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Abstract: Triple negative breast cancer (TNBC) is a highly heterogeneous disease with a poor prognosis
and a paucity of therapeutic options. In recent years, immunotherapy has emerged as a new treatment
option for patients with TNBC. However, this therapeutic evolution is paralleled by a growing need
for biomarkers which allow for a better selection of patients who are most likely to benefit from this
immune checkpoint inhibitor (ICI)-based regimen. These biomarkers will not only facilitate a better
optimization of treatment strategies, but they will also avoid unnecessary side effects in non-responders,
and limit the increasing financial toxicity linked to the use of these agents. Huge efforts have been
deployed to identify predictive biomarkers for the ICI, but until now, the fruits of this labor remained
largely unsatisfactory. Among clinically validated biomarkers, only programmed death-ligand 1 protein
(PD-L1) expression has been prospectively assessed in TNBC trials. In addition to this, microsatellite
instability and a high tumor mutational burden are approved as tumor agnostic biomarkers, but only a
small percentage of TNBC fits this category. Furthermore, TNBC should no longer be approached as a
single biological entity, but rather as a complex disease with different molecular, clinicopathological, and
tumor microenvironment subgroups. This review provides an overview of the validated and evolving
predictive biomarkers for a response to ICI in TNBC.

Keywords: triple negative breast cancer; immunotherapy; biomarker; tumor heterogeneity; molecu-
lar classification

1. Introduction

Triple negative breast cancer (TNBC) represents 15 to 20% of all breast cancers (BC)
and is characterized by the lack of hormone receptor (HR) and human epidermal growth
factor receptor (HER2) expression. Compared to other BC subtypes, TNBC is associated
with a dismal prognosis. Recently, combinations of immune checkpoint inhibitors (ICIs)
targeting the programmed death-1 (PD-1) protein or its ligand (PD-L1) and chemotherapy
were shown to significantly improve the clinical outcome of patients with TNBC, both in the
early (eTNBC) and in the metastatic (mTNBC) setting [1–7]. Nevertheless, while meaningful
and durable responses were achieved in some TNBC patients, the majority did not benefit
from this treatment. Research efforts are therefore ongoing to identify reliable predictive
biomarkers. This will increase the efficiency of ICIs, and avoid toxicities and unnecessary
costs in non-responders [8].
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However, apart from germline BRCA1/2 mutations to select patients that may benefit
from a treatment with poly ADP ribose polymerase (PARP) inhibitors, TNBC is treated as
a single disease entity. Nevertheless, TNBC encompasses a variety of histologic types and
genomic alterations, and has been subdivided in specific molecular subtypes with distinct
tumor characteristics and clinical outcomes [8,9]. This heterogeneity contributes to differences
in the prognosis and responses to therapies in patients with TNBC.

TNBC molecular subtypes were established based on gene expression profiling and
further characterized by evaluating the mutational, copy number, epigenetic, proteomic,
and phospho-proteomic patterns [9–12]. Lehmann et al. initially depicted six molecular
subtypes including basal-like 1 and 2 (BL1 and BL2), immunomodulatory (IM), mesenchymal
(M), mesenchymal stem-like (MSL), and luminal androgen receptor (LAR), which were later
amended into four subtypes (BL1, BL2, M, and LAR) [10,13]. Other groups–including ours–
have further refined this classification to better capture the TNBC heterogeneity [11,14].

Recent studies demonstrated that different TNBC molecular subtypes are associated with
distinct tumor microenvironment (TME) features, including specific immune infiltrates and
the expression of distinct, targetable immune pathways [9,15], indicating that some TNBC
subtypes may be more suitable candidates for immunotherapeutic strategies. Although PD-L1
immunohistochemistry (IHC) expression is not an optimal biomarker, it has been shown to be
predictive for the response to the combination of a PD-1/PD-L1 ICI with chemotherapy in
patients with metastatic mTNBC, but not when these regimens are being used as a neoadjuvant
treatment in eTNBC [1–3,6,7,16]. This inconsistency could be related to the dynamics of PD-L1
expression during treatment, which are influenced by several mechanisms including genomic
alterations, epigenetic modifiers, and transcriptional regulation. In addition to this, specific
features of the TME, which differ across organs and disease stages, seem to have an influence
on PD-L1 expression. Microsatellite instability (MSI) and high tumor mutational burden
(TMB-H) are “agnostic” biomarkers approved for the use of the ICI in solid tumors [17,18].
However, both MSI and TMB-H are rare in TNBC and, as such, these biomarkers would only
identify a small proportion of TNBC patients that are eligible for ICI therapy [19–22].

This article will review the available data on clinically approved and potential biomarker
candidates for the response to ICI therapy in TNBC. To this end, we first evaluate prospective
and retrospective studies including patients treated with ICIs in monotherapy or in combina-
tion with chemotherapy (Figure 1; Table 1). Subsequently, we interrogate the impact of TNBC
heterogeneity on ICI sensitivity considering the different TNBC molecular subtypes. Finally,
we discuss the complexity of TNBC and assess how this may impact the future assessment of
ICI biomarkers in this setting.

Table 1. Clinically approved and evolving predictive biomarkers for a response to ICIs.

Biomarker Assay Platform Location Prevalence Description Cutoff Clinical
Trial ICI BC

Subtype
FDA

Approval

PD-L1

Dako 22C3 Agilent TC + IC

20–50% of
all BC

CPS score =
(PD-L1 + ) IC +

(PD-L1 + ) TC ×
100/TC

CPS score +
≥ 10%

Phase III
KEYNOTE

355 [7]
Pembro-
lizumab mTNBC mTNBC

Ventana
SP142

Roche

IC

IC score = %
tumor area with
IC labeling with

PD-L1 at any
intensity

IC score +
≥ 1%

Phase III
IMpassion

130 [23]

Atezoli-
zumab mTNBC mTNBC

Ventana
SP263 TC + IC

Score = % TC + %
IC labeling with

PD-L1 at any
intensity

PD-L1 + ≥
1% in TC
and/or IC

Phase II
Gepar-

NUEVO
[24]

Durva-
lumab eTNBC No

TMB F1CDx
Founda-

tion
Medicine

TC 5–10% of
TNBC

Total number of
synonymous or

non-synonymous
mutations for 324

cancer-related
genes

High TMB
≥ 10

mut/Mb

Phase II
KEYNOTE

158 [25]
Pembro-
lizumab mBC All BC

Phase III
KEYNOTE

119 [21]
Pembro-
lizumab mTNBC No

High TMB
≥ 9

mut/MB

Phase II
TAPUR

[26]
Pembro-
lizumab mBC No
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Table 1. Cont.

