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Abstract: Due to the key role of tumor necrosis factor-alpha (TNF-α) in the pathogenesis of im-
munoinflammatory diseases, TNF-α inhibitors have been successfully developed and used in the
clinical treatment of autoimmune disorders. Currently, five anti-TNF-α drugs have been approved:
infliximab, adalimumab, golimumab, certolizumab pegol and etanercept. Anti-TNF-α biosimilars are
also available for clinical use. Here, we will review the historical development as well as the present
and potential future applications of anti-TNF-α therapies, which have led to major improvements for
patients with several autoimmune diseases, such as rheumatoid arthritis (RA), ankylosing spondylitis
(AS), Crohn’s disease (CD), ulcerative colitis (UC), psoriasis (PS) and chronic endogenous uveitis.
Other therapeutic areas are under evaluation, including viral infections, e.g., COVID-19, as well as
chronic neuropsychiatric disorders and certain forms of cancer. The search for biomarkers able to
predict responsiveness to anti-TNF-α drugs is also discussed.

Keywords: monoclonal antibody; TNF-α; TNF-α inhibitors; biomarker; biosimilar agents; inflamma-
tion; COVID-19

1. Introduction: History of Biologics

One of the main breakthroughs of the past 50 years in medicine has been the devel-
opment of biologics. The invention of hybridoma technology goes back to 1975, when
Kohler and Milstein [1] developed this method to produce antigen-specific monoclonal
antibodies (mAbs) by hybridizing B cells from immunized animals with immortalized
mouse myeloma cells [1].

mAbs may exert two types of therapeutic effects: first, by binding an antigen, they can
neutralize its biological functions; second, by opsonizing target cells, they may induce an
effective Fc receptor-mediated immune response.

In 1986, the first murine mAB (muromonab CD-3) was approved by the USA Food
and Drug Administration (FDA) for preventing acute kidney transplant rejection [2]. This
drug selectively binds to the ε chain of the TCR-CD3 complex expressed on the surface of T
lymphocytes, blocking their proliferation and differentiation and consequently leading to
an immunodepression state. Although this was the first step toward the introduction of
mAbs in clinical use, hybridoma technology exhibited several disadvantages. In particular,
patients treated with murine mAbs produced a neutralizing anti-mouse antibody that
reduced the efficacy of the mAbs and accelerated their clearance [3]. The overcoming of
this hindrance was the development of genetic engineering techniques through which
chimeric murine–human mAbs were generated [4]. In particular, in 1984, Boulianne and
colleagues developed chimeric mAbs by fusing the murine variable domain of antigen-
binding fragment (Fab) regions with human µ and κ domains of the fragment crystallizable
(Fc) region [4]. In 1994, the first chimeric mAb (abciximab) received FDA approval as
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an antiplatelet therapy in patients with cardiovascular diseases [5], and in 1997, the anti-
CD20 mAb, rituximab, was approved by the FDA to treat patients with non-Hodgkin
lymphoma [6]. Then, abciximab and rituximab were also approved by the European
Medicine Agency (EMA) in 1997 and 1998, respectively [7,8]. On the other hand, infliximab
(Remicade) was the first chimeric anti-TNF-αmAb for the treatment of Chron’s disease [9].
The use of Remicade was then extended to other therapeutic areas, including RA (in
combination with methotrexate), ankylosing spondylitis, psoriatic arthritis, ulcerative
colitis, pediatric Crohn’s disease, plaque psoriasis and pediatric ulcerative colitis.

A further and highly significant improvement in the pharmacology of mAbs was
achieved with the production of humanized mAbs that were developed by transplanting
murine hypervariable segments of the complementary-determining regions (CDRs) into
a human Ab structure [10–12]. In 1997, the anti-IL-2 receptor (daclizumab) was the first
humanized mAb that received FDA approval for preventing renal transplant rejection [13].
Then, it was also approved by the EMA in 1999 [14]. Humanized anti-TNF-αmAbs include
adalimumab, golimumab and certolizumab. Humanized mAbs are less immunogenic than
murine and chimeric mAbs [11]. However, humanized mAbs still showed some limits. In
fact, their production was hard work and expensive. In order to bypass these limitations,
fully human mAbs were developed in the early 1990s, using display technologies (phage
display and yeast display libraries) [15–17].

Another innovative approach to obtain fully human mAbs is based on transgenic
animals that are genetically modified by inserting human immunoglobulin genes into their
genome sequence deprived of immunoglobulin loci. Hence, plasma B cells of transgenic
animals can produce fully human mAbs after exposure to a specific antigen [18,19]. Al-
though this technology was developed in 1994, the first human mAb based on transgenic
mice technology (i.e., panitumumab) was only approved by the FDA and EMA in 2006
and 2007, respectively, to treat patients with colorectal cancer harboring epidermal growth
factor receptor (EGFR) mutations [20].

The advent of these new technologies propelled interest in the production of recombi-
nant Fc-fusion proteins, which are characterized by the Fc domain of the Ab conjugated
with another protein such as an enzyme, cytokine or a receptor through a peptide linker,
therefore increasing the stability and half-life of the bound protein and prolonging its
biological effects [21]. The first Ab fusion protein, etanercept, was approved by the FDA
and EMA for clinical use in patients with RA in 1998 and 2000, respectively. It comprises the
Fc region of Ab conjugated with TNF-receptor 2 (TNFR2) [22]. The approval of etanercept
opened up the way to the development of several recombinant protein methodologies
based on the fusion of various proteins to different antibody regions, including single-
chain variable fragments (scFvs), heavy-chain Abs (hcAbs), single-chain Abs (scAbs) and
antigen-binding fragments (Fabs) [23].

