prospective
fashion. These limitations contribute to the underreporting of iAEs and highlight a need
for better tools for the detection and study of iAEs, ideally in a proactive, structured, and
standardized fashion.

There may be an emerging role for artificial intelligence (AI) in this role. Recent
deep learning and computer vision algorithms, for instance, have already shown promise
in helping identify dangerous anatomic planes [8] and potential surgical missteps [9] in
the real-time analysis of laparoscopic surgical video. These efforts highlight a potential
utilization of AI within the operating room in proactively detecting and recording iAEs.

Therefore, the purpose of this systematic review is to evaluate the medical and biomed-
ical engineering literature to examine the clinical use of automated methodologies for the
detection, collection, and analysis of iAEs broadly across all surgical fields and to assess
the quality of the current state of research.

2. Materials and Methods

A systematic review of the published literature on the automatic detection of iAEs
using AI was conducted according to the Preferred Reporting Items for Systematic Reviews
and Meta-Analysis (PRISMA) statement [10] and the PRISMA diagnostic test accuracy
(DTA) statement [11,12] (File S1). The systematic review was registered and approved
through PROSPERO [13] (ID# CRD42022353402).

2.1. Search Strategy

A comprehensive search was performed on 10 August 2022, in the databases PubMed,
Scopus, Web of Science, and IEEE Xplore. A combination of MeSH and free text terms were
used. The following terms were used in combination and synonyms were also included in
the search: “Artificial Intelligence”, “surgery”, “adverse event”, and “predict”. Publication
date was restricted from 2010 to current. The complete search terms are shown in Table S1.

2.2. Inclusion and Exclusion Criteria

Included articles (1) were from any surgical specialty, (2) included the intraoperative
phase of care only, (3) described any iAE as defined by the Harvard Medical Practice Study
as “an injury that was caused by medical management (rather than the underlying disease)
and that prolonged the hospitalization, produced a disability at the time of discharge, or
both”, (4) identified iAEs using an automated or real-time method (i.e., AI-based), (5) were
in English, and (6) were from any published abstract or full manuscripts, including prospec-
tive and retrospective case series, cross-sectional studies, clinical trials, and systematic
reviews or meta-analyses. We included studies even if they were not in human models, to
provide as many examples of potential AI applications in automatic intraoperative adverse
event detection as possible.

Articles were excluded if they (1) had no full text, (2) included pre- or postoperative
phases of care, (3) were from nonsurgical specialties, (4) used non-automated data collection
methods, (i.e., human rater-based review of surgical video), or (5) were papers without
original data, including editorials, letters to the editor, and comments.

2.3. Screening

Covidence software was utilized for the title/abstract and full-text screen. After
importing articles and the removal of duplicates, two reviewers (ME/AS) independently
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screened titles and abstracts based on inclusion/exclusion criteria. In situations where a
paper was considered potentially relevant based on its title and abstract, it was included for
full-text review. A third reviewer (MG) acted as a mediator in cases of disagreement. Full-
text screening was also independently conducted by two independent reviewers (ME/AS),
again mediated by a third reviewer (MG).

2.4. Data Extraction

Two independent reviewers (ME/AS) utilized a standardized excel document to
extract relevant data from the included articles. Data extracted included information on
study methodology, study sample size, type of adverse event under study, type of AI
used, and information on application of the AI for detection of the adverse event [14].
Following this, a third reviewer (MG) reviewed the data and corresponding articles for any
inconsistencies.

2.5. Meta-Analysis

Algorithms from included studies with available data (prevalence, sensitivity, and
PPV) were included in the meta-analysis [15]. Forest plots were generated to assess
detection heterogeneity and variability in sensitivity and specificity of these algorithms. A
hierarchical summary ROC was created to evaluate the overall ability of these algorithms
to predict the iAE of interest in the respective study.

2.6. Quality Assessment

The study used the QUADAS-2 tool to assess the quality of the included diagnostic
accuracy studies [16]. We followed the four phases as recommended: (1) state the review
question, (2) develop review specific guidance, (3) review published or create unique flow
diagram, (4) judge the bias and applicability of each study. We used signaling questions
provided by QUADAS when rating study bias risk as high, low, or unclear. For each key
domain (patient selection, index test, reference standard, and flow of patients through
study), the study was graded as low risk for bias if corresponding signaling questions
were answered with “yes”, the study was graded as high risk for bias if at least one
corresponding signaling question was answered with “no”, and the study was graded as
unclear risk of bias if at least one signaling question was answered with “unclear”. The
QUADAS-2 tool recommends creating flow-charts or using flow-charts if published by
articles to aid in determining study bias and predictability.