Biomarker Assay Platform Location Prevalence Description Cutoff Clinical
Trial ICI BC

Subtype
FDA

Approval

MSI/dMMR

IHC
targe-ting

MLH1,
MSH2,

MSH6, and
PMS2

Ventana;
Promega TC 0.04–1.8%

of TNBC

Targeting five
monomorphic

mononucleotide
repeat markers

(BAT-25, BAT-26,
MONO-27, NR-21,

and NR-24) for
MSI typing and

two highly
polymorphic

pentanucleotide
repeat markers
(Penta C and
Penta D) for

sample
identification

High MSI:
at least 2
unstable
markers

out of 5 (≥
40% of MS
markers)

Pool
analysis of

5 trials:
KEYNOTE

016, 164,
012, 028,
158 [27]

Pembro-
lizumab mBC All BC

PCR with
MSI

Analysis
System

Stromal
TILs

H&E
staining / IC

Total TILs:
up to 75%
of all BC;
LPBC: up
to 20% BC

sTILs = % of
intratumoral

stromal
compartment

occupied by TILs

sTILs ≥ 5%

Phase III
KEYNOTE

119 [28] Pembro-
lizumab mTNBC NoPhase II

KEYNOTE
086 [29]

sTILs ≥
10%

Phase III
IMpassion

130 [23] Atezoli-
zumab mTNBC NoPhase Ib

PCD4989 g
[16]

sTILs >
40%

Phase Ib
KEYNOTE

173 [30]
Pembro-
lizumab eTNBC No

On
treatment
sTILs ≥

40%

Phase III
NeoTRIPa-

PDL1
[31]

Atezoli-
zumab eTNBC No

On
treatment
sTILs ≥

65%

Phase Ib
KEYNOTE

173 [30]
Pembro-
lizumab eTNBC No

Intra-
tumoral

TILs

H&E
staining / IC

Total TILs:
up to 75%
of all BC;
LPBC: up
to 20% BC

iTILs =
lymphocytes in

tumor nests
having cell-to-cell

contact with no
intervening
stroma and

directly
interacting with
carcinoma cells

Dynamic
change of

iTILs
between
baseline
and after

the
window-

phase

Phase II
Gepar-

NUEVO
[24]

Durva-
lumab eTNBC No

Baseline
high-

/intermedia-
te

iTILs

Phase III
NeoTRIPa-

PDL1
[31]

Atezoli-
zumab eTNBC No

CD274
gene

amplifi-
cation

CGH array
Affyme-

trix
CytoscanHD/Onco-

scan
TC

Up to
30–42% of

TNBC

PD-L1 gene copy
= loss, neutral, or

copy
gain/amplification

Gain: 3 or
4 copies;

amplifica-
tion: ≥ 5

copies

Phase II
SAFIR02-

IMMUNO
trial [32]

Durva-
lumab mTNBC No

Abbreviations. BC: breast cancer, CGH: comparative genomic hybridization, CPS: combined positive score, eTNBC:
early triple negative breast cancer, F1CDx: FoundationOne CDx, H&E: hematoxylin and eosin, IC: immune
cells, ICI: immune checkpoint inhibitor, IHC: immunohistochemistry, iTILs: intratumoral tumor infiltrating
lymphocytes, LPBC: lymphocyte predominant breast cancer, MS: microsatellite, MSI/dMMR: microsatellite
instability/mismatch repair deficiency, mBC: metastatic breast cancer, mTNBC: metastatic triple negative breast
cancer, PCR: polymerase chain reaction, PD-L1: programmed death-ligand 1, sTILs: stromal tumor infiltrating
lymphocytes, TILs: tumor infiltrating lymphocytes, TC: tumoral cells, TMB: tumor mutational burden, TNBC:
triple negative breast cancer.
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Tumor mutational burden and neoantigens

Tumoral DNA

Bulk RNA

Microsatellite instability

CD274 amplification

TNBC molecular classifications

Immune and canonical cancer signatures
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Microbiome
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Soluble factors
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PD-1 receptor
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Cancer cell

Tumor infiltrating lymphocytes

Monocytes / macrophages

Stromal cell

Dendritic cell

Figure 1. Currently validated and evolving predictive biomarkers for response to immune checkpoint
inhibitors (ICIs) in patients with TNBC. Abbreviations. PD-L1: programmed death-ligand protein 1;
PD-1: programmed death-1.

2. Deciphering TNBC Heterogeneity with Molecular Classifications

In the past decade, large-scale sequencing studies attempted to classify TNBC based
on somatic genomic alterations, which led to the identification of mutations associated with
specific clinical outcomes and therapeutic responses [12,23]. Meanwhile, transcriptome
profiling analyses from bulk RNA sequencing (RNA-seq) provided more robust insights
into the heterogeneity of TNBC. The first gene expression-based TNBC classification was
reported by Lehmann et al. in 2011 and described 6 molecular subtypes: BL1, BL2, IM,
M, MSL, and LAR. The authors aligned representative TNBC cell lines to each of these 6
TNBC subtypes, revealing distinct therapeutic vulnerabilities to several agents [10]. This
classification was later refined to include 4 molecular subtypes (BL1, BL2, M, and LAR),
excluding the IM and MSL subtypes as these signatures proved to be mainly driven by
lymphocytes and stroma cells [13]. More recently, our research group refined the Lehmann
TNBC-6 type classification into 5 groups (BL, M, LAR, MSL, and IM) by removing the
molecularly unstable BL2 subtype [14]. By combining gene expression profiling and copy
number variations (CNVs), Burstein et al. proposed 4 distinct TNBC subtypes referred
to as LAR, Mesenchymal (MES), basal-like immune-suppressed (BLIS), and basal-like
immune-activated (BLIA) tumors [11]. Among these groups, the IM and BLIA-related sub-
types are characterized by a higher expression of immune gene signatures and potentially
targetable immune checkpoints, and are associated with a better prognosis [10,13,14,24].
The BL subtype in the Bareche et al. classification has an intermediate prognosis and is
characterized by genomic instability, with DNA repair gene deficiency, and a high rate of
TP53 mutations. In contrast, M and MSL tumors are mainly associated with angiogenesis
and stroma signatures. Finally, the LAR subtype, which is characterized by androgen
receptor (AR) expression, is usually associated with a worse prognosis and is enriched for
PIK3CA, AKT1, and CDH1 mutations [14].
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By comparing the molecular subtypes of 1,344 TNBC tumors from public datasets
(Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), The Cancer
Genome Atlas Consortium (TCGA), Rody et al. and Jiang et al.) using 3 classification
systems (Lehmann et al., Bareche et al. and Burstein et al.), we observed consistency across
molecular subtypes from different classification systems depicting similar phenotypes,
although some discordances were also observed [10–12,14,25–27] (Figure 2a). Among the
three classification systems, the proportion of each molecular subtype and its contribution
to TNBC heterogeneity are reproducible across the four datasets (Figure 2b–d, Appendix A).
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Figure 2. Lehmann’s TNBC type-6, Bareche’s, and Burstein’s molecular classifications across public
datasets. (a) Overlap of TNBC molecular subtypes across public datasets (b–d). Distribution of
Lehmann’s TNBC type-6, Bareche’s subtypes, and Burstein’s subtypes across each public dataset. Ab-
breviations. BL: basal-like, BLIA: basal-like immune-activated, BLIS: basal-like immune-suppressed,
IM: immunomodulatory, LAR: luminal androgen receptor, M: mesenchymal, MES: mesenchymal,
MSL: mesenchymal stem-like.