The development of these Abs was based on the discovery of Abs with only two
heavy chains (containing a single variable domain referred to as a VHH or nanobody) in
the serum of camelids (alpaca, llama and camel) in 1993 [24]. Although the nanobodies
have a low molecular weight (14 kDa) and bind very well to the antigen, the binding is
unstable [25]. Through the development of bioengineering, the VHH from hcAbs can be
isolated, maintaining the binding properties of the original hcAbs. Once isolated, a fusion of
nanobodies may be generated, either by direct chemical bonding creating a 25 kDa bivalent
structure or by binding to human Fc chain fragments, creating human-compatible 50 kDa
structures. The bivalent nanobodies quickly proved to be very stable at high temperatures
and able to bind to specific epitopes not easily accessible by conventional mAbs [26].

In 2019, the first bivalent nanobody directed against the A1 domain of the von Wille-
brand factor (caplacizumab) received FDA and EMA approval to treat patients with
acquired thrombotic thrombocytopenic purpura (aTTP) [27,28]. Three years later, ozo-
ralizumab was approved in Japan for patients with RA [29]. It is a trivalent bispecific
nanobody that has a high binding affinity with both human TNF-α and human serum
albumin [30].
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Currently, different nanobody therapies are investigated in the clinical setting. It ap-
pears likely that as the breadth of nanobody targets is expanded, their utility as diagnostics
or therapeutics will grow as well.

In the present review, we will discuss the historical development, as well as the
present and potential future applications of all five FDA-approved biological anti-TNF-α
agents (infliximab, adalimumab, etanercept, golimumab and certolizumab), which have
led to major improvements for patients with RA and other autoimmune diseases, such
as ankylosing spondylitis, Crohn’s disease, ulcerative colitis and psoriasis. More recently,
other therapeutic areas are under evaluation, including viral infections, e.g., COVID-19,
neuropsychiatric disorders and cancer [31].

The search for biomarkers for predicting anti-TNF-α responsiveness is also discussed.

2. Tumor Necrosis Factor-Alpha

The tumor necrosis factor-alpha (TNF-α) gene is located in chromosome 6. It consists of
four exons, and it encodes for a pro-inflammatory and immunomodulatory transmembrane
protein made up of 233 amino-acid residues [32]. TNF-α is expressed as a transmembrane
precursor by macrophages but also by CD4+ T cells, mast cells, neutrophils and NK cells.
When these cells are activated, TNF-α is cleaved and released by a metalloprotease enzyme
known as a TNF-α-converting enzyme (TACE) to generate its soluble form of 157 amino-
acid residues, which promotes inflammation. The binding of TNF-α with its receptors
triggers several events, including the production of cytokines, expression of adhesion
molecules, releasing of pro-coagulatory substances and production of the synthetase nitric
oxide. In addition, TNF-α increases the expression of other pro-inflammatory cytokines
(i.e., interleukin-1 (IL-1), IL-6 and IL-8), suppresses lipoprotein lipase in adipocytes and
stimulates hepatocytes to produce acute phase proteins which sustain systemic inflam-
mation [33,34]. The effects of TNF-α are mediated by binding to two different receptors
(TNF-R1 and TNF-R2). TNF-R1 is the main mediator of TNF-α action, and it is expressed
on the surface of several cell types [35]. TNF-R1 is activated by both soluble and transmem-
brane TNF-α forms, whereas transmembrane TNF-α activates TNF-R2 which is expressed
on the surface of lymphocytes [36,37]. These receptors have similar cysteine-rich extracellu-
lar domains, although they have different intracellular domains (ICD) [38]. In the ICD of
TNF-R1, there is a death domain (DD) which recruits an adaptor protein known as the TNF
receptor-associated death domain (TRADD) [39]. TRADD is recognized by other adaptor
proteins, including receptor-interacting protein kinase 1 (RIPK1) and TNF-R-associated
factor 2 (TRAF2). These proteins make the complex I that has a key role in cell survival and
proliferation. In particular, TRAF2 binds and activates the cellular inhibitor of apoptosis
protein-1 (cIAP-1) and 2 (cIAP-2), which exerts a ligase activity. RIPK1 binds and actives
TGFβ-activated kinase 1 (TAK1) and the linear ubiquitin chain assembly complex (LUBAC),
promoting the activation of the c-Jun N-terminal kinase (JNK), mitogen-activated protein
kinases (MAPKs) and nuclear factor κB (NF-κB) signaling pathways via an inhibitor of κB
kinase (IKK) complex activation [40,41]. However, TRADD can also bind the Fas-associated
death domain (FADD) producing complex II. This complex recruits and activates pro-
caspase 8, which triggers the proteolytic cleavage of pro-caspase 3 and starts the apoptotic
process [42]. In addition, the phosphorylated RIPK3 with RIPK1 can phosphorylate and
activate the mixed lineage kinase domain-like protein (MLKL), inducing inflammatory and
necroptosis. On the other hand, TNF-R2 lacks the DD domain. Hence, it can only promote
cell survival and proliferation through the activation of MAPK, NF-κB and JNK pathways
(Figure 1) [37,43].