3. Results

A total of 2982 studies were identified through searching PubMed, Scopus, Web of
Science, and IEEE Xplore. After the removal of 669 duplicates, 2313 studied were included
for title and abstract screening. Of those, 2275 studies were identified as irrelevant and
excluded, while 38 were included for full-text assessment for eligibility. Of those, eight
articles were included for data analysis. Furthermore, review of the included articles and
subsequent literature searches identified five articles that were independently assessed
by reviewers (ME/AS) and were determined to be eligible for inclusion. A flow-chart of
the article selection process is shown in Figure 1. The 13 studies included in this review
were published from 2016 to 2022 [17–29], with the majority published during or after
2020. Table 1 shows an overview of the methodologies used, adverse events analyzed, AI
algorithms, type of validation, outcomes, and comparative metrics from the 13 included
articles. Table 2 summarizes the various types of algorithms used in the development of
the automatic iAE identification systems. The AI systems in the included articles detect
bleeding (seven articles), vascular/vessel injury (one article), perfusion deficiencies (one
article), thermal damage (one article), EMG abnormalities (one article), and multiple iAEs
(two articles) (Figure 2).
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Figure 1. Flow diagram: study identification and screening process.

3.1. Outcome Statistics

All 13 articles reported outcome statistics for the automatic detection of iAEs in terms of
sensitivity, specificity, accuracy, and/or AUR-ROC. Twelve of the thirteen articles reported
sensitivity, specificity, and/or accuracy. More studies (nine) reported sensitivity than
specificity (five). Not including sensitivity values of unoptimized versions of algorithms
and sensitivity values based on single patient data, the range of sensitivities was 0.7–1.0. A
summary of the outcome statistics from each study is shown in Table S2.

Five of the thirteen studies calculated an AUC-ROC value. The reported AUC-ROC
was lowest (0.82) for bleeding detection in Wei et al. [24] and highest (0.97) in Morita et al.’s
study of iAE detection in cataract surgery [18].

3.2. Study Validation and Conventional Parameters

There was significant heterogeneity in the validation methodology across the included
articles. Nine of the thirteen articles described validating the detection system, while five of
the thirteen articles reported using cross-validation for the detection system. In at least two
articles, cross-validation was used to establish a threshold for determining a positive or
negative outcome. Seven studies divided data into training and validation cohorts, thereby
providing external validation of their data [30].

Six of the thirteen studies compared the AI outcome statistics to a conventional
parameter, previously used metric, or other control (Table 1). Examples include time ratio
(TR) and rising slope (RS) for organ microperfusion, B-Mode Ultrasound (US) for thermal
lesions, and controls for predicting blood loss.
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Table 1. Summary of the 13 included articles.

Author (Year) Study Type,
Data Source Dataset Type of Procedure,

Surgical Specialty
Adverse Event,

Medium Type of AI
AI Training/

Ground-Truth
Establishment

Validation
Outcome/Comparison to

Ground-Truth or
Conventional Parameter

Chen et al. [17] (2021)

Retrospective
Data source: Recorded
videos of 50 different

TURP procedures

287 video clips from
complete recording

videos of 50 different
TURP procedures

150 videos training data
(10% for validation);

137 videos testing data

TURP, urology Bleeding, video

ResUNet for
segmentation

(neural network)
KNN, NB, Random

Forest, SVM for video
classification

3 experienced
urologists graded video

clips 0–3 based on
visual clarity

Validation completed
(limited information),

unique data for testing
stage

KNN: highest performing
AI classification model;

Improved when
compared to

ground-truth after
optimizing video

Morita et al. [18]
(2020)

Retrospective
Data source:

Recordings of cataract
surgeries performed at

Saneikai Tsukazaki
Hospital

425 video recordings of
cataract surgery
310 training data

(57 with problems),
15 validation data

(5 problems), 100 test
data (50 with problems)

Cataract surgery,
ophthalmology

Vitreous prolapse,
capsule rupture,
damage to iris,
iris prolapse,

rupture of the zonule
of the zinn,

dropped nucleus, video

Inception V3
(neural network)

Annotations of surgical
problems in video of

cataract surgery

Validation completed
(limited information),

unique data for
testing stage

High problem detection
in critical phase of

cataract surgery; detected
problem faster than

ophthalmologist
42/44 (95%) times

Park et al. [19] (2020)

Prospective
Data source: Patients

undergoing
laparoscopic surgery

for colorectal cancer at
Pusan National

University Yangsan
Hospital

50 training videos
(10,000 ICG curves
from 200 different

locations in the
ICG videos)