Responses to ICI-based therapies in the function of the TNBC subtypes have been
retrospectively evaluated in several clinical trials. In the phase I PCD4989 g trial, including
a mTNBC cohort treated with atezolizumab monotherapy, the BLIA and LAR subtypes,
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characterized by higher levels of immune biomarkers (tumor infiltrating lymphocytes
(TILs), PD-L1, and CD8 IHC expression) compared to M and BLIS tumors according to
Burstein, benefitted most from atezolizumab [28]. In the IMpassion 130 trial in mTNBC, a
retrospective analysis using Burstein’s classification revealed an improved outcome with
atezolizumab and chemotherapy as the first-line treatment in the BLIA subtype, whereas
LAR tumors, enriched for angiogenesis/estrogen receptor (ER) response pathways, seemed
to be resistant to ICIs. Of note, in the PD-L1-negative subgroup, the BLIA subtype lost
its predictive value, highlighting the need to consider the interdependency between a
biomarker and the molecular subtype [29].

In the neoadjuvant NeoTRIPaPDL1 trial, a different molecular classification, namely
“TNBCtypes”, was defined by applying a 101-gene algorithm that did not include the
IM component [30]. In this study, pre-treatment TNBCtypes were not predictive for a
benefit from atezolizumab, although a non-significant trend showed a higher pathologic
complete response (pCR) rate (70%) in patients with BL1 tumors in the atezolizumab
plus the chemotherapy arm compared to chemotherapy alone (54%). The pCR rate of the
LAR subtype was low in both arms (22% and 19% for chemotherapy with and without
atezolizumab, respectively) [32]. Interestingly, patients with a M subtype tumor displayed
high pCR rates irrespective of whether they received atezolizumab, or not (60% and
50%, respectively; difference not statistically significant) [32]. Interestingly, on-treatment
TNBCtypes assessed at day 1 of cycle 2 proved to be predictive for pCR in this study (p
= 0.00002). In fact, compared to BL1 tumors, LAR and M tumors were associated with a
significantly lower pCR rate in both treatment arms, irrespective of the PD-L1 expression
and stromal TILs levels [33]. In light of these results, the IM and BLIA-related subtypes seem
to be the most suitable candidates for immunotherapy. This is consistent with previous
findings demonstrating that immune-related molecular subtypes are enriched in tumors
which are infiltrated by TILs and express PD-L1 [15].

Interestingly, data show that the TNBC molecular subtypes can evolve over time and
can differ between pre- and post-treatment. For example, according to the Lehmann et al.
classification, the most frequent change was from BL1 to M subtypes (38%) after the neoad-
juvant treatment [34]. These results highlight the possible shift of TNBC subtypes during
the disease course and underscore that the re-assessment of TNBC subtypes at different
timepoints deserves further investigation to assess its potential impact on prognosis and
therapeutic tailoring.

Another limitation for the implementation of these molecular classifications in clinical
practice is the access to next-generation sequencing (NGS). To overcome this, an IHC-based
approach, easier to apply in a clinical setting, has been developed by analyzing RNA-seq
data from TNBC datasets. In this approach, four markers (AR, CD8, FOXC1, and DCLK1)
have been selected based on their level of expression in each subtype and their good
correlation with protein expression to reproduce the molecular subtyping [35]. This IHC-
derived approach to determine different mTNBC subtypes (LAR, IM, BLIS, and MES) was
applied in the FUTURE study, a phase Ib/II umbrella trial. In addition, targeted sequencing
with a gene panel including ERBB2, BRCA1/2 germline, and mutations involving the
PI3K/AKT pathway was used to stratify patients into seven treatment arms, including one
arm in which a combination of the anti-PD1 ICI camrelizumab and nab-paclitaxel was
administered in patients with an IM subtype [36]. In this heavily pre-treated population,
IM tumors had an objective response rate (ORR) of 52.6% [36]. The activity of ICI in the IM
subtype was also demonstrated in the FUTURE-C-PLUS trial, in which treatment-naive
mTNBC patients who were treated with a combination of camrelizumab, famitinib (a
multi-targeted tyrosine kinase inhibitor), and nab-paclitaxel obtained an impressive ORR
of 81.3% [37].
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3. Programmed Death-Ligand 1 Protein Expression

In BC, PD-L1 is expressed in 20–50% of primary tumors and only in 15% of metastatic
samples. The BC subtypes with the most common PD-L1 expression consist of TNBC and
HER2+ BC, which also presented higher TIL levels [38,39]. As expected, PD-L1 is mostly
expressed in the immune-related molecular subtypes (BLIA/IM/BL: 33–78%), followed
by BLIS (4,7–32%), LAR (0–35%), M (31%), and MES/MSL (0–65%) [32,36,40–43] (Table 2).
However, differences in the thresholds and tests used to define PD-L1 positivity and the
use of different TNBC classification systems need to be considered when comparing the
different studies (Table 3).

Table 2. Distribution of biomarkers across different TNBC molecular subtypes.

Predictive
Biomarker

Study Total
Number

(N)

BL-Related LAR Mesenchymal- Related

BL BLIA-IM BLIS BL1 BL2 LAR M MSL-MES

PD-L1 positivity

Percentage of
PD-L1

positivity

Sood et al. [41]
N = 119 18/28

(64%) - - - - 8/34
(24%) - 15/57

(26%)

Alves et al. [42]
N = 57 - 11/33

(33%)
1/21

(4.7%) - - 0/2
(0%) - 0/1

(0%)

Phase III IMpassion 130 [29]
N = 836 - 167/226

(74%)
112/351

(32%) - - 67/217
(31%) - 12/42

(28%)

Phase III NeoTRIPaPDL1 [32]
N = 227 - - - 64/82

(78%)
11/19
(58%)

12/34
(35%)

17/56
(31%)

23/36
(65%)

Phase II FUTURE [36]
N = 19 - 13/19

(67%) - - - - - -

Phase II Pembrolizumab + Enobosarm [40]
N = 16 - - - - - 2/16

(12.5%) - -

Tumor mutational burden

TMB (mut/Mb)
Lehmann et al. [9]

N = 183 - - -
N = 64

(2.1
mut/Mb)

N = 37
(1.2

mut/Mb)

N = 28
(1.8

mut/Mb)

N = 54
(2.3

mut/Mb)
-

Tumor infiltrating lymphocytes rate

Percentage of
TILs

Lehmann et al. [13]
N = 167 - N = 36

(TILs: 38%) - N = 34
(TILs: 15%)

N = 17
(TILs: 23%)

N = 18
(TILs: 17%)

N = 40
(TILs: 9%)

N = 22
(TILs: 21%)

Distribution of spatial immunophenotype

Percentage of
each

immunopheno-
type

Bareche et al. [15]
FI (%)

N = 697

15/162
(9%)

138/181
(76%) - - - 11/124

(9%)
0/141
(0%)

19/89
(21%)

SR (%) 126/162
(78%)

41/181
(22%) - - - 26/124

(21%)
9/141
(6%)

4/89
(4.4%)

MR (%) 21/162
(13%)

2/181
(1%) - - - 87/124

(70%)
132/141

(93%)
66/89
(74%)

Percentage of
each

immunopheno-
type

Gruosso et al. [43]
FI (%)

N = 31

- 5/11
(46%) - 1/8

(12.5%)
1/2

(50%)
0/3
(0%)

