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Abstract: This study describes the development of a convolutional neural network (CNN) for
automated assessment of optic disc photograph quality. Using a code-free deep learning platform, a
total of 2377 optic disc photographs were used to develop a deep CNN capable of determining optic
disc photograph quality. Of these, 1002 were good-quality images, 609 were acceptable-quality, and
766 were poor-quality images. The dataset was split 80/10/10 into training, validation, and test sets
and balanced for quality. A ternary classification model (good, acceptable, and poor quality) and
a binary model (usable, unusable) were developed. In the ternary classification system, the model
had an overall accuracy of 91% and an AUC of 0.98. The model had higher predictive accuracy
for images of good (93%) and poor quality (96%) than for images of acceptable quality (91%). The
binary model performed with an overall accuracy of 98% and an AUC of 0.99. When validated on
292 images not included in the original training/validation/test dataset, the model’s accuracy was
85% on the three-class classification task and 97% on the binary classification task. The proposed
system for automated image-quality assessment for optic disc photographs achieves high accuracy in
both ternary and binary classification systems, and highlights the success achievable with a code-free
platform. There is wide clinical and research potential for such a model, with potential applications
ranging from integration into fundus camera software to provide immediate feedback to ophthalmic
photographers, to prescreening large databases before their use in research.

Keywords: neural network; glaucoma; fundus photograph; optic nerve; image-quality assessment;
code-free deep learning

1. Introduction

Evaluation of the optic disc is an integral part of the diagnosis and management
of glaucoma, as structural damage to the optic nerve can often be detected even before
visual field defects are present [1,2]. Careful recognition of preperimetric morphological
changes to the optic nerve is vital in monitoring disease progression [3–5]. Structural
assessment of the optic disc can be accomplished with optical coherence tomography (OCT)
and fundus photography. Subjective evaluation of optic disc photographs by clinicians
is hampered by poor interobserver agreement [6–9]. Fundus photography is appropriate
for both population screening and long-term follow-up, as it can be low cost and allows
for direct qualitative comparison to previously captured images, even images decades old.
This stands in contrast to OCT, where high cost may impede wide adoption and rapid
technological innovation makes comparison with historical images difficult. Both types of
testing require training to capture images of sufficient quality for use in diagnostics.

In fundus photography, as in all medical imaging, poor image quality may confound
accurate assessment of the image and render images diagnostically useless. Various studies
have estimated the occurrence of poor-quality fundus photographs of the optic nerve head
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at 3.7–25% of all images captured, meaning that automated detection of these images has
immediate potential for clinical utility [10–13]. Automated image-quality assessment (IQA)
is also useful as a first “quality-control” step in the research and development of other
computer vision and artificial intelligence (AI) systems.

Increasingly, AI is being explored for use in the diagnosis and management of glau-
coma through automated assessment of the optic disc or fundus photographs. Models
developed for this task use a variety of machine learning techniques. Statistical classifiers
such as support vector machine (SVM), random forest algorithms, and k-nearest neighbor
are common in earlier models; recent research has focused more heavily on the use of deep
learning techniques such as convolutional neural networks [14,15]. Automated detection of
glaucoma is sometimes based on explicit recognition of pathological differences in certain
ocular features, such as retinal nerve fiber layer defects, presence of disc hemorrhages,
extent of peripapillary atrophy, or cup-to-disc ratio [16–20]. Other studies have relied
on more complex inputs (i.e., entire images), which allows for less supervised and more
holistic classification [21–23]. The large-scale fundus photograph databases required for
developing the latter category of models in particular would benefit from a reliable auto-
mated system for screening out unusable or poor-quality images. Furthermore, there is
research demonstrating the detrimental impact of poor-quality images on the diagnostic
ability of these algorithms [24–26].

The vast majority of prior research on automated ocular IQA has focused on retinal
imaging nonspecific to glaucoma. There is minimal research looking specifically at IQA
for glaucoma, which has a unique set of diagnostic criteria based on the appearance of the
optic disc, which requires certain anatomical structures be clearly visible. Furthermore, to
our knowledge, all research in this area has used conventional machine learning pathways,
which require significant expertise and computational power. In this study, we describe the
development of a deep convolutional neural network (CNN) created by using a code-free
deep learning platform for automated assessment of optic disc photograph quality.

2. Materials and Methods

The deep convolutional neural network was developed with a collection of 2377 disc
photographs randomly selected from a database of fundus images captured between
1997 and 2020 at the Glaucoma Division of the UCLA Jules Stein Eye Institute. There were
no exclusion criteria applied during image selection, meaning that multiple images from
the same patient or the same eye taken on different dates could potentially be included.
To minimize bias, if multiple images from the same patient were included, they appear in
only one of the split sets—either the training, validation, or test sets.