15 testing videos

Laparoscopic surgery
for colorectal cancer,

general surgery

Microperfusion,
Indocyanine green

(ICG) curves

Self-organizing map
(neural network)

Training ICG curves
were classified into 25

most common patterns,
associated with risk of
inadequate perfusion

Cross-validation,
unique data for

testing stage

Compared to T 1/2max,
TR, and RS, AUC higher

(0.842 vs. 0.734, 0.750,
0.677) and equal or higher

for most other statistics

Su et al. [20] (2022)

Retrospective
Data source: 3 large
digital subtraction
angiography (DSA)

image series databases

4429 patients from
3 databases;

85 perforations,
233 non-perforations in

study

Endovascular therapy,
interventionalist

Intracranial vessel
perforation, DSA runs

Spatial-temporal
networks (CNN, RNN)

Experienced radiologist
reviewed DSA images

for all perforation cases
and annotated

locations

Ten-fold
cross-validation

AI performed at similar
level as expert radiologist

Zhang et al. [21]
(2019)

Retrospective
Data source: 82 groups
of ablation experiments

from 32 ex vivo
liver tissues

1640 ultrasound data
matrices of thermal

lesions:
1400 for training,

240 for testing

Microwave ablation,
n/s

Thermal injuries,
ultrasound images CNN

Optical images of
tissues sections used as

ground-truths

Validated (limited
information)

AUC for AI higher than
conventional B-mode

images

Zha et al. [22] (2020)

Prospective
Data source: EMG data
recorded continuously
during thyroid surgery

5 patients undergoing
thyroid surgery

One patient model
(85% for training,
15% for testing)

Cross-testing (4 for
training, 1 for testing)

Thyroid surgery, n/s

Abnormal EMG signals,
intraoperative

neurophysiological
monitoring

CNN, LSTM
Expert

neurophysiologists
classified EMGs

Unclear validation,
unique data for

testing stage

AI performed higher than
other baseline methods
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Table 1. Cont.

Author (Year) Study Type,
Data Source Dataset Type of Procedure,

Surgical Specialty
Adverse Event,

Medium Type of AI
AI Training/

Ground-Truth
Establishment

Validation
Outcome/Comparison to

Ground-Truth or
Conventional Parameter

Garcia-Martinez et al.
[23] (2017)

Retrospective
Data source:
Non-specific

laparoscopic videos;
in vitro

laboratory system

23 in vivo laparoscopic
training videos
(17 bleeding)

In vitro training videos
with 5 different
configurations

25 in vitro images for
testing

32 in vivo images for
testing

Various
(cholecystectomies,

pelvic surgeries, total
mesorectal excisions,

radical hysterectomies,
pancreatectomy,

gastrectomy, aortic
lymphadenectomy,

retroperitoneal
dissections,

nephroureterectomies,
and colectomies)

Bleeding, video

Computer vision
algorithm (open source

computer vision and
machine learning
software library

Open CV)

Developed algorithm
after analyzing series of

images for blood
detection based on

pixel ratios

Cross-validation of
pixels to obtain

threshold for bleeding,
unique date for

testing stage

Compared to two
previous algorithms for

blood pixel classification;
in vitro bleeding

classification performed
better than in vivo

bleeding classification

Wei et al. [24] (2021)

Retrospective
Data Source: Operating

room at St. Michael’s
Hospital in Toronto,

Canada, using the OR
Black Box ®

130 laparoscopic videos
Laparoscopic surgery
for colorectal cancer,

general surgery

Bleeding/thermal
injury, video CNN

Videos reviewed and
annotated by three
trained surgeons,

labeling blood,
bleeding, burn, and

thermal injury

5-fold cross-validation
to select best epoch and

threshold, unclear if
used unique data

for testing

AI outperformed
InceptionV3: AUROC

0.74 vs. 0.80 in bleeding
detection; 0.83 vs. 0.93 in
thermal injury detection;
average precision 0.24 vs.
0.36 in bleeding; 0.38 vs.

0.56 in thermal injury
detection

Hua et al. [25] (2022)

Retrospective
Data source:

Laparoscopic surgery
video recorded at

Peking Union Medical
College Hospital

12 bleeding video clips
(10 laparoscopic

surgeries)

Laparoscopic surgery,
general surgery

Bleeding point
detection, video RCNN

Ground-truth areas of
bleeding point marked

by 2 senior surgeons

No validation
explanation

Introduced temporal
component that improved

bleeding detection
compared to

previous systems

Okamoto et al. [26]
(2019)

Retrospective
Data source:
Non-specific

laparoscopic surgical
videos

10 videos of patients
undergoing

laparoscopic surgery

Laparoscopic surgery,
n/s Bleeding, video SVM

Ground-truth
established by

annotations

Cross-validation,
unique data for

testing stage

High outcome measures
when compared to

ground-truths

Jo et al. [27] (2016)