An abnormal production of TNF-α is associated with several chronic, immunoinflam-
matory diseases, such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD),
psoriasis (PS), psoriatic arthritis (PsA) and autoimmune uveitis [44–48].
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3. TNF-α Blockers

To date, five anti-TNF-α drugs have been approved: infliximab (Remicade), adal-
imumab (Humira), golimumab (Simponi), certolizumab pegol (Cimzia) and etanercept
(Enbrel). Several studies have demonstrated the efficacy and safety profiles of these agents
in different diseases. In particular, Burr and colleagues demonstrated that patients with
severe ulcerative colitis treated with infliximab (10 mg/kg) showed superior endoscopic
improvement compared with the placebo group (with a response rate of 0.61) [49]. An-
other group reported that 60% of patients with uveitis treated with adalimumab or inflix-
imab showed a visual acuity improvement and a central macular thickness decrease of
112.70 µm [50]. Moreover, Liu and colleagues observed greater efficacy of TNF-α inhibitors
than the placebo in patients with ankylosing spondylitis [51]. Finally, Fleischmann and
colleagues demonstrated that the addition of TNF-α inhibitors to methotrexate in RA
patients with an inadequate response to methotrexate could be associated with a greater
likelihood of achieving the American College of Rheumatology 70% response criteria at
6 months compared to the addition of sulfasalazine and hydroxychloroquine [52].

Overall, these studies highlight that the use of TNF-α inhibitors is safe and well
tolerated in a large percentage of patients suffering from various diseases.

3.1. Infliximab

Infliximab is a chimeric mAb, generated by Vilcek and Le [53], consisting of murine
variable regions from the murine anti-TNF-α hybridoma A2 and human IgG1 constant
regions. It binds both transmembrane and soluble TNF-α with high affinity, hindering
the binding with their receptors and neutralizing their biological effects [54]. Infliximab
was first approved by the FDA in 1998 for treating patients with Crohn’s disease (CD) [9].
Subsequently, it has received approval for the treatment of RA, ankylosing spondylitis
(AS), psoriatic arthritis (PsA) and psoriasis (PS) patients (Figure 2) [55]. The approval was
based on the results from a randomized double-blind study conducted on 108 patients,
which showed that infliximab at 5 mg/kg resulted in a response rate of 81% [56]. However,
infliximab administration is associated with the manifestation of severe adverse events, in-
cluding pneumonia, hepatotoxicity, lymphoma and the reactivation of the tuberculosis [57].
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ulcerative colitis; NIU, non-infectious uveitis; JIA, juvenile idiopathic arthritis.

3.2. Etanercept

Etanercept is a recombinant Fc-fusion protein that comprises two human TNF-R2
conjugated with the CH2 and CH3 domains of the Fc region of human IgG1, which mimics
soluble TNF-R activity [58]. It was approved by the FDA for clinical practice in patients with
RA in 1998 [22]. It was further approved for the treatment of juvenile idiopathic arthritis
(JIA), PsA, AS and PS (Figure 2). The approval was based on the results from a randomized
double-blind study conducted on 234 patients with RA. The patients were randomly
assigned to receive a placebo or two doses of subcutaneous injections of etanercept (10 or
25 mg) for six months. Overall, 40% of patients treated with etanercept at 25 mg showed a
significant improvement, with a 50% American College of Rheumatology (ACR) response,
compared to 4% of the placebo group [59]. Etanercept is less immunogenic than infliximab;
however, it produces unstable complexes due to the presence of a conformational hindrance
as a result of the absence of a hinge region in its Fc region, resulting in it being weaker
than other blockers [60]. In addition, it is not specific to TNF-α but can also recognize
and bind other members of the lymphotoxin family, such as TNF-β, which is a cytokine
involved in the regulation of bowel immune cells [61]. Furthermore, it should be noted
that long-term administration of etanercept causes severe infections and sepsis that may
lead to hospitalization or death. To prevent the risk of infections, it is administrated along
with methotrexate or prednisone, but the clinical use of etanercept is not recommended for
patients with active infections [62].

3.3. Adalimumab

In 2002, adalimumab, a fully human mAb generated using phage display technology,
was approved by the FDA to treat patients with RA [63]. Subsequently, it was approved
for the treatment of PsA, AS, CD, JIA, ulcerative colitis (UC) and non-infectious uveitis
(NIU) (Figure 2) [64]. The efficacy and safety of adalimumab have been substantiated by
the results gained from a randomized, double-blind, placebo-controlled trial. Of the 120 RA
patients recruited, 89 received ascending doses of adalimumab, and 31 received a placebo.
Overall, adalimumab at 10 mg/mL showed a response rate of 100%, which was significantly
higher than the other groups, while no adverse events were observed compared with the
placebo group [65]. Adalimumab induces a strong complement-mediated cytotoxicity and
is less immunogenic that infliximab due to the absence of murine variable domains of the
immunoglobulin Fab [47]. However, patients treated with adalimumab manifested several
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adverse events, including thrombocytopenia, leukopenia, malignancies and a reactivation
of the tuberculosis, with an odds ratio of 14.6 [66].

3.4. Golimumab

Golimumab is a fully human mAb produced using Medarex’s UltiMab transgenic
mouse platform, in which human IgG genes are inserted into the genome of engineering
mice. It has a bivalent Fab region, which can bind the soluble and transmembrane form
of TNF-α proteins with a higher affinity than infliximab and adalimumab, reducing both
the circulating TNF-α protein levels and the binding of TNF-αwith its receptors [67]. In
comparison with other TNF-α blockers, it was less immunogenic than [68]. Golimumab
reduces serum levels of IL-6, IL-8, serum amyloid A, serum amyloid P and ferritin and
inhibits the cell surface expression of adhesion molecules, including E-selectin, intracellular
adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) [69]. In
2009, golimumab received FDA approval for the treatment of RA, PsA and AS [64]. More
recently, it was also approved for the treatment of UC and JIA in 2013 and 2020, respectively
(Figure 2). The approval was based on the results of the multicenter, randomized, double-
blind, placebo-controlled GO-AFTER trial [70].