0/6
(0%)

0/1
(0%)

SR (%) - 4/11
(36%) - 5/8

(62.5%)
0/2
(0%)

1/3
(33%)

0/6
(0%)

1/1
(100%)

MR (%) - 2/11
(18%) - 2/8

(25%)
1/2

(50%)
1/3

(33%)
4/6

(67%)
0/1
(0%)

ID (%) - 0/11
(0%) - 0/8

(0%)
0/2
(0%)

1/3
(33%)

2/6
(33%)

0/1
(0%)

Percentage of
each

immunopheno-
type

Lehmann et al. [9]
FI (%)

N = 183

- - - 14/64
(22%)

9/37
(24%)

5/28
(18%)

1/54
(2%) -

SR (%) - - - 28/64
(44%)

10/37
(27%)

8/28
(29%)

4/54
(7%) -

MR (%) - - - 17/64
(27%)

10/37
(27%)

12/28
(43%)

22/54
(41%) -

ID (%) - - - 5/64
(8%)

8/37
(22%)

3/28
(11%)

27/54
(50%) -
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Table 2. Cont.

Predictive
Biomarker

Study Total
Number

(N)

BL-Related LAR Mesenchymal- Related

BL BLIA-IM BLIS BL1 BL2 LAR M MSL-MES

Immune signature prevalence

Percentage of
immune-hot

GSIS signature

Phase II Carbo + Nabpaclitaxel [44]
N = 58 - 16/16

(100%) - 5/11
(45%)

2/5
(40%)

1/7
(14%)

0/15
(0%)

1/4
(25%)

CD274 amplification rate

Percentage of
CD274

amplification

Lehmann et al. [9]
N = 183 - - - 6/64

(9%)
2/37
(5%)

2/28
(7%)

6/54
(11%) -

Abbreviations. BL: basal-like, BLIA: basal-like immune-activated, BLIS: basal-like immune-suppressed, GSIS:
GeparSixto immune gene expression signature, IM: immunomodulatory, LAR: luminal androgen receptor, M:
mesenchymal, MES: mesenchymal, MSL: mesenchymal stem-like, PD-L1: programmed death-ligand 1, TILs:
tumor infiltrating lymphocytes, TMB: tumor mutational burden.

Table 3. Factors contributing to the variability of PD-L1 testing and interpretation across TNBC
molecular subtypes.

PD-L1
Clone

PD-L1 Scoring
System

TNBC Molecular Classification System
TNBC Staging

Method Molecular
Subtype

Sood et al. [41] 22C3 IC

IHC (AR, CK5/6,
CK14, claudin 3
and 7, vimentin,

e-cadherin, EGFR)

BL, MES, LAR,
mixed,

unclassifiable
eTNBC

Alves et al. [42] SP142 TC

IHC (AR, CK5,
claudin,

p-cadherin, EGFR),
H&E (TILs)

Burstein’s
classification eTNBC

Phase III IMpassion 130 [29] SP142 IC RNA sequencing Burstein’s
classification mTNBC

Phase III NeoTRIPaPDL1 [32] SP142 IC RNA sequencing TNBCtypes by
101-gene algorithm eTNBC

Phase II FUTURE [36] SP142 IC, TC IHC (AR, CD8,
FOXC1)

LAR, IM, BLIS,
MES mTNBC

Phase II Pembrolizumab +
Enobosarm [40] 22C3 IC IHC (AR) LAR mTNBC

Abbreviations. AR: androgen receptor, BL: basal-like, BLIS: basal-like immune-suppressed, CK: cytokeratin, EGFR:
epidermal growth factor receptor, FOXC1: forkhead Box C1, H&E: hematoxylin and eosin, IC: immune cells,
IHC: immunohistochemistry, IM: immunomodulatory, LAR: luminal androgen receptor, MES: mesenchymal, TC:
tumor cells, TILs: tumor infiltrating lymphocytes, eTNBC: early triple negative breast cancer, mTNBC: metastatic
triple negative breast cancer.

In phase I-II trials in mTNBC, PD-L1 IHC expression was associated with a higher
response rate to ICI monotherapy. However, some of these studies only included patients
with PD-L1-positive tumors [16,45–48]. The predictive value of PD-L1 IHC and its associa-
tion with a better outcome in mTNBC were demonstrated in the phase III IMpassion 130
and KEYNOTE 355 trials evaluating a combination of an anti-PD-(L)1 ICI and chemother-
apy as first-line therapy [7,23]. Since 2019, two companion diagnostics for PD-L1 testing
have been approved by the Food and Drug Administration (FDA) to select unresectable or
metastatic TNBC to be treated with an ICI and chemotherapy [49] (Tables 1 and S1).

PD-L1 is far from an optimal biomarker. In fact, responses to ICI-based therapy
are also observed in patients with PD-L1-negative tumors, and not all patients with PD-
L1-positive TNBC benefit from immunotherapy. This inconsistency could be related to
tumor heterogeneity (e.g., potential differences in PD-L1 staining which can be observed
between primary tumor samples and metastatic lesions, across concurrent metastatic sites,
as well as within the same tissue sample), but may also be a result of discrepancies in the
PD-L1 assessment methodologies that were used in the different studies [50,51]. Indeed,
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PD-L1 positivity can be influenced by different aspects of the IHC assay that is being
used, including the antibody clone (SP142 vs. 22C3), the staining protocols and platforms
(Ventana vs. Dako), the scoring algorithms (immune cells only for SP142 vs. immune and
tumor cells for 22C3), and the threshold used for positivity (Combined Positive Score (CPS)
≥10 vs. immune cells (IC) ≥1%). Several reports demonstrated an inconsistent prevalence
of PD-L1 positivity across the different clinical trials [52–54]. Indeed, each antibody binds to
a distinct epitope of PD-L1, leading to specific PD-L1 staining patterns. Indeed, comparable
tumor cell staining is obtained with 22C3, 28–8, and SP263, but this is not the case with the
SP142 assay, which better identifies immune cells [53,55]. In this regard, deglycosylation of
formalin-fixed paraffin-embedded (FFPE) tumor samples can increase cell surface PD-L1
detection, and has been proposed as a method to reduce the proportion of false negative
results [56]. Despite these technical considerations, the anatomical site, and the timing of
PD-L1 assessment are crucial as well. This is reflected by the higher PD-L1 expression in
primary tumors compared to metastatic lesions, or in metastatic lymph nodes compared
to liver lesions [8,23]. Furthermore, PD-L1 expression is dynamic, as shown by possible
conversions in the PD-L1 status following neoadjuvant chemotherapy [31,57].

Interestingly, PD-L1 expression on pre-therapeutic BC biopsies did not predict pCR
in the neoadjuvant IMpassion 031 and KEYNOTE 522 trials [1,6]. The benefit obtained by
combining chemotherapy with an ICI was in fact consistent across different levels of PD-L1
expression. However, in the GeparNuevo trial, higher pCR rates were observed in patients
with PD-L1-positive tumors regardless of the treatment arm, with significant differences
when considering the expression of PD-L1 on tumor cells in the durvalumab arm and on
immune cells in the placebo arm [24,58] (Table S2).