Retrospective
Data source: Non-

specific laparoscopic
surgical videos

4 testing videos Robot-assisted
laparoscopy, n/s Bleeding, video Original algorithm

Established threshold
for hemorrhage
candidate areas

No validation
explanation, likely

unique data for
testing stage

No comparison identified

Kugener et al. [28]
(2022)

Retrospective
Data source: SOCAL

123 training videos,
20 testing videos

Internal carotid artery
injury repair,
neurosurgery

Bleeding, video Deep neural
network, LSTM

Automated and
annotated versions Validation of model RSME higher compared

to two control methods

Pangal et al. [29]
(2022)

Retrospective
Data source: SOCAL

127 training videos,
20 testing videos

Internal carotid artery
injury repair,
neurosurgery

Bleeding, video Deep Neural
Network, LSTM

Blood loss measured
for ground-truth

Validated SOCALNet
predictions

SOCALNet met or
surpassed expert

prediction performance

n/s: not-specified; DS: digital subtraction angiography; LSTM: long–short term memory; SVM: support vector machine; CNN: convolutional neural network; RNN: recurrent neural
network; KNN: K nearest neighbor; NB: Naïve Bayes; AUC: area under curve; AUROC: area under receiver operating characteristics curve.
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Table 2. Algorithm Used for Adverse Event Detection.

Algorithm Type Citation Using Algorithm

Trees and boosting (Random Forest) 17

Support vector machine 17, 26

Naïve Bayes 17

K nearest neighbor 17

Artificial neural network 17, 18, 19, 20, 21, 22, 24, 25, 28, 29

Computer vision algorithm 23, 26, 27
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Figure 2. Intraoperative adverse event type identified by artificial intelligence (AI).

3.3. Meta-Analysis

A meta-analysis was conducted, combining model performance data from a total
of ten algorithms in four of the included articles. The grouped sensitivity was 0.78 (CI
0.64–0.88) and specificity was 0.81 (CI 0.69–0.88) (Figures S1 and S2) of these algorithms. A
hierarchical summary ROC was created to calculate the combined ability to predict iAEs,
which included ophthalmological, vascular, bleeding, and intraoperative EMG abnormali-
ties. Overall, these algorithms were highly predictive for the iAEs (OR 14.74, CI 4.70–46.18)
(Figure 3).

3.4. Quality Assessment

A summary of the risk of bias and applicability based on the QUADAS-2 tool for
assessing quality of diagnostic accuracy studies is shown in Figure 4. All studies were
rated as unclear risk of bias for patient selection and the majority were rated as unclear
for flow and timing. Most studies had a low risk of bias for the index test and reference
standard. We rated nearly every study to have low concerns regarding applicability for
patient selection, index test, and reference standard. The flow diagram was developed and
used to summarize methods of each included article (Figure 5), and the flow-chart created
for each article are included in Figure S3.
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4. Discussion

The surgical community currently lacks a gold standard for objective iAE identification
and reporting in the literature, and without standardization, our ability to accurately define
surgical complications remains limited. AI represents a potential solution for identifying
and capturing iAEs, but has been used sparingly, as demonstrated in this review. The
majority of the literature in this review was published after 2020, highlighting the novelty
of this work relative to other AI applications in surgical science. Different forms of deep
neural learning algorithms were employed in the surveilled papers, including SVM, In-
ception V3, and CNN, as well as original, novel algorithms. Although bleeding detection
was the most common outcome in these studies, several papers demonstrated success in
identifying perfusion deficiencies, thermal damage, and EMG abnormalities. Included
surgical specialties were urology, ophthalmology, general surgery, and neurosurgery. This
heterogeneity of iAEs and subspecialties included in this review speaks to the generaliz-
ability of many of these methodologies, and lays a promising foundation for the future use
of AI in iAE reporting.