3.5. Certolizumab Pegol

In 2008, certolizumab pegol was approved by the FDA to treat patients with CD [71].
Its efficacy and safety were proven by the results obtained from a randomized, double-blind,
placebo-controlled trial conducted on 662 patients with CD [71]. It was further approved
for the treatment of RA, PsA, AS and PS (Figure 2). It is a single Fab fragment of humanized
IgG1 mAb conjugated to two 20 kDa polyethylene glycol chains that increase the drug’s
half-life [72]. Furthermore, it is capable of binding both soluble and transmembrane TNF-α
forms, neutralizing the binding with their receptors [73]. Certolizumab pegol lacks the Fc
region which may trigger the complement-mediated cytotoxicity, so it does not produce
cellular lysis by inducing natural killer cell activity [74].

4. Adverse Events after TNF-α Blocker Use

The toxicity profile of TNF-α blockers is acceptable; however, patient surveillance
continues to be warranted. Common side effects range from gastrointestinal to behavioral
disturbances. Rarely, patients may also experience symptoms, such as fatigue, myalgia,
nausea and anorexia which often disappear after the discontinuation of therapy [75–77].
Furthermore, several researchers have reported the role of anti-TNF-α agents in the devel-
opment of different serious side effects, including infections, malignancies, autoimmune
diseases, in particular systemic lupus erythematosus, Guillain–Barre syndrome and multi-
ple sclerosis [78–80].

4.1. Infections

For years, researchers have been trying to understand whether patients treated with
TNF-α blockers are at a greater risk of developing serious infections than the general
population, reaching conflicting results. The discrepancies among the different studies
could be related to several factors, such as the duration of the treatment and follow-up, the
patients’ prior therapies, and the severity of the disease [81–83]. The respiratory system is
the site mostly affected by infections in these patients. In particular, the blockade of TNF-α
can cause reactivation of latent tuberculosis [84]. To reduce the risk of the reactivation
of tuberculosis, current guidelines recommend screening for latent tuberculosis before
starting treatment with TNF-α blockers [85]. However, none of these recommendations
provide indications for choosing the correct biological treatment according to the specific
risk associated with each patient [86]. Attention should also be paid to the possibility of
the reactivation of the hepatitis B virus (HBV) during treatment with anti-TNF-α. The
vaccination of children has proven very useful when it is administered before the onset
of immunosuppressive therapy [87,88]. In this regard, in 2011, the task force of the Euro-



J. Clin. Med. 2023, 12, 1630 7 of 21

pean League Against Rheumatism (EULAR) published recommendations regarding the
vaccination of adults and children with rheumatic diseases [89].

4.2. Demyelinating Disorders

Among the neurological manifestations associated with biological TNF inhibitors,
headaches and behavioral disturbances are the most common [75]. However, a wide range
of more severe neurological disorders has been associated with TNF-α inhibitors, including
Guillain–Barre syndrome, peripheral neuropathies, multiple sclerosis, optic neuritis and
acute transverse myelitis [90,91]. A retrospective study showed that IBD patients treated
with TNF-α blockers showed a 43% increase in the incidence of multiple sclerosis versus
patients who did not receive these agents [92]. The demyelination of the central and
peripheral nervous system was reported more frequently after 17 months of treatment,
although the causal association with anti-TNF-α therapy is still uncertain [92,93]. Indeed,
the use of TNF-α inhibitors in patients with multiple sclerosis has showed a worsening
of the disease [94–96]. To date, there are no guidelines for the management of patients
who manifest this complication, and only the suspension of TNF-α inhibitors and the
administration of high-dose corticosteroids are recommended [97].

4.3. Drug-Induced Lupus

Another adverse effect of TNF-α inhibitors is the onset of induced iatrogenic lupus
(ATIL, anti-tumor necrosis factor-alpha-induced lupus). Many people who develop ATIL
show variable symptoms, such as skin rashes, thrombocytopenia, leukopenia, pericarditis,
pneumonia and rarely, hemolytic anemia [98,99]. These symptoms often occur in asso-
ciation with elevated serum levels of antinuclear antibodies and double-stranded DNA
antibodies, which decrease within a few months after withdrawal of treatment. The patho-
genetic mechanism by which anti-TNF-α leads to the development of ATIL is not yet
clear. However, this appears to be due to the suppression of Th1 cytokine production,
driving the immune response towards the production of IFN-α [100]. Furthermore, anti-
TNF-α therapy may inhibit cytotoxic T cells, leading to a reduction in the elimination of
autoantibody-producing B cells [101].

Although all anti-TNF-α were reported to potentially induce ATIL, several studies
have shown that the onset of ATIL occurs mainly in patients taking infliximab and, in
some cases, after treatment with etanercept and adalimumab [102–104]. In particular, the
VigiBase dataset has reported that more than 30% of all ATIL cases were due to TNF-α
inhibitors (12.2% infliximab, 10.7% adalimumab and 8.0% etanercept) [105]. More recently,
Dai and colleagues have reported an increased ATIL incidence in CD patients treated with
infliximab compared with the adalimumab group (with an incidence rate of 4.5 and 0.2%,
respectively) [106].

Nowadays, it is still unclear whether TNF-α inhibitors play a role in the exacerbation of
systemic lupus erythematosus. In order to ensure an accurate diagnosis, it is recommended
that a thorough immunological screening is always performed before starting the treatment
with TNF-α inhibitors.