The discordance in the predictive value of PD-L1 between the early and metastatic
settings may also be related to the immunoediting processes of cancer cells when evolving
from a primary tumor to metastatic lesions, and to the progressive development of a TME
more conducive to immune evasion. In this respect, the emergence of less immunogenic
tumors in combination with a more immunosuppressive TME in metastatic lesions may
make the prediction of a response to the ICI in this setting more dependent on biomarkers
such as PD-L1 expression [59–61].

In conclusion, the indication for PD-L1 testing currently remains limited to mTNBC,
and its results should be interpreted with caution given its many flaws as a biomarker.

Given the technical issues associated with the IHC PD-L1 status, assessing CD274
gene amplification may potentially be a more robust biomarker. CD274 encodes for PD-L1,
and the presence of gain or amplification of this gene was associated with increased PD-L1
expression (assessed with SP142) in cancer cells but not in immune cells, in line with a
cancer cell-intrinsic expression pattern related to this genomic alteration and an adaptative
mechanism of immune evasion during cancer evolution [31].

Recently, Lehmann et al. described the distribution of CD274 amplification across
the 4-type molecular TNBC classification, reporting a generally low prevalence. A higher
incidence of CD274 amplifications was observed in the M subtype (11%), followed by the
BL2 subtype (5%). However, M tumors displayed increased methylation in the promoter
region of the CD274 gene, which hampered the expression of PD-L1 on the cell surface [9]
(Table 2). Interestingly, neoadjuvant chemotherapy could lead to the selection of CD274
amplification in TNBC, and, thus, to an increase in PD-L1 expression [62]. In the SAFIR02
BREAST IMMUNO phase II trial, PD-L1 CNVs assessed through a CGH array (Affymetrix
CytoscanHD or Oncoscan) showed that a gain (3 to 4 copies) or an amplification (≥ 4 copies)
of CD274 was predictive for a benefit from durvalumab in metastatic BC [31] (Table 1).

4. Role of Agnostic Biomarkers for ICI Therapy in TNBC

Microsatellite instability (MSI) and TMB are two tissue-agnostic biomarkers approved
by the FDA for the use of pembrolizumab in patients with an unresectable or metastatic
solid tumor progressing to prior therapy [17,18]. TMB is generally considered as a surrogate
for the neoantigen load and a biomarker of T cell activation [20,21,63]. Even if TMB is
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higher in TNBC compared to other BC subtypes, the overall median TMB in TNBC is
low (1.8 mutations per megabase) compared to other tumors [22]. In TNBC, a TMB
of >1.5 mut/Mb was significantly associated with a better progression-free interval [9].
Lehmann et al. showed that BL1 and M subtypes harbored more mutations than the BL2
and LAR subtypes [9] (Table 2). Based on the phase II KEYNOTE 158 trial results, a cut-off
point of more than 10 mutations/megabase (mut/Mb) of DNA using a targeted sequencing
FoundationOneCDx assay (F1CDx) was defined for the use of pembrolizumab monotherapy
in advanced solid tumors. [25,64]. Of note, this indication involves 5–10% of patients with
TNBC [20–22]. The relevance of this biomarker in solid tumors is still controversial, as
frequent tumor types such as prostate cancer and microsatellite stable colorectal cancer
were underrepresented in the KEYNOTE 158 trial. Furthermore, a recent retrospective
analysis showed that when CD8 T cell levels are not correlated to a neoantigen load, a high
TMB fails to predict the response to the ICI across different cancer types, including BC [65].
In the multi-basket MyPathway (NCT02091141) study, a higher cut-off of F1CDx TMB
of ≥16 mut/Mb demonstrated a larger benefit from atezolizumab monotherapy across a
broad spectrum of advanced solid tumors, regardless of the MSI status (ORR = 38.1%). In
contrast, limited efficacy was observed in patients with F1CDx TMB ≥10 and <16 mut/Mb
(ORR = 2.1%, n = 48) [66]. In BC, an exploratory analysis of the phase III KEYNOTE-119
trial suggested a positive association between TMB-H status and a clinical benefit from
pembrolizumab in patients with mTNBC, in line with the phase II TAPUR trial [21,26]
(Tables 1 and S1). In the neoadjuvant GeparNuevo trial, TMB assessed using whole-exome
sequencing with a cut-off based on the upper tertile (2.05 mut/Mb) was associated with
the pCR in both study arms (with and without ICI), suggesting that TMB is a prognostic
rather than a predictive biomarker in this setting [67].

As a consequence of accumulating tumor-specific non-synonymous mutations, the
neoantigen load could be an additional biomarker for the response to ICIs, potentially more
precise than TMB. As TNBC tumors exhibit a higher mutation rate, they are more likely
to harbor neoantigens and higher TIL levels than ER+ BC [26,68,69]. These mutations are
foreign to the host genome and can induce adaptive anti-tumor immune responses [70]. In
BC, a slightly higher neoantigen load was observed in responders to ICIs with an anti-PD-L1
and anti-CTLA-4 [71]. However, assessing the neoantigen load requires the acquisition of
different parameters derived from whole-exome and RNA-seq, including HLA-typing and
the prediction of major histocompatibility complex binding, which makes it challenging in
routine clinical practice [72].

MSI, characterized by abnormal losses or gains of nucleotides in repetitive microsatel-
lite sequences, is a result of a highly mutagenic tumor phenotype secondary to DNA
mismatch repair deficiency [73]. IHC and PCR-based assays are currently used to assess the
MSI status [74–77]. Unlike colorectal or endometrial cancers, high levels of microsatellite
instability (MSI-H) or deficient mismatch repair (dMMR) status are extremely rare in TNBC,
with only approximately 0.2% of TNBC cases being MSI-H/dMMR [19,77]. In 2017, the
FDA approved the use of MSI-H/dMMR as a tissue-agnostic biomarker to select patients
eligible for a treatment with pembrolizumab based on a pooled analysis of 149 patients with
MSI-H/dMMR cancers enrolled in single-group clinical trials (Table 1) [17,27]. However,
only 2 BC patients were included in this study. Up to now, no data about the distribution
of MSI status across TNBC molecular subtypes are available.

5. Tumor Infiltrating Lymphocytes and Spatial Immune Organization

TILs refer to a variable set of leukocytes, mostly consisting of T cells, with lower
proportions of B and natural killer cells [78]. The prevalence of TILs is heterogeneous across
different BC subtypes, with TNBC and HER2+ BC exhibiting higher levels of TIL infiltration
compared to luminal-like BC subtypes [79]. TILs are commonly scored on hematoxylin and
eosin (H&E)-stained tissue slides, and are categorized into stromal (sTILs) and intratumoral
(iTILs) TILs [78].
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According to the Lehmann’s molecular classification, TILs are more abundant in IM
tumors (percentage of TILs: 38%), followed by BL2 (23%), MSL (21%), LAR (17%), BL1
(15%), and M (9%) [13] (Table 2). Interestingly, the immune infiltrate composition differs as
well across the different molecular subtypes, with adaptive immune cells being enriched in
IM, and innate immune cells being more represented in MSL and LAR subtypes [15].

An International Immuno-Oncology Biomarker Working Group on Breast Cancer de-
veloped guidelines to standardize TIL scoring in BC in order to increase the reproducibility
of TILs’ assessment and to facilitate their integration and interpretation in clinical tri-
als [80–82]. However, in the era of artificial intelligence (AI), novel tools such as automated
TIL scoring systems using machine and deep learning approaches are in development,
aiming to overcome the inherent inter-operator variability of visual TIL estimation [83–85].
Importantly, the integration of this biomarker in the traditional TNM American Joint Com-
mittee on Cancer (AJCC) Staging System for eTNBC is under discussion [86]. In parallel,
an online tool is actually accessible to determine the prognosis based on variables such as
TILs, nodal status, age, and tumor size [87]. A growing body of evidence has confirmed
the prognostic and predictive values of TILs in TNBC patients undergoing standard treat-
ments, which formed the rationale to also interrogate their clinical utility in the context of
ICI therapy.

In the metastatic setting, higher TIL levels have been associated with a better ORR to
single-agent ICI and to a better overall survival (OS) in TNBC patients [28,29,44]. In the
phase III IMpassion130 trial, the combination of atezolizumab and nab-paclitaxel proved to
be associated with a longer PFS in patients whose tumors harbored sTILs ≥10% (HR: 0.64,
95% CI = 0.5–0.84) (Tables 1 and S1). This difference was even more pronounced when TIL
levels were combined with PD-L1 positivity (HR: 0.54, 95% CI = 0.39–0.75) [23].

Dynamic monitoring between baseline and on-treatment biopsies in the TONIC
trial also showed higher TILs and CD8+ lymphocytes in responders compared to non-
responders among advanced TNBC patients treated with nivolumab monotherapy after an
immune induction phase [88] (Table S1).

In early BC, higher sTIL levels were associated with a better response to the ICI
in the NeoTRIPaPDL1, GeparNuevo, and KEYNOTE 173 trials [24,30,57] (Table S2). In
addition, baseline iTIL levels were found to be associated with a higher pCR rate following
treatment with a combination of chemotherapy and atezolizumab in the NeoTRIPaPDL1
trial. Importantly, the median increase in sTILs and iTILs between pre-treatment and
on-treatment samples was higher in patients who achieved a pCR in the KEYNOTE 173
and GeparNuevo trials, illustrating the potential value of TIL dynamics in predicting ICI
efficacy [30,57]. However, given the poor reproducibility of iTILs estimations, we must
interpret these results with caution [82]. Recently, the neoadjuvant phase II BELLINI
trial was the first study to use TIL levels to select highly immunogenic early-stage TNBC
for treatment with nivolumab ± low-dose ipilimumab, and to identify a subgroup of
patients who would benefit from a therapeutic de-escalation. Both arms of this study
met their biomarker-based primary endpoint, with an increase in CD8+ T cells and/or
IFN-gamma expression in 53% of patients in the nivolumab cohort and of 60% in the
nivolumab/ipilimumab cohort. In this trial, responders had baseline sTILs levels of ≥40%
with a concentration of CD8+ T cells in the proximity of tumor cells (p = 0.0014) [89].

Beyond the broad assessment of TILs in TNBC, specific immune cell compositions
were shown to influence the response to the ICI as well. In this respect, CD8+ T cells
seem to be the most important cell subset. In-depth analyses of TIL compositions showed
an association between CD8+ T cells and T regulatory cells with a better outcome under
chemo-immunotherapy across different trials, including a phase Ia study (NCT01375842)
and the TONIC, I-SPY2, and KEYNOTE 086 trials [44,88,90,91]. Interestingly, single-cell data
suggested a potential association between tertiary lymphoid structures, which are ectopic
lymph node-like structures characterized by lymphoid aggregation and colocalization with
CXCL13 + CD8+ T cells, CD4+ T cells, and CXCR5+ B cells, and the response to the ICI [92].
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Recently, data supporting the importance of the immune cell contextures within the
tumor microenvironment led investigators to look into the potential prognostic role of
the spatial localization of TILs in TNBC [23,93]. At least three spatial immunophenotypes
have been identified: a fully inflamed (FI) phenotype (characterized by intratumoral
localization of TILs), a stroma-restricted (SR) phenotype (absence of iTILs, but presence of
TILs in the stroma), and a margin-restricted (MR) phenotype (presence of TILs at tumor
margins). The latter of these phenotypes could encompass immune desert (ID) tumors (low
abundance of TILs). Regarding the TNBC molecular classifications, a higher proportion of
FI tumors was found in the IM subtype (46–76%) [15,43]. In contrast, the SR phenotype
was mainly observed in BL/BL1 subtypes (62.5–78%), while it was less frequent in the
BL2 subtype (0–27%). The MR phenotype was instead more prevalent in the LAR and M
subtypes (33–43% and 41–93%, respectively). Finally, the M subtype likely had the lowest
immunogenic potential, with lower levels of TIL infiltration and a higher prevalence of the
MR or ID phenotype compared to the other subtypes [9,13,15,43] (Table 2).

The impact of different spatial immunophenotypes on the therapeutic response is
increasingly being explored in clinical trials evaluating ICIs in TNBC. In IMpassion130,
FI- and immune-excluded tumors, defined by a significant CD8+ T cell infiltration in the
tumor or in the stroma compartment, respectively, were associated with better outcomes in
the atezolizumab arm compared to ID tumors. In addition, a particularly prolonged OS
was observed in FI tumors which were treated with atezolizumab [29].

Moreover, a high degree of spatial connectivity between epithelial and specific TME
cell phenotypes (e.g., CD8 + PD1 + TEX T cells, CD8 + GZMB+ T cells, CD20+ B cells)
proved to be associated with a higher pCR rate when adding atezolizumab to chemotherapy
in the neoadjuvant NeoTRIPaPDL1 trial, independent of PD-L1 expression and the number
of sTILs [94]. Of note, dynamic monitoring in the TONIC trial showed an increase in the
proportion of inflamed phenotypes after induction treatment with cisplatin and doxorubicin.
This illustrates that the TME can change under chemotherapeutic pressure, a feature that
can potentially be exploited to enhance ICI activity [95].

6. Gene Expression Signatures

The first generation of molecular analyses in BC based on gene expression profiling
identified several gene signatures driven by proliferating genes, and improved the prog-
nosis prediction [96]. Originally, immune-related genes were considered as confounding
variables within microarray-based gene expression analyses. However, in recent years, the
immune response evaluated by the expression of immune genes was demonstrated to be a
major molecular process associated with prognosis, especially in HER2+ and TNBC sub-
groups, and was included in the BC taxonomy [97]. Immune gene signatures reflect the rel-
ative abundance of tumor-infiltrating immune cells and define subpopulations of immune
cells as well as several immunological features that exhibit a significant correlation with
patient outcome and therapeutic response [98,99]. As the RNA-seq of tumor samples usu-
ally encompasses both tumor cells and cells from the microenvironment, researchers have
developed expression profile-based tools for the relative or absolute estimation of the abun-
dance of microenvironment cells in tumor tissues (e.g., Cibersort, MCP-counter) [100,101].
These tools are able to identify different immune subsets in tumor-derived samples using
specific immune gene expression signatures and/or marker genes.

In mTNBC, B and T cells’ gene expression signatures were significantly associated with
better outcomes in patients treated with atezolizumab monotherapy [28]. In addition, the 18-
gene T cell-inflamed gene expression profile (GEP) and the 37-gene tissue-resident memory
(TRM) T cell signature proved to be associated with the response to pembrolizumab [102].
More recently, data suggested that the predictive value of the TRM signature in ICI-treated
patients may be explained by the exhausted phenotype of TRM cells, which could be
re-activated by the addition of ICI ex vivo [103]. In eTNBC, higher levels of dendritic
cell and STAT1_sig/chemokine12 gene signatures have been linked to the response to
pembrolizumab [104]. In the GeparNuevo phase II trial, the GeparSixto immune gene
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expression signature (GSIS), TMB, and an interferon signature were independently predic-
tive for pCR following treatment with a durvalumab-chemotherapy combination in the
neoadjuvant setting [58,67]. Of note, GSIS is composed of 12 immune genes that differen-
tiate “immune-hot” from “immune-cold” tumors, and include both immune-activating
genes (CCL5, CXCL9, CXCL13, CD80, CD21, CD8A, IGKC) and immunosuppressive genes
(PDCD1, coding for PD-1, CD274, coding for PD-L1, CTLA4, FOXP3, and IDO1). The preva-
lence of specific immune signatures has rarely been assessed in the function of the TNBC
molecular classification. Indeed, only GSIS was evaluated across different molecular sub-
types in a phase II trial assessing the activity of neoadjuvant carboplatin and nab-paclitaxel
in eTNBC [44]. Immune-hot tumors were identified in 100% of IM, 45% of BL1, and 40%
of BL2 subtypes. In line with previous results, only 1 LAR (16%), 1 MSL (25%), and no M
tumors were characterized as being immune-hot [44] (Table 2).

More recently, the NeoTRIPaPDL1 trial highlighted the predictive value of a 27-
gene immuno-oncology (IO) score, and of a B cell memory signature for a response to
atezolizumab combined with chemotherapy [32]. Interestingly, the dynamics of the IO score
computed on biopsies collected early during treatment were linked to the likelihood for a
pCR independently of baseline biomarkers, and may be an early surrogate for treatment
benefit in patients receiving immunotherapy [105].

However, these signatures are largely redundant, and do not account for the spatial
distribution of immune cells, nor do they allow the analysis of detailed features that can
be captured using spatial transcriptomics or single-cell analyses [16–108]. Of note, the
implementation of gene expression signatures using RNA-seq is challenging and comes
with additional costs. Recently, alternatives to RNA-seq, such as a quantitative reverse
transcription-polymerase chain reaction test for IO score assessment, were confirmed to
be predictive of the atezolizumab benefit over chemotherapy alone in the NeoTRIPaPDL1
trial [105].

In addition to immune signatures, several canonical cancer pathways were recently
shown to be associated with outcome following ICI therapy. I-SPY 2 investigators tested 9
gene expression signatures reflecting different aspects of DNA damage and repair. Of these
biomarkers, a MammaPrint High2 status and DNA damage sensing pathway including
the ATM, ATR, CHEK1, and CHEK2 genes proved to be associated with a response to pem-
brolizumab [109]. Of interest, the aforementioned amplification of CD274 can be associated
with JAK2 amplification in around 10% of TNBC cases after neoadjuvant treatment, making
it a potential predictor for a response to ICI therapy [110]. Recently, data from the TONIC
trial showed that a short-term treatment with doxorubicin and cisplatin can reprogram the
TME by up-regulating the JAK-STAT and TNF-α signaling, resulting in a higher sensitiv-
ity to nivolumab in mTNBC [88]. Finally, in the IMpassion130 trial, different hallmarks
including processes involved in DNA repair and proliferation (e.g., “DNA repair”, “G2/M
Checkpoint”, or “Mitotic Spindle”) were associated with a better PFS in the atezolizumab
arm [29].

However, the predictive role of these different pathways needs extensive prospective
validation in BC treated with ICIs.

7. Discussion and Conclusions

Over the past decades, advances in cancer immunotherapy have significantly im-
proved the prognosis of many patients with a variety of malignancies. Meanwhile, efforts
are underway to better understand the mechanisms associated with treatment response and
resistance. These insights will allow physicians to better select the most suitable treatment
strategy for each patient. As summarized in this review, TNBC heterogeneity should be
considered in the development of predictive biomarkers, and multiple challenges are to be
faced for the implementation of immune “precision therapy” in patients with TNBC.

Despite its biological and clinical heterogeneity, only two biomarkers (PD-L1 IHC stain-
ing for immunotherapy and germline BRCA1/2 mutations for PARP inhibitors) are currently
available to tailor therapy in TNBC. The TNBC molecular subtypes established in the past
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decade through extensive genomic and transcriptomic analyses are an important achieve-
ment and allow us to better categorize TNBC and identify targetable pathways [10–15].
However, this TNBC classification is still largely theoretical and is not yet used in clinical
practice. Indeed, molecular subtyping requires RNA-sequencing of the tumor sample
which is costly and not widely accessible. However, some recent studies are considering
molecular TNBC subtypes either as an inclusion criterion or as a biomarker for subgroup
analyses [29,36,37,40]. Other limitations to implement TNBC subtypes in clinical practice
are the absence of consensus between the different classification systems and the fact that
none of them has been validated in the metastatic setting. Of note, comparisons of the ge-
nomic and transcriptional characteristics of primary tumors and corresponding relapses as
well as their molecular subtypes between early and metastatic TNBC settings are warranted
for a better understanding of this multi-faceted disease. The AURORA study performing
multi-omics profiling with paired primary tumors and early-course metastases in BC may
address this issue [111]. In parallel, other studies are exploring new approaches using IHC
surrogates for TNBC molecular classification as used in the FUTURE trial, or imaging-based
deep learning models [35,36,112,113]. Further studies investigating the ability of these
surrogates to determine each subtype are needed.

Despite all these efforts, the TNBC heterogeneity is still not completely deciphered,
and this heterogeneity has yet to be considered in the development of predictive or prognos-
tic biomarkers. This review clearly illustrates the variable potential of biomarker candidates
between different TNBC subtypes, which should be addressed as distinct diseases, par-
ticularly with regards to treatment with the ICI [9,13,15,29,32,40–44]. In addition to the
molecular heterogeneity, the development of biomarkers predictive for a response to the
ICI in TNBC is challenging and limited by several technical aspects. This includes a lack of
standardization between studies investigating potential biomarkers, a fact that is amply
illustrated by PD-L1 IHC expression [54,55]. As a result, comparing the results from dif-
ferent studies is unreliable, and determination of the clinical significance of the biomarker
is challenging.

To overcome the challenges posed by tumor heterogeneity, an integrative approach
combining multiple predictive biomarkers is emerging as a new strategy for the develop-
ment of biomarkers. For instance, the combination of PD-L1 expression and TILs with
or without an 18-gene T cell-inflamed GEP, TMB, CD8 IHC, and a glycolysis signature
emphasized the additional predictive value to the ICI in the KEYNOTE 086, GeparSixto,
and IMpassion130 trials [16,92,114,115]. This integrative approach could be transposed
to TNBC molecular classification. To this end, each molecular feature could be evaluated
through an individualized TNBC immunogram, as proposed by Blank et al. [116]. In this
regard, as shown in Figure 3, different TNBC subtypes inherently present different features.
This subtype-guided immunogram could help to deeply dissect tumor heterogeneity by
highlighting the different contributions of the previously described predictive biomarkers
and to better tailor future immune “precision therapy” in TNBC. Indeed, specific biomark-
ers integrated with molecular subtypes may provide a more comprehensive evaluation. It
is now obvious that to improve the use of immunotherapy in TNBC, we have to develop
clinical trials for targeted populations driven by biomarkers.

In addition, retrospective translational research analyses evaluating multiple biomark-
ers in immunotherapy trials will help to advance the development and validation of these
biomarkers. However, this requires easier access to clinical trial data across the whole
research community. On the other hand, new prospective studies will be needed to val-
idate each biomarker or their combination in predictive models gathering patient- and
tumor-intrinsic characteristics along with dynamic immune parameters.

A next step in this biomarker development will come from data provided by novel
technologies that are able to depict the TME (e.g., spatial transcriptomics/proteomics and
single-cell sequencing) at an unprecedented level [95,106,108,117,118] and by data support-
ing novel biomarkers in other cancer types [119–121]. For instance, the characterization of
both gut and breast microbiomes could lead to further advancements in the prediction of
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the response to the ICI in TNBC [122,123]. In BC, distinct microbial signatures are asso-
ciated with BC subtypes [124]. Moreover, breast microbes may also modulate the tumor
microenvironment and the immune activation in BC patients, providing opportunities
to target microbes to improve outcomes and the prediction of treatment response [123].
Interestingly, diet could influence the microbes in the gut, and a recent study demonstrated
that patients reporting sufficient fiber intake (>20 g/day) have better outcomes on the ICI
in melanoma patients [124]. Furthermore, liquid biopsies, having the advantage of being
conservative procedures, could also be used to predict and actively monitor the response
to immunotherapy. Indeed, in TNBC, higher circulating T cell receptor clonality/diversity,
baseline circulating tumor DNA levels, and kinetics were associated with a clinical benefit
to the ICI [88,125] (Figure 1). The full potential of these new tools needs to be further
explored in prospective randomized trials.
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are rescaled between minimum (internal ring) and maximum value (external ring) for each parameter
across subtypes. The contribution of each biomarker to TNBC molecular subtype is delineated by
the connected colored line. Each subtype is represented by a specific color. Abbreviations. FI: fully
inflamed, MR: margin-restricted (including immune desert), PD-L1: programmed death-ligand 1, SR:
stroma-restricted, TILs: tumor infiltrating lymphocytes, TMB: tumor mutational burden (mut/Mb).

To conclude, as highlighted by the data reviewed in this manuscript, it is clear that
TNBC heterogeneity should be considered when evaluating new biomarkers in this setting.
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In the future, an approach considering TNBC as a multi-faceted disease will help in the
development of more tailored therapies in line with patient-centered care.
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//www.mdpi.com/article/10.3390/jcm12030953/s1, Table S1: Description of major clinical trials
assessing immune checkpoint inhibitors in metastatic triple negative breast cancer with biomarker
assessment; Table S2: Description of major clinical trials assessing immune checkpoint inhibitors as
neoadjuvant treatment in triple negative breast cancer with biomarker assessment.
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Appendix A

Bioinformatic analyses were performed on four publicly available datasets composed
of 294 TNBC samples from the Molecular Taxonomy of Breast Cancer International Consor-
tium (METABRIC) [25], 170 TNBC samples from The Cancer Genome Atlas Consortium
(TCGA) [26], 360 TNBC samples from patients with Asian ancestry retrieved from Jiang
and colleagues [12], and 520 TNBC samples from the Gene Expression Omnibus platform
(GSE31519) [27].

• Data acquisition

The breast cancer dataset disclosed by the METABRIC study was downloaded from
https://www.cbioportal.org, accessed on 18 December 2022. It contained a normalized
RNA microarray profiling of 1992 fresh-frozen breast cancer samples performed on the
Illumina HT-12 v3 arrays. We considered as TNBC the BC that had negative results for
both HER2 and ER.

The breast cancer dataset disclosed by the TCGA study was hosted by the Broad
Institute and deposited in the FIREHOSE Broad GDAC at https://gdac.broadinstitute.org,
Access date: 24th September 2020. It contained a raw count from the mRNA-sequencing of
1093 breast cancer samples performed on the Illumina HiSeq 2000. We considered as TNBC
the primary BC samples that had negative results for both HER2 and ER.

https://www.mdpi.com/article/10.3390/jcm12030953/s1
https://www.mdpi.com/article/10.3390/jcm12030953/s1
https://www.cbioportal.org
https://gdac.broadinstitute.org


J. Clin. Med. 2023, 12, 953 17 of 23

For the breast cancer dataset retrieved from Jiang and colleagues, RNA-Seq processed
data were fetched from the National Omics Data Encyclopedia (NODE) (http://www.
biosino.org/node, accessed on 18 December 2022) under accession number (OEP000155).

Gene expression data from TNBC samples disclosed by Rody and colleagues were
retrieved from the Gene Expression Omnibus platform (GSE31519) derived from Affymetrix
U133A arrays.

• Molecular subtyping

a. Lehmann’s TNBC type-6
This classification is composed of six stable subtypes, namely: two basal-like subtypes

(BL1 and BL2), an immunomodulatory subtype (IM), a luminal androgen receptor sub-
type (LAR), a mesenchymal subtype (M), and a mesenchymal stem-like subtype (MSL).
Lehmann’s molecular subtypes were assigned using a reimplementation of the published
method, based on the published list of genes positively and negatively associated with
each subtype [10]. Briefly, each gene was first normalized to a mean of 0 and a standard
deviation of 1. Positive and negative signatures were calculated for each subtype as the
mean of the genes positively or negatively associated with that subtype. A subtype score
was obtained using the difference between those positive and negative signatures. Each
TNBC sample was assigned to the TNBC molecular subtype with the highest score. The
main difference with the published method is the lack of the unstable subtype, as each
sample was associated with a subtype.

b. Bareche’s molecular subtypes
As previously described by Bareche et al. [14], samples classified from Lehmann’s

TNBC type-6 as BL2 and UNS were reclassified using the second highest score. Within this
review, the basal-like 1 (BL1) subtype will be referred to as the basal-like (BL) subtype.

c. Burstein’s molecular subtypes
Burstein’s molecular classification is composed of four stable subtypes, namely: a

basal-like immune-suppressed subtype (BLIS), a basal-like immune-activated subtype
(BLIA), a luminal androgen receptor subtype (LAR), and a mesenchymal subtype (MES).
Burstein’s molecular subtypes were assigned in our four datasets by applying the method
from PMC6349443. In brief, we rescaled the values from each gene by replacing it by its
quantile, leading to values between 0 and 1. We then calculated the Spearman correlations
between those rescaled values and the published prototypes, and assigned each sample to
the class with the highest correlation.
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