
Citation: Huang, H.-H.; Hsieh, S.-J.;

Chen, M.-S.; Jhou, M.-J.; Liu, T.-C.;

Shen, H.-L.; Yang, C.-T.; Hung, C.-C.;

Yu, Y.-Y.; Lu, C.-J. Machine Learning

Predictive Models for Evaluating

Risk Factors Affecting Sperm Count:

Predictions Based on Health

Screening Indicators. J. Clin. Med.

2023, 12, 1220. https://doi.org/

10.3390/jcm12031220

Academic Editor: Emad Ibrahim

Received: 20 December 2022

Revised: 13 January 2023

Accepted: 1 February 2023

Published: 3 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Machine Learning Predictive Models for Evaluating Risk
Factors Affecting Sperm Count: Predictions Based on Health
Screening Indicators
Hung-Hsiang Huang 1,†, Shang-Ju Hsieh 1,†, Ming-Shu Chen 2,† , Mao-Jhen Jhou 3 , Tzu-Chi Liu 3,
Hsiang-Li Shen 3, Chih-Te Yang 4 , Chung-Chih Hung 5 , Ya-Yen Yu 6 and Chi-Jie Lu 3,7,8,*

1 Division of Urology, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
2 Department of Healthcare Administration, College of Healthcare & Management, Asia Eastern University of

Science and Technology, New Taipei City 220, Taiwan
3 Graduate Institute of Business Administration, Fu Jen Catholic University, New Taipei City 242, Taiwan
4 Department of Business Administration, Tamkang University, New Taipei City 251, Taiwan
5 Department of Laboratory Medicine, Taipei Hospital, Ministry of Health and Welfare,

New Taipei City 242, Taiwan
6 Department of Medical Laboratory, Chang-Hua Hospital, Ministry of Health and Welfare,

Chang Hua County 513, Taiwan
7 Artificial Intelligence Development Center, Fu Jen Catholic University, New Taipei City 242, Taiwan
8 Department of Information Management, Fu Jen Catholic University, New Taipei City 242, Taiwan
* Correspondence: 059099@mail.fju.edu.tw; Tel.: +886-2-2905-2973
† These authors contributed equally to this work.

Abstract: In many countries, especially developed nations, the fertility rate and birth rate have contin-
ually declined. Taiwan’s fertility rate has paralleled this trend and reached its nadir in 2022. Therefore,
the government uses many strategies to encourage more married couples to have children. However,
couples marrying at an older age may have declining physical status, as well as hypertension and
other metabolic syndrome symptoms, in addition to possibly being overweight, which have been the
focus of the studies for their influences on male and female gamete quality. Many previous studies
based on infertile people are not truly representative of the general population. This study proposed
a framework using five machine learning (ML) predictive algorithms—random forest, stochastic
gradient boosting, least absolute shrinkage and selection operator regression, ridge regression, and
extreme gradient boosting—to identify the major risk factors affecting male sperm count based
on a major health screening database in Taiwan. Unlike traditional multiple linear regression, ML
algorithms do not need statistical assumptions and can capture non-linear relationships or complex
interactions between dependent and independent variables to generate promising performance. We
analyzed annual health screening data of 1375 males from 2010 to 2017, including data on health
screening indicators, sourced from the MJ Group, a major health screening center in Taiwan. The
symmetric mean absolute percentage error, relative absolute error, root relative squared error, and
root mean squared error were used as performance evaluation metrics. Our results show that sleep
time (ST), alpha-fetoprotein (AFP), body fat (BF), systolic blood pressure (SBP), and blood urea
nitrogen (BUN) are the top five risk factors associated with sperm count. ST is a known risk factor
influencing reproductive hormone balance, which can affect spermatogenesis and final sperm count.
BF and SBP are risk factors associated with metabolic syndrome, another known risk factor of altered
male reproductive hormone systems. However, AFP has not been the focus of previous studies on
male fertility or semen quality. BUN, the index for kidney function, is also identified as a risk factor
by our established ML model. Our results support previous findings that metabolic syndrome has
negative impacts on sperm count and semen quality. Sleep duration also has an impact on sperm
generation in the testes. AFP and BUN are two novel risk factors linked to sperm counts. These
findings could help healthcare personnel and law makers create strategies for creating environments
to increase the country’s fertility rate. This study should also be of value to follow-up research.
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1. Introduction

Population aging is one of the by-products of a country’s economic development.
It increases the burden on the younger generation and diminishes the time available to
raise the next generation. Fertility and birth rates have been continually declining in many
countries. Taiwan’s fertility rate reached its lowest point in 2022 at 1.08 children born per
woman, which is lower than the 2.1 needed to maintain the population [1]. Therefore,
it is crucial to ensure that married couples wanting to raise the next generation are able
to conceive successfully. However, around 15–20% of couples are unable to conceive
within one year of unprotected intercourse. Male factors contribute to 50% of all infertile
cases. Although advances in assisted reproductive techniques (ART) help many couples to
conceive successfully, the success rate of ARTs still depends on semen quality [2].

The decline in fertility has coincided with the falling trend in semen quality in recent
years. Sperm count and sperm concentration, two determinants of semen quality, were
found to be declining in a meta-analysis of 61 studies published between 1938 and 1990
comparing men with no history of infertility [3]. Since that finding, multiple studies have
confirmed this worrying trend of decreasing sperm count and sperm density. In a more
recent study, the proportion of men with normal total motile sperm count (>15 million)
was found to have declined by about 10% over the past 16 years [4]. Although this trend
was found within the subfertile male population, it implies that more couples need ARTs to
help them to conceive.

Many risk factors, ranging from the patient’s genetic background [5], maternal expo-
sure [6], environmental pollutants [7], metabolic syndrome (MetS) [8], and obesity [9] to the
patient’s lifestyle [10], have been recognized to affect sperm count. Sperm count is further
associated with sperm quality and could determine male fertility [11]. However, the extent
of the influence of these factors on semen quality remains to be clearly determined due
to the inability to design an experiment to account for all possible confounding factors.
In addition, many previous study populations were recruited from infertility centers and
their conclusions were not representative of the general population. Therefore, to gain
more insights into the interplay between these factors and male fertility in the general
population, we are the first study to analyze the annual health screening data, the MJ
health-check-up-based population database (MJPD), from a major health screening center
in Taiwan. The MJPD is widely used in the healthcare/medical informatics studies [12].
Patients with metabolic syndrome, hyperlipidemia, or different lifestyles were considered
and used in this study to analyze the impacts of these risk factors on semen count.

Most of the existing studies usually utilized traditional multiple linear regression
(MLR) to analyze the relationship between risk factors and sperm count [13–15]. MLR as-
sumes that the dependent variable should be linearly correlated with independent variables
and that collinearity should not occur between independent variables [16–18]. However,
the use of MLR has limitations when the data may have non-linear relationships or complex
interactions between variables [16]. Machine learning (ML) methods are data-driven algo-
rithms and do not require statistical assumptions. They can capture non-linear relationships
between variables or those with complex interactions [19–22]. As ML methods can handle
collinearity more effectively than MLR and generate promising performances, they have
been widely used for prediction issues in the field of healthcare/medical informatics, while
MLR is used as a baseline for comparison [23–26]. However, only a few studies have
utilized ML for sperm-count-related research [27–29].The five effective ML methods with
different modeling mechanisms, namely, random forest (RF), stochastic gradient boosting
(SGB), least absolute shrinkage and selection operator regression (Lasso), ridge regression
(Ridge), and extreme gradient boosting (XGBoost), are used in this study since they have
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been successfully utilized in many healthcare or medical informatics studies to provide
promising results [24,25,30–39]. Thus, this study aims to construct a framework based on
RF, SGB, Lasso, Ridge, and XGBoost prediction models to identify the major risk factors
affecting male sperm count in order to provide more sperm-count-related research that
utilizes ML in the field of reproductive biology.

2. Materials and Methods
2.1. Data Material

The process for identifying subjects in this study consisted of scrutinizing health
screening indicators and questionnaire records of 71,108 members of the MJPD for the
period 2005–2017. The study selected 30 health screening indicators and questionnaire
variables relevant to the investigation. As there might have been multiple annual screening
data for each member in the database, only the most recent annual record of the subject was
analyzed. Subjects who lacked data on the main study variables were excluded, leaving
30,255 individuals who met the study eligibility criteria. We excluded 6 subjects who were
older than 50 years and not evenly distributed in the study groups and 28,874 non-male
subjects for whom sperm counts or motility tests were not performed in their annual health
examination. We finally identified 1375 eligible male subjects, of whom 686 (49.89%) were
married and 619 (45.02%) were unmarried, with an average age of 33.22 ± 4.36 years.

In Taiwan, many studies using the MJPD are listed on the website (http://www.
mjhrf.org/main/page/resource/en/#resource07; accessed on 1 October 2022). The MJPD
includes data collected from four MJ clinics that provide health screening to the center’s
members. All the datasets used were authorized by MJ Health Research Foundation
(Approval No.: MJHRF-2016005A). The data application procedures are described at
http://www.mjhrf.org/main/page/release1/en/#release01(accessed on 1 October 2022).
The MJPD is accessible to academic researchers upon request. The protocol of this study
was evaluated for ethical issues regarding the use of data in the database and was deemed
acceptable by the Research Ethics Review Committee of Far Eastern Memorial Hospital
(FEMH-IRB-107127-E, Protocol Version 1, 15 February 2022) and the MJ Health Research
Foundation; it was approved by ClinicalTrials.gov (ID: NCT05225454). The study was
conducted according to the guidelines of the Declaration of Helsinki, and all data were
anonymized before analysis in accordance with the ethics requirements of the institutional
review board.

Figure 1 illustrates the sperm count distribution in different age groups in the sample,
while Figure 2 shows the subject identification process for selecting the sample in this study.
Table 1 provides the sample attributes of the subjects, including descriptive statistics of
the independent and dependent variables. Figure 3 presents the correlation coefficients
between 20 numerical independent variables and sperm count using Pearson correlation
analysis. It can be seen from Figure 3 that a total of 3 risk factors have a positive linear
correlation with the dependent variable, namely, UA, HDL-C, and AFP. A total of 16 risk
factors have a negative linear correlation with the dependent variable, namely Age, BMI,
BF, WC, WHR, SBP, DBP, Hb, FPG, SGOT, SGPT, BUN, e-GFR, TG, T-Cho, LDL-C, and C/H.
Hb has no linear correlation with the dependent variable. Although all of the numerical
independent variables do not have a strong linear correlation with the dependent variable,
there may be non-linear relationships or complex interactions between variables. Therefore,
the five ML predictive algorithms were used in this study as they can analyze data with
non-linear relationships or complex interactions between variables [19–22].

http://www.mjhrf.org/main/page/resource/en/#resource07
http://www.mjhrf.org/main/page/resource/en/#resource07
http://www.mjhrf.org/main/page/release1/en/#release01


J. Clin. Med. 2023, 12, 1220 4 of 14J. Clin. Med. 2023, 12, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 1. Sperm count distribution by age. 

 
Figure 2. Subject identification process. 

MJPD database of 71,108 members 
who have undergone health examina-

tions in 2005–2017 

40,853 subjects with missing 
data excluded 

28,874 subject records irrelevant 
to sperm count were excluded 

unrelated were excluded 

Latest records of 30,255 mem-
bers 

1375 subjects’ complete data for 
modeling 

6 subjects older than 50 years 
were excluded 

Figure 1. Sperm count distribution by age.

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 1. Sperm count distribution by age. 

 
Figure 2. Subject identification process. 

MJPD database of 71,108 members 
who have undergone health examina-

tions in 2005–2017 

40,853 subjects with missing 
data excluded 

28,874 subject records irrelevant 
to sperm count were excluded 

unrelated were excluded 

Latest records of 30,255 mem-
bers 

1375 subjects’ complete data for 
modeling 

6 subjects older than 50 years 
were excluded 

Figure 2. Subject identification process.



J. Clin. Med. 2023, 12, 1220 5 of 14

Table 1. The independent variables and the dependent variable analyzed in this study.

Independent Variable N = 1375; n (%) Independent Variable N = 1375; n (%)

CS: Current smokers ST: Sleep time (hours)

(1) Never 911 (66.25%) (1) <4 7 (0.51%)

(2) Passive smoking 56 (4.07%) (2) 4–6 265 (19.27%)

(3) Quit 114 (8.29%) (3) 6–7 811 (58.98%)

(4) Occasional 58 (4.22%) (4) 7–8 248 (18.04%)

(5) Addicted 236 (17.16%) (5) 8–9 44 (3.20%)

AD: Alcohol drinker (6) >9 NA

(1) Never 1143 (83.13%) MetS

(2) Quit 17 (1.24%) (1) No 1241 (90.25%)

(3) 1–2 times a week 169 (12.29%) (2) Yes 134 (9.75%)

(4) 3–4 times a week 39 (2.84%) Independent Variable Mean ± SD

(5) 5–6 times a week NA Age 33.22 ± 4.36

(6) Addicted 7 (0.51%) BMI (body mass index, kg/m2) 24.27 ± 3.37

Vitamin C supplementation BF (body fat, %) 24.36 ± 5.57

(1) No 1156 (84.07%) WC (waist circumference, cm) 82.26 ± 8.34

(2) Yes 219 (15.93%) WHR (waist–hip ratio, %) 0.84 ± 0.05

Vitamin E supplementation SBP (systolic blood pressure, mmHg) 118.22 ± 12.60

(1) No 1289 (93.75%) DBP (diastolic blood pressure,
mmHg) 72.99 ± 9.62

(2) Yes 86 (6.25%) Hb (hemoglobin, g/dL) 15.22 ± 0.99

Consumption of Omega-3 rich food FPG (fasting plasma glucose, mg/dL) 98.61 ± 10.60

(1) No 1283 (93.31%) SGOT (serum glutamic oxaloacetic
transaminase, U/L) 25.78 ± 20.02

(2) Yes 92 (6.69%) SGPT (serum glutamic pyruvic
transaminase, U/L) 36.97 ± 36.02

Consumption of sugar-containing beverages BUN (blood urea nitrogen, mg/dL) ± 3.01

(1) No or less than 1 cup per week 356 (25.89%) e-GFR (estimated glomerular
filtration rate, ml/min/1.73m2) ± 11.23

(2) 1 to 3 cups per week 460 (33.45%) UA (uric acid, mg/dL) 6.68 ± 1.27

(3) 4 to 6 cups per week 266 (19.35%) TG (triglyceride, mg/dL) 118.3 ± 68.94

(4) 1 cup per day 198 (14.40%) T-Cho (total cholesterol, mg/dl) 193.42 ± 32.54

(5) 2 or more than 2 cups per day 95 (6.91%) HDL-C (high-density lipoprotein
cholesterol, mg/dL) 52.36 ± 11.67

Daily physical activity LDL-C (low-density lipoprotein
cholesterol, mg/dL) 119.55 ± 30.63

(1) Sedentary most of the time 928 (67.49%) C/H (T-Cho/HDL-C) 3.85 ± 0.96

(2) Frequent repeated sitting and ambulation 311 (22.62%) AFP (alpha–fetoprotein, ng/mL) 2.74 ± 1.33

(3) Standing or ambulation most of the time 111 (8.07%) Dependent Variable Mean ± SD

(4) Requires whole body muscle usage most
of the time

25 (1.82%) S-C (sperm count) 53.3 ± 42.24
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2.2. Proposed Framework

In this study, a framework was constructed using the five ML prediction models
for the identification of important risk factors (independent variables) affecting sperm
count, integration, and deliberation. The proposed ML prediction model-based risk factor
evaluation framework is shown in Figure 4.

In the proposed framework, the first step involved selecting subjects from the MJPD for
the analysis. In the second step, candidate risk variables were chosen and target variables
were defined. Twenty-nine risk factors were used as predictor (independent) variables and
sperm count was the target (dependent) variable. In the third step, the sperm count of each
subject was identified. After the data were organized, the fourth step involved construction
of the prediction model for sperm count using the five ML techniques: RF; SGB; Lasso;
Ridge; and XGBoost.

RF is a technique that integrates decision tree methods [40]. It randomly generates
multiple different and unpruned decision trees, each of which determines the growth of
the tree based on the Gini index, and integrates all the trees generated into a forest. It then
averages or votes for the trees in the forest to produce a stable ensemble model, thereby
reducing correlation between trees and generalization error. Eventually, a stable ensemble
model is generated. SGB implements a combination of bagging and boosting [41,42] to
generate numerous additive regression trees by multiple iterations. Each tree is trained
according to the residuals of the previous iteration [42]. The final number of additive
regression trees is determined by satisfying the maximum number of iterations or the
convergence condition. Finally, the cumulative result of multiple trees is obtained by
weighted summation to determine the final stable model.

Lasso is an extension of the conventional regression method and is based on the
principle of using the least absolute shrinkage and selection operator (L1 regularization) to
reduce the overfitting problem by forcing the coefficients that contribute less variance to
the model to exactly zero, thereby obtaining a lower variance [43,44]. Ridge has the same
basic concept as Lasso, with the main difference being that Ridge uses L2 regularization to
reduce the coefficients in the model. Ridge adds an appropriate L2 penalty to the model to
reduce all coefficients to non-zero values or values close to zero, and then minimizes the
sum of squared errors to further control the trade-off between bias and variance to reduce
overfitting [45].
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XGBoost is an optimized gradient-boosting decision tree method. The concept is to
generate multiple decision tree models in a sequential manner, with each model generated
to fit the residuals of the previous model and a regularization term used to control the
complexity of each model, eventually combining all the decision trees generated to improve
the accuracy of the prediction [46].

When constructing each ML model, the data were randomly divided into a training
data set with 80% of the data and a test data set with 20% of the data. The training data set
was used to perform hyperparameter tuning and validation of the model using a 10-fold
cross-validation method. Then, the model with the best hyperparameter was selected as
the final model, and information on the importance of the corresponding variable was
obtained. Finally, the best model predictive performance of each ML method was evaluated
with the test data set. To verify the accuracy of the models generated, the performance of
each model was measured using four key evaluation metrics—symmetric mean absolute
percentage error (SMAPE), relative absolute error (RAE), root relative squared error (RRSE),
and root mean squared error (RMSE) (Table 2).
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Table 2. Equations for calculating performance metrics.

Metric Description Calculation

SMAPE Symmetric mean absolute
percentage error SMAPE = 1

n

n
∑

i=1

|yi−ŷi |
(|yi |+|ŷi |)/2 × 100

RAE Relative absolute error RAE =

√
∑n

i=1(yi−ŷi)
2

∑n
i=1(yi)

2

RRSE Root relative squared error RRSE =

√
∑n

i=1(yi−ŷi)
2

∑n
i=1(yi−ŷi)

2

RMSE Root mean squared error RMSE =

√
1
n

n
∑

i=1
(yi − ŷi)

2

ŷi and yi represent predicted and actual values, respectively; n stands for the number of instances.

After constructing valid RF, SGB, Lasso, Ridge, and XGBoost predictive models, the
fifth step involved obtaining the relative importance values generated by each method for
each predictor variable/risk factor according to the converging ML model. The importance
of the most and least important risk factors were 100 and 0, respectively.

In the sixth step, each ML method generated different importance values for each
predictor variable since the different methods had individual characteristics. In order to
integrate the advantages of these methods and obtain more stable results, the average
importance value was used to integrate and compare the predictor variables that were
more important overall in the set of importance rankings, thus, improving stability and
completeness. In the seventh step, a final analysis was performed and the results discussed
to obtain the final conclusion.

In order to construct accurate predictive semen count models, all predictive models
were built with R version 3.6.2 and RStudio version 1.1.453 (http://www.R-project.org;
accessed on 25 May 2022; https://www.rstudio.com/products/rstudio/; accessed on 25
May 2022). Each model was constructed using the associated software packages of R. RF,
SGB, Lasso, Ridge, and XGBoost are available in the “ran-domForest” package version
4.7-1.1 [47], “gbm” package version 2.1.8 [48], “glmnet” package version 4.1-1 [49], and
“XGBoost” package version 1.6.0.1 [50]. Finally, version 6.0-93 of the “caret” package was
used to find the optimal hyperparameters for all models [51].

3. Results

We mainly targeted the younger health screening group for our study sample; there-
fore, the average age of the sample is relatively low (33.22 ± 4.36 years) and the descriptive
statistics show that the study group consists of relatively young healthy and subhealth
groups (Table 1). Although the study was a one-time semen analysis, through different
ML algorithms, we were able to identify risk factors that may affect semen quality, which
could contribute to the prevention of poor sperm quality in unmarried men. We used five
ML techniques, RF, SGB, Lasso, Ridge, and XGBoost, to construct predictive models for
sperm count. Each method was evaluated based on four performance indicators (SMAPE,
RAE, RRSE, and RMSE); we found that the smaller the indicator, the better the predictive
performance of the model. Table 3 provides the results of comparison of the predictive
performance of the five models. Ridge shows the best performance for SMAPE (0.530) and
RAE (0.964) and Lasso shows the best performance for RRSE (1.005) and RMSE (52.608).

Overall, although the predictive performance of the ML algorithms is slightly different,
that of the five models is similar and excellent. The five ML methods use different concepts
to obtain the variable importance of each risk factor. Therefore, we average the importance
values generated by the five methods for the same risk factor and rank each risk factor
in descending order of its average variable importance in order to integrate the variable
importance information generated by the methods to obtain more robust results and to
find the top 10 important risk factors for predicting sperm count.

http://www.R-project.org
https://www.rstudio.com/products/rstudio/
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Table 3. Model performance in predicting sperm count.

Methods SMAPE RAE RRSE RMSE

RF 0.537 0.984 1.014 53.060

SGB 0.536 0.977 1.017 53.218

Lasso 0.534 0.972 1.005 52.608

Ridge 0.530 0.964 1.006 52.674

XGBoost 0.532 0.968 1.011 52.913
Note: RF: random forest; SGB: stochastic gradient boosting; Lasso: least absolute shrinkage and selection operator
regression; Ridge: ridge regression; XGBoost: extreme gradient boosting.

Figure 5 illustrates the average top 10 risk factors in the five ML methods. The top
ranked and most important risk factor is sleep time (ST) with an average importance of
66.6 (avg. 66.6). As mentioned before, the five ML methods generate different variable
importance values for ST; RF generates a variable importance value of 37.8, SGB of 54.4,
Lasso of 100, Ridge of 85.8, and XGBoost of 55.3. The average importance (the average of
these five importance values) is 66.6. The second most important risk factor is AFP with an
average importance of 61.9 (avg. 61.9). Similarly, the third to tenth important variables are
BF, SBP, BUN, BMI, C/H, UA, T-Cho, and WHR, in that order.
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To investigate the variables with greater clinical relevance, we focus on the top five
important risk factors identified in this study, namely, ST, AFP, BF, SBP, and BUN.

4. Discussion

Both too-short and too-long sleep durations result in poor-quality semen [52]. Sleep
disturbance is also associated with parameters indicating poor semen quality; men suffer-
ing from disturbed sleep show lower total sperm count, percentage of total and progressive
motility, and percentage of morphologically normal spermatozoa compared to men en-
joying high-quality sleep [53]. Sleep deprivation in rats increases stressful stimuli, which
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leads to the activation of the hypothalamus–pituitary–adrenal axis and causes elevated
serum corticosteroid levels and decreased testosterone levels [54]. However, no differ-
ence in sperm count or sperm motility was found in this sleep-deprived animal model
compared to the control groups. Therefore, whether sleep duration affects sperm quality
through changing reproductive hormone levels or through different pathways affecting
gene expression patterns related to spermatogenesis remains inconclusive.

Our study indicates that a shorter sleep duration has adverse effects on sperm count.
It is possible that with a shorter sleep duration, reproductive hormone levels might be
changed to a level that causes lower spermatogenesis. Further investigations into the link
between sleep duration and sperm count are needed.

Alpha-fetoprotein is another risk factor identified by our established model. Few
studies highlight this link between AFP and semen quality. In experiments with cryptorchid
mice, AFP is specifically expressed in spermatocytes and secreted into the circulation [55].
Injection of AFP into the seminiferous tubules of normal mice could block spermiogenesis,
the final step of spermatogenesis. A recent study found high serum AFP in male patients
with aberrant sperm counts [56].

However, some of these studies were based on injecting AFP into the semen of animals,
and the resulting concentration of AFP should be much higher than that found in healthy
male patients. In our current study, we find a positive relationship between AFP and male
sperm count. We suspect that there may be a U-shaped relationship between AFP and
sperm count, meaning that both too low and too high levels have negative impacts on
sperm count. However, it is still required for maintaining normal sperm count, and more
studies are needed to illustrate its relationship with male sperm count.

BF, SBP, and other factors in our top 10 list of risk factors (BMI, C/H, T-Cho, and
WHR) are related to metabolic syndrome, which has become a global epidemic. Metabolic
syndrome has been linked to male infertility and poor semen quality [57], and many studies
show that reproductive hormones are altered in males with the syndrome [58–60]. Our
results support the view that more severe metabolic syndrome has an adverse effect on
sperm count.

In the case of BUN, the fifth risk factor in our ranking, no investigations to date have
been performed to find its direct link with male fertility or semen quality. However, chronic
kidney disease (CKD) has been found to be associated with poor semen quality by affecting
spermatogenesis and sperm motility [61]. The link between CKD and semen quality could
be multifactorial. Most of these studies were based on the analysis of advanced CKD or
patients under hemodialysis. However, in relatively healthy male patients, higher BUN
levels seem to have a negative effect on sperm count. Therefore, the link between elevated
BUN and sperm count in the healthy population or prior to the development of CKD
requires further detailed study.

In summary, the established ML model successfully reproduces the findings of previ-
ous studies that sleep duration, BF, SBP, and BUN negatively affect sperm count. AFP is a
lesser-known risk factor and more studies are needed to identify its relationship with male
sperm count.

5. Limitations

This study was a cross-sectional study investigating the links between health exami-
nation data and sperm count of middle-aged males in Taiwan. The participants included
686 (49.89%) married and 619 (45.02%) unmarried males. Our study used five ML methods
to analyze the risk factors affecting sperm count in healthy males. We listed these risk
factors according to their importance in affecting sperm counts. Our study was based on a
single analysis of semen; therefore, it does not truly reflect the participants’ fertility, which
needs multiple analyses of semen at different time points. With enough participants, a
cross-sectional study could more comprehensively identify risk factors linked to sperm
count changes. In addition, ML enables the analysis of nonlinear relationships and complex
interactions between multiple predictor variables in this study. However, the top five risk
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factors, except AFP, all have a negative impact on male sperm count. AFP shows a positive
influence on male sperm count; however, there may be a U-shape relationship between
AFP and sperm count. It is necessary for maintaining sperm count; however, both too
much or too little can have adverse effects on sperm production. To support this hypothesis,
more sophisticated algorithms are needed to identify these U-shaped relationships with
sperm count.

6. Conclusions

From Taiwan’s health screening data of 1375 male patients, the established ML model
predicts many risk factors affecting male semen qualities. Some of our predicted risk factors
are consistent with previous results and thoroughly studied. Specially, ST is recognized in
different algorithms and is the highest-ranking risk factor after sorting. After becoming a
developed country, late marriage and low birth rate are important problems that need to be
dealt with. Based on our studies and previous research, regular lifestyle and enough sleep
duration are strongly suggested to improve semen quality and decrease the risk of male
infertility indirectly.

The different algorithms in this study found sleep time to be the most important vari-
able for predicting semen quality after joint ranking. Most residents of cities in developed
countries, with a similar demographic and economic environment to that of Taiwan, tend
to marry late and have fewer children. In view of the preliminary results of this study and
its corroboration of findings of previous investigations, we suggest that the relevant gov-
ernment departments or health authorities in Taiwan should promote appropriate health
information to the male population of reproductive age and advocate normal workloads
and sufficient sleep and rest. This may help to avoid the risk of decreased sperm count or
an indirect negative impact on male fertility.
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