4.4. Malignancy

The risk of malignancy associated with the use of TNF-α inhibitors is still widely
debated. In fact, treatment-induced suppression of the immune system may increase the
risk of cancer development. According to Bongartz and colleagues, high doses of infliximab
or adalimumab increases by 3.3-fold the risk of malignancy in RA patients compared with
placebo groups. However, this study did not analyze any person–year incidence rate [107].
In contrast, Burmester and colleagues showed no significant differences in cancer risk in
RA patients treated with adalimumab [108].

Recently, an increased risk of cancer, especially for non-melanoma skin cancer and
lymphoma, was described in patients taking anti-TNF-α agents compared with the control
population [109,110]. In particular, an Icelandic case-control study suggests that RA and PS
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patients taking TNF-α inhibitors have an increased risk of developing in situ squamous
cell carcinoma but not invasive squamous cell carcinoma or basal cell carcinoma [109].
Regarding lymphoma, an American case-control study showed that earlier use of etanercept
increases the risk of non-Hodgkin lymphoma (NHL) three times [110].

Although these studies have reported an increased cancer risk in patients taking TNF-
α blockers, no definitive conclusions can be drawn, as many studies have not confirmed this
trend [111–113]. A possible explanation of these conflicting results may arise from several
biases in the studies. In particular, an increased risk of lymphoma in patients with systemic
inflammatory diseases taking TNF-α inhibitors could be a result of the disease process
and not the effect of immunosuppressive therapy [114]. Furthermore, the increased risk of
cancer could be due to other immunosuppressant drugs that are given together with TNF-α
inhibitors. In fact, a higher rate of malignancies was found among IBD patients treated with
the combination of TNF-α inhibitors and thiopurine (azathioprine or 6-mercaptopurine)
compared to those treated without thiopurine (standardized incidence ratios of 6.0 vs.
2.5, respectively) [115]. Additionally, the patient’s family history should be investigated
to identify the possible predisposition to cancer. Finally, the follow-up period should be
sufficiently extended to better evaluate the effective incidence of the neoplasm. Overall, it
is recommended that patients who have already had cancer take TNF-α inhibitors with
caution.

In light of the enormous interest attracted by immune checkpoint inhibitors (ICI) in
the treatment of cancer and the frequent occurrence of immune-related adverse events
(irAEs) associated with their use, it has also been debated whether the use of biological
TNF inhibitors may impact the pharmacological response to ICI and the development of
irAEs. Emerging clinical and preclinical evidence suggests that at least short courses of
TNF inhibitors are safe for the treatment of irAEs in patients with cancer undergoing ICI
therapy. Data from preclinical studies also propose that TNF inhibition might augment the
antitumor effect of ICI therapy while simultaneously ameliorating irAEs [31,116].

4.5. Development of Anti-Drug Antibodies (ADA)

The clinical data indicate that not all patients respond to TNF-α blocker therapy. In
fact, the use of these agents is associated with a lack of clinical response in about 30–40%
of naïve patients (primary therapeutic failure) [117]. It is also known that some patients
responding to TNF-α blockers at the beginning of the therapy may lose sensitivity to these
drugs at later phases (secondary treatment failure) [117]. The current evidence suggests
that the development of anti-drug antibodies (ADA) is one of the most important factors
that can account for secondary failure [118]. ADA can block the therapeutic action of
the respective anti-TNF-α drug. Indeed, neutralizing ADA bind the drug to prevent it
from interacting with its molecular target, while non-neutralizing ADA facilitate drug
clearance, resulting in the reduction in drug concentrations below the levels needed to
carry out the expected therapeutic effect [119]. Moreover, the production of ADA can
lead to the development of adverse reactions. Indeed, it has been observed that the
development of ADA specifically against TNF-α antagonists has been associated with acute
infusion reactions, which usually occur within 24 h of TNF-α inhibitor administration [120].
Conversely, no association was highlighted among the ADA directed against anti-TNF-α
drugs and delayed hypersensitivity reactions occurring 3 to 12 days after the infusion.

Maneiro and colleagues showed up to a four-fold increased risk of infusion reactions
in ADA-positive patients compared with ADA-negative patients [121]. Infliximab showed
the greatest immunogenic power among the currently usable TNF-α inhibitors due to the
presence of murine regions in its molecular structure. Indeed, a recent meta-analysis has
determined that 25% of infliximab-treated patients develop ADA [122]. Moreover, a recent
study suggests that etanercept is the less immunogenic biological TNF-α inhibitor [123].
In clinical studies, the presence of anti-etanercept ADA in the serum of patients treated
with this drug was found in only 1.2% of cases [122]. However, it appears that the presence
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of ADA has not been associated with significant reductions in the therapeutic efficacy of
etanercept, even in long-term studies [124,125].

To avoid the immunogenic effects of TNF-α inhibitors, two therapeutic approaches are
available: one is to switch to a second TNF-α inhibitor or agents with different mechanisms
of action; another alternative strategy may be the use of immunosuppressive agents in
combination with TNF-α inhibitors. In particular, several studies have shown that the co-
administration of immunosuppressants (azathioprine, glucocorticoids and methotrexate)
reduces immunogenicity and increases the serum levels of TNF-α inhibitors [121,122,126–129].
However, the mechanisms underlying these effects are not yet fully understood. Therefore,
it would be necessary to monitor the patient and detect the presence of ADA in serum as
soon as possible.

Although numerous studies have shown that the development of ADA can be asso-
ciated with a loss or reduction of the therapeutic action of TNF-α inhibitors, these data
should be considered with considerable caution. In fact, the presence of ADA cannot be
considered a condition necessarily associated with the loss or reduction of efficacy of the
respective biotechnological drug, as some patients who develop ADA against a specific
TNF-α inhibitor show a good persistence of therapeutic response to treatment with the
same agents [119]. The development of immune tolerance could play a key role in this
mechanism. Notably, several studies have shown that one-third of patients show a transient
ADA response with serum ADA levels decreasing over time [130–132].

Overall, the mechanisms underlying the development of ADA and their effects on
therapeutic efficacy are not fully understood yet. Further studies are needed to identify
possible biomarkers that could predict the development of ADA in patients after treatment
with TNF-α inhibitors.

4.6. Other Adverse Events

Based on several clinical studies, TNF-α inhibitors seem to play a key role in the
evolution and development of various pathologies. Indeed, there are post-marketing
reports of the worsening of congestive heart failure (CHF) in patients treated with these
agents. In particular, a randomized study suggests that infliximab increases the risk of
hospitalization in patients with CHF [133]. Similar results were obtained in other clinical
studies evaluating the role of etanercept [134]. Furthermore, there have been also rare cases
of de novo onset of CHF in patients without pre-existing cardiovascular disease [135].

Regarding the role of TNF-α inhibitors in pregnancy, there is no evidence to suggest
that treatment with these drugs, before or during pregnancy, is associated with increased
risks of preterm births, congenital anomalies or poor pregnancy outcomes [136,137]. How-
ever, a prospective study revealed that treatment with TNF-α inhibitors in combination
with thiopurines in pregnancy increases the risk of neonatal viral infections [138].

Finally, some adverse events may be induced by interactions between TNF-α inhibitors
and other drugs. Although, most studies have observed no clinically relevant drug interac-
tions, some evidence suggests that TNF-α inhibitors may affect cytochrome p450 (CYP450)
activity [139]. In particular, the effect of TNF-α inhibitors could involve the restoration of
CYP450 with direct effects on plasma concentration and the pharmacological activity of
co-administered drugs which are metabolized by CYP450. Furthermore, a clinical study
has demonstrated that etanercept in combination with cyclophosphamide was associated
with a higher incidence of malignant solid tumors compared with standard therapy alone
in patients with Wegener’s granulomatosis [140].

Drug interactions should be considered as one of the possible causes of any adverse
events. When unexpected clinical responses occur, the physician should determine the
serum concentrations of the drugs and adjust the dosage until the desired effect is obtained.
If the dosage adjustment is ineffective, it should be replaced with one that does not interact
with the other agent.
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5. Perspectives on Future Applications of TNF-α Blockers
5.1. TNF-α Blockers in COVID-19 Disease

During viral infections, inflammation plays a key role in the fight against viral agents.
However, TNF-α can also lead to excessive activation of immune cells and a hyperpro-
duction of other pro-inflammatory cytokines, damaging different organs [141]. Recently,
the role of TNF-α has been investigated in SARS-CoV-2 disease (COVID-19). The spike
glycoproteins of SARS-CoV-2 recognise and bind to angiotensin-converting enzyme-2
(ACE-2) receptors that are expressed on the surface of alveolar, cardiac, endothelial and
hematopoietic cells [142]. Then, the spike–ACE-2 complex internalizes into cell cytoplasm
and allows the increase in TACE enzymatic activity [143]. Soluble TNF-α is secreted already
in the early stages of the infection, underlying the “cytokine storm”, which results in hyper-
inflammation and tissue damage [144]. Although TNF-α plays a primary role in the onset
of the cytokine cascade, anti-TNF agents are not yet clinically approved for the treatment of
COVID-19 disease. However, observational studies have suggested that the administration
of TNF-α blockers seems to be promising in patients with severe disease [145,146].

In particular, the Inflammatory Bowel Disease Registry (SECURE-IBD) has reported
the beneficial effects of TNF-α blockers for treating patients with inflammatory bowel
disease (IBD) affected by COVID-19. In particular, among 2307 IBD patients treated with
anti-TNF-α monotherapy before and during COVID-19 disease and 2088 patients receiving
sulfasalazine/mesalazine treatment, 8% were hospitalized and <1% died in the anti-TNF-α
group, while 20% were hospitalized and 3% died in the other group [147].

In addition, the Global Rheumatology Alliance (GRA) registry has reported the ben-
eficial effects of TNF-α blockers for treating COVID-19 patients with RA. On 12 April
2021, 1388 patients with RA received TNF-α inhibitors at the onset of COVID-19. Of these,
103 patients (7.4%) were hospitalized with ventilation, and only 36 (2.6%) died. Notably,
treatment with other drugs (rituximab and Janus kinase inhibitors) has shown a higher
probability of developing a severe disease than treatment with TNF-α inhibitors [148]. No
associations between abatacept or interleukin 6 inhibitors and COVID-19 severity were
observed [148].

Overall, these data have shown that the clinical use of TNF-α blockers is significantly
associated with a lower COVID-19-related hospitalization rate compared with other drugs.
However, further studies are needed to better define an immune profile of both the disease
course and therapy with TNF-α antagonists. For instance, some data show that the use of
TNF-α inhibitors seems to be associated with a mild humoral response to the SARS-CoV-2
vaccines and a faster lowering of the antibody titre compared with patients treated with
other drugs [149,150]. Furthermore, it would be interesting to investigate the timing of the
intervention to prevent the onset of the cytokine storm observed in severe COVID-19 cases.

5.2. Inflammation and Neuropsychiatric Disease

Several studies have recently demonstrated that a persistent inflammatory state plays a
predominant role in the pathogenesis of psychiatric and neurodegenerative
diseases [151–155]. In fact, the peripheral immune system is able to influence brain func-
tions. This is supported by several studies which have suggested that patients with diseases
associated with systemic inflammation often also have behavioral disorders [156]. Although
the blood–brain barrier (BBB) selectively regulates the passage of substances to the brain,
cytokines are capable of crossing it [157]. Furthermore, pro-inflammatory mediators can
also be produced in the brain by resident cells, including astrocytes, microglia cells and
oligodendrocytes [158]. High serum and cerebrospinal fluid levels of pro-inflammatory
markers (IL-1β, IL-6, TNF-α and MIF) have been found in patients with major depression,
bipolar disorder and schizophrenia [159–163].

Other studies have shown how TNF-α is positively associated with the severity of
depressive symptoms [164]. In addition, the use of antidepressants reduces the release
of circulating inflammatory factors, increasing the release of endogenous antagonists of
pro-inflammatory cytokines, such as IL-10 [165,166]. Moreover, Benedetti and colleagues
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reported a relationship between some pro-inflammatory cytokines (TNF-α, IL-8 and IFN-γ)
and white matter integrity. In particular, these molecules were significantly associated with
a decrease in the integrity of the white matter (fractional anisotropy) and an increase in the
permeability of the myelin sheath (radial and average diffusivity) [167].

TNF-α Blockers in Neuropsychiatric Disease

Based on the studies described above, several studies have recently focused on evalu-
ating TNF-α inhibitors as potential therapeutics for behavioral disorders, obtaining encour-
aging results. Indeed, some studies have reported a significant reduction in anxiety and
depressive-like behaviour and an improvement in cognitive function in murine models
after anti-TNF-α treatment [168,169]. In line with these pre-clinical studies, similar results
were obtained in numerous clinical trials [170,171]. In particular, a randomized, double-
blind clinical trial revealed that patients with bipolar disorders treated with infliximab
are affected by a depletion in leptin levels [172]. Moreover, the same group observed
that infliximab treatment significantly reduces glutamate levels in patients with bipolar
disorders [173]. Moreover, the results of these two trials suggested an increase in global
cortical volume and an improvement in cognitive functions in bipolar patients after in-
fliximab administration. However, a randomized, double-blind, placebo-controlled trial
showed a significant reduction in symptom severity only in bipolar patients with a history
of childhood physical abuse after 12 weeks of treatment with infliximab [174]. Further-
more, another group demonstrated that infliximab exhibits only short-lived antidepressant
effects in patients with bipolarity [175]. Finally, a systematic review showed a reduction
of depressive symptoms only in patients with high protein C reactive (PCR) and TNF-α
levels. However, no statistically significant effects were found between the infliximab and
placebo groups with low levels of inflammatory markers [176].

Although TNF-α inhibitors are unable to cross the BBB due to their molecular weight,
they can bind to peripheral TNF-α, also reducing its levels and the overall activated
immune cells in the brain parenchyma [177]. To bypass this hindrance, several strategies
have been investigated. In particular, intracranial injections of infliximab have shown a
reduction of Aβ and tau pathology and a rapid cognitive improvement in neurological
dysfunction [178–180]. More recently, TNF-α inhibitors were fused with other mAbs
acting as a BBB molecular “Trojan horse” (human insulin receptor or transferrin receptor
mAbs) [181–183]. These mAbs undergo receptor-mediated transport across the BBB via the
endogenous receptors, introducing the engineered TNF-α inhibitors into the brain [184].

Overall, although no data on the role of other TNF-α inhibitors are available, these
studies highlight that the use of TNF-α as an adjunctive antidepressant therapy exhibits only
partial positive results in a small group of patients with behavioral disorders. In addition,
a recently study demonstrated that the use of TNF-α inhibitors could be a potential risk
factor for the development of a manic episode in patients with or without psychiatric
disorders [185].

5.3. Ongoing Trails Using TNF-α Blockers

The therapeutic use of anti-TNF-α has led to important advances for patients with sev-
eral chronic inflammatory diseases. However, there are still autoimmune/
immunoinflammatory diseases for which there is still no evidence of the efficacy of TNF-α
inhibitors.

Numerous clinical trials are ongoing for the evaluation of TNF-α blockers in a wide
range of disorders that may be characterized by an abnormal production of pro-inflammatory
cytokines (Table 1). Most notably, Phase 2–3 trials are evaluating the use of TNF-α blockers
in vasculitis patients suffering from Behcet’s disease, Takayasu’s arteritis, Wegener’s granu-
lomatosis and giant cell arteritis for Pemphigus Vulgaris, as well as for the prevention of
graft vs. host disease.
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Table 1. Ongoing clinical studies on future applications of TNF-α blockers registered at https:
//clinicaltrials.gov (accessed on 2 January 2023).

NCT Number Interventions Conditions Phases

NCT03371095 Infliximab Behcet’s Disease and Vasculitis Phase 3

NCT03180957 Adalimumab Dupuytren’s Disease Phase 2

NCT02457585 Infliximab Takayasu’s Arteritis Phase 2

NCT01730495 Etanercept Chronic Fatigue Syndrome and Myalgic
Encephalomyelitis Phase 2

NCT01423591 Infliximab Polymyalgia Rheumatica Phase 3

NCT00753103 Infliximab Wegener’s Granulomatosis, Renal Limited Vasculitis
and Microscopic Polyangiitis Phase 2

NCT00726375 Etanercept Acute Graft vs. Host Disease Phase 3

NCT00604864 Infliximab Endometriosis Phase 2

NCT00368264 Infliximab Lupus Erythematosus Systemic and Lupus Nephritis Phase 2/Phase 3

NCT00329823 Etanercept Hidradenitis Suppurativa Phase 2

NCT00305539 Adalimumab Giant Cell Arteritis Phase 3

NCT00228839 Infliximab Graft vs. Host Disease Phase 1

NCT00203359 Etanercept Alzheimer’s Disease Phase 1

NCT00203320 Etanercept Alzheimer’s Disease Phase 1

NCT00135720 Etanercept Pemphigus Vulgaris Phase 2

NCT00031551 Etanercept Stomatitis Phase 2

6. The Search for Biomarkers

Although TNF-α blockers are the main therapeutic option for patients with immune-
mediated inflammatory diseases, they are characterized by high costs and immunosup-
pressive activity. Moreover, 40% of patients treated with them do not respond or show
a loss of response over time [118]. For these reasons, many researchers have focused on
identifying potential biomarkers that allow us to predict the patient’s response to treatment.
Increased serum granulocyte–macrophage colony-stimulating factor (GM-CSF) levels have
been found in 87.5% of RA patients responding to one of the TNF-α inhibitors [186]. In
addition, Nguyen and colleagues showed that low pre-albumin and S100A12 levels associ-
ated with high platelet factor 4 (PF4) levels in pre-treatment could be good predictors for
responses to infliximab, etanercept and adalimumab in patients with RA [187]. Another
group observed a high number of myeloid-related protein 8 (MRP8) and MRP14-infiltrating
macrophages in the synovium of RA patients responding to infliximab [188], whereas
a meta-analysis demonstrated that an increased number of inflammatory plasma cells
and macrophages, together with elevated tissue levels of the trigger receptor expressed
on myeloid-1 cells (TREM-1), the chemokine type 2 receptor (CCR2) and the chemokine
ligand 7 (CCL7) could be predictive of the failure of anti-TNF therapy in CD patients [189].
Furthermore, transcriptome analyses regarding patients with CD suggested a significant
down-regulation of the K(lysine)-acetyltransferase 2B (KAT2B) gene, both in the tissues
and peripheral blood mononuclear cells (PBMCs) in non-responders to anti-TNF ther-
apy [190]. Recently, a systematic review regarding PsA or PS patients has reported that
several single nucleotide polymorphisms (SNPs) could be predictive of a favorable response
to anti-TNF-α treatment [191].

Finally, some studies have also shown that genetic variants could influence the
response to TNF-α blockers. In particular, it was found that the presence of the IFN-
Grs2069705C allelic variant in patients with RA resulted in a better responsiveness to
TNF-α inhibitors compared with patients harboring the wild-type allele [192]. Moreover,

https://clinicaltrials.gov
https://clinicaltrials.gov
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Sazonovs and colleagues revealed that the expression of the HLA-DQA1*05 variant was
associated with anti-drug antibody generation in CD patients treated with infliximab and
adalimumab [193].

Unfortunately, to date, no biomarker for anti-TNF responsiveness has been validated
due to the heterogeneity of the results obtained. Hence, further studies using independent
and large cohorts are needed.

7. Conclusions

Anti-TNF-α therapy has paved the way for a revolution in the approach to treating
chronic inflammatory diseases. In fact, they represent the first biotechnological drugs used
in rheumatology after the failure of conventional synthetic drugs, such as methotrexate,
sulfasalazine and mesalazine. The efficacy and safety of these biological agents have been
confirmed in various fields, and novel potential applications range from psychiatric and
neurological disorders to viral infections, such as COVID-19. Novel TNF-α blockers are also
currently under development, including AVX-470, L19TNFa, Ozoralizumab, 99mTc and
XPro1595. Despite considerable progress, there is still an area of unmet need, for instance,
cases in which the therapeutic response is insufficient or in which there are specific clinical
conditions of patients or the need to control specific aspects of the disease. This explains
the wide range of drugs available and the attention of the reference guidelines to the
specificities of the patient, focusing on the increasingly tailored therapy. Due to this, a great
effort is being made in the identification of biomarkers to be used as prognostic tools in
patients eligible for treatment with TNF-α inhibitors. Secondly, biotechnological therapy is
burdened by the high direct costs of the drug. The lack of patent protection for the first
TNF-α inhibitors has allowed the introduction of economically affordable biosimilars, such
as ABP 501 (Amjevita- Amgen Inc., Thousand Oaks, CA, USA), ABP 710 (Avsola- Amgen
Inc., Thousand Oaks, CA, USA), BI 695501 (Cyltezo- Boehringer Ingelheim International
GmbH, Ingelheim am Rhein, Germany), CHS-1420 (Yusimri- Coherus BioSciences Inc.,
Redwood City, CA, USA), CT-P13 (Inflectra- Celltrion Healthcare, Lake Forest, IL, USA),
FKB327 (Hulio- Mylan Inc., Canonsburg, PA, USA), GP2017 (Hyrimoz- Sandoz, Basilea,
Switzerland), PF-06410293 (Abrilada- Pfizer Inc., New York, NY, USA), PF-06438179 (Zessly-
Sandoz GmbH, Kundl, Austria), SB2 (Flixabi- Samsung Bioepis, Incheon, Republic of
Korea), SB4 (Brenzys- Samsung Bioepis, Incheon, Republic of Korea) and SB5 (Imraldi-
Biogen-Samsung Bioepis, Incheon, Republic of Korea). The availability of biosimilar agents
has allowed a drastic and important reduction in pharmacological expenditure, making
TNF-α blockers widely available and accessible to the population. To date, they are an
integral part of the biological therapies available. However, although biosimilars are
approved on the basis of similar mechanisms of action, efficacy and safety with their
reference products, many clinicians remain hesitant to suggest biosimilars as a viable
treatment option due to the nocebo effect that could occur in patients following the switch to
biosimilars. For this reason, it is necessary that clinicians have full and complete knowledge
of the scientific principles that support these agents, their clinical development, approval
and safety monitoring.
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