For AI to successfully identify iAEs over the course of a procedure, the algorithm
must first be able to recognize what is expected and routine. There are several instances in
the literature where AI has demonstrated success in analyzing and correctly identifying
both surgical steps and outcomes. For example, two distinct neural network models were
able to accurately identify laparoscopic instruments and their position in the surgical field
using surgical video, calculating measures of surgical efficiency [31,32]. A deep learning
algorithm was similarly applied to robotic surgery and able to track the movement of
instruments with 83% accuracy [33]. Building on this work, Hashimoto and colleagues
used a neural network trained with computer vision data to autonomously annotate the
procedural steps of a general laparoscopic procedure with accuracy in the mid-1980s [9].
Taken together, the ability for AI models to identify surgical stages, surgical instruments,
and instrument usage lays the framework for the AI-based identification of deviations from
standard procedure, including suboptimal instrument usage and aberrations in the flow of
surgical steps.
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AI has been used successfully to measure surgical efficiency and improve skills [34–37,37,38].
Specifically, CNNs use feature extraction to provide objective feedback for trainees on
robotic skills such as suturing, knot tying, and needle passing with accuracy in the 90s [39],
and entropy-based models achieves similar levels of success in the automated scoring of
suturing and knot-tying [40]. Computer vision has been similarly employed to critique
open surgical skills based on ratings from expert surgeons [41]. Kinematic and surgical
error data take robotic surgery feedback one step further with the addition of objective
kinematic data to subjective, expert-derived scoring of intraoperative video [42]. In fact,
tool motion tracking, hand motion tracking, eye motion tracking, and muscle contraction
data can all be incorporated into machine and deep learning models to predict a surgeon’s
skill level [43].

While intraoperative events account for a proportion of the variability in patient
safety and surgical outcomes, clinicopathological factors certainly play a significant role
as well. Preoperative patient data have traditionally been used in predictive models
evaluating postoperative outcomes in urologic and other surgical procedures [44,45]. While
these methods for evaluating perioperative risk for patients will continue to be used and
enhanced with AI, only when combining preoperative and intraoperative data will our
ability to accurately anticipate postoperative complications be optimized.

The underreporting of iAEs is a multifactorial issue. Most notably, there is a lack of a
standardized, accurate, and reproducible definition in the surgical literature [46]. Studies
suggest that the medical record is an unreliable source of iAE data, even with regards to
‘never events’ [47,48]. Furthermore, data suggest that not all surgeons disclose iAEs to
patients, and this lack of communication further obscures iAE reporting in the literature,
possibly as a result of the negative impact these events have on a surgeon’s psyche [49]. AI
may help bridge this gap by identifying iAEs directly from operative footage as opposed
to relying on retrospective collection such as EMR abstraction. A byproduct of improved
reporting is potential improvements in the counselling of patients preoperatively, and more
realistic rates of iAEs may encourage surgeons to be more forthcoming in disclosing these
events. The most promising use of these data is the development of strategies that allow
for the mitigation or minimization of iAEs in regard to safety and surgical outcomes. Only
with the comprehensive capture of any event that threatens patient safety, both resulting in
complications and ‘near misses’, can we uncover the most suitable educational and quality
improvement interventions to enhance our care of surgical patients.

Our current, primary approach to discussing iAEs in clinical practice are morbidity
and mortality conferences (MMCs). These remain a cornerstone in departmental and hospi-
tal quality improvement for analyzing patient cases with suboptimal outcomes, normally
identified as a result of an unusual or concerning complication in the postoperative period.
However, accurate surgical recall fades with time, limiting the ability of MMCs to bring
about constructive changes to patient care [50]. Additionally, a minority of complications
occurring in the process of clinical practice are discussed at MMCs, introducing selection
bias into this process [51,52]. Despite these challenges, MMCs are perceived as successful
and important to medical education, and efforts to improve them should be undertaken [30].
Prospective, robust methods of identifying iAEs would greatly enhance these initiatives, in-
cluding the use of video feedback and AI feature analysis of these events helping minimize
inherent errors of human recall.

Limitations of this systematic review include the heterogeneity of the AI models em-
ployed and the robustness of the model validation strategies used. Additionally, many
models used in the review were developed with data from small numbers of individual
expert opinions, potentially limiting the generalizability of those models across different
patient populations. Variability in the types of iAEs included in each study serves as both a
strength and limitation, and further work is needed to establish and validate appropriate
models that can accurately capture the wide range of iAEs encountered during surgical
procedures. While a meta-analysis was able to demonstrate the overall combined per-
formance of the published AI algorithms, the variations in the outcomes of interest and
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internal/external validation techniques used need to be accounted for when interpreting
these findings. Additionally, the data used in the meta-analysis were extracted from the
articles themselves, without access to the raw data. Finally, this review is limited by the
overall quality of the studies and there is a need for randomized studies.

5. Conclusions

There is a demonstrable need for the standardization of iAE identification and report-
ing in surgery, which may be improved with the incorporation of AI technology. While
the models included in this review provide a promising foundation for the use of AI soft-
ware in iAE reporting, rigorous testing of these models in larger, diverse populations is
paramount. For universal iAEs, such as blood loss, existing models should be tested across
different surgical specialties. Additionally, established models should be tested on different
procedures within the same specialty to identify models that are more broadly applicable.
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