A total of 2377 optic disc photographs from 1684 eyes of 1360 patients at a glaucoma
subspecialty clinic were used to train, validate, and test a convolutional neural network
in an 80/10/10 split. Totals of 1626 digitized scanned slides and 751 digital images were
used. The slide images were captured with a Zeiss Fundus Flash 3 Camera on Kodachrome
25 film and digitized at a third-party company. The digital images were captured on either
a Zeiss Fundus Flash 3 with Escalon Digital Back or a Zeiss FF450 with Digital Back. All
images were converted to the same image type (JPEG) when input into the model.

Prior to grading the images, standard reference photographs were chosen by three
glaucoma specialists to define the range of image quality acceptable at each level (Figure 1).
Using a web-based interface, images were sorted into three quality classes (good, acceptable,
and poor) by one of three glaucoma specialists and subsequently used to develop the
model. Our dataset contained 1002 good-quality images, 609 acceptable-quality images,
and 766 poor-quality images.

A convolutional neural network was developed with Google Cloud AutoML, a code-
free deep learning platform offered by Google. The AutoML platform allowed local
data manipulation and subsequent upload of .csv files containing the cloud location of
the image file and the grader-assigned image quality. The platform automates image
preprocessing and the model training and selection process, including neural architecture



J. Clin. Med. 2023, 12, 1217 3 of 11

search and hyperparameter tuning. To minimize overfitting, early stopping was enabled,
which automatically terminated training when no more improvements could be made.
Automated internal image preprocessing occurred when the image’s smallest edge was
greater than 1024 pixels. In this case, the entire image was scaled down so the smallest
edge was 1024 pixels. Images with a small side less than or equal to 1024 pixels were not
subject to preprocessing.
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Figure 1. Standard reference photographs for each image quality class.

Of the 2377 image dataset, 80% (1897/2377) were used for training the model, 10%
(242/2377) were used to validate the model, and 10% (263/2377) were used to test the
model’s performance. The same proportions (approximately 33% each) of good-, acceptable-
, and poor-quality images were included in each dataset. The model’s output was three
prediction values, one corresponding to each quality level (good, acceptable, poor), ranging
from 0–1 and summing to 1. For each image, the category with the highest score was taken
as the model’s predicted quality label.

We performed independent validation on a set of 292 randomly selected disc pho-
tographs that were not part of the 2377 images used to develop the model. In this round
of validation, the model’s performance was measured against a consensus-derived grade
from three glaucoma specialists who evaluated the images independently. Consensus
was defined as agreement between two of the three graders; there were no instances of
disagreement between all three clinicians.

3. Results

Table 1 provides a tabulation of the demographic characteristics of the patients repre-
sented in this dataset. Fifty-six percent were female, and the average age at the time of the
disc photograph was 64 years old. Patients were primarily Caucasian (54.6%); Asian and
Black patients constituted 14.0% and 10.7% of the study population, respectively. Among
the included eyes, 47.3% had a diagnosis of primary open angle glaucoma, and 22.3% were
considered suspicious for glaucoma at the time of image capture.
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Table 1. Demographic and clinical characteristics of the study population.

Variable n (%)

No. of eyes (patients) 1684 (1361)

Age in years
Mean (± standard deviation, SD) 65.0 (±16.4)
Range 5.1–97.8
Median (± interquartile range, IQR) 67.1 (±18.7)

Sex
Female 763 (56.1%)
Male 598 (43.9%)

Race
White 743 (54.6%)
Asian 191 (14%)
Black 145 (10.7%)
Hispanic 107 (7.9%)
American Indian or Alaska Native 9 (0.7%)
Unknown 166 (12.2%)

Eye laterality
Right 937 (55.6%)
Left 747 (44.4%)

Glaucoma diagnosis
Primary open angle 797 (47.3%)
Glaucoma suspect 375 (22.3%)
Primary angle closure 88 (5.2%)
Uveitic 40 (2.4%)
Congenital 12 (0.7%)
Neovascular 12 (0.7%)
Pseudoexfoliation 58 (3.4%)
Angle recession 8 (0.5%)
Steroid-induced 5 (0.3%)
Secondary open angle 45 (2.7%)
Secondary angle closure 11 (0.7%)
Anatomical narrow angles 6 (0.3%)
Low tension 23 (1.4%)
Pigmentary 16 (1.0%)
Unspecified 187 (11.1%)

Results are presented for both the ternary classification system described in the Meth-
ods section, and the binary classification that results from combining the “good” and
“acceptable” classes into one “usable” class, vs. “unusable”, corresponding to label “poor”
of the three-class model. Figure 2 shows confusion matrices for both outcomes.
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3.1. Ternary Classification Model

Full performance metrics (per-class and macro average) for the three-class model are
shown in Table 2. AUC was calculated by using a one vs. rest approach, which splits the
multi-classification task into several binary classification tasks, (e.g., good vs. [acceptable,
poor]), then averages the AUC for each class to arrive at a single value. Macroaveraging,
in which all classes get equal weight, was used because the three quality classes were
relatively balanced. AUC for the model was 0.98, and the CNN had an overall accuracy
of 91%. Although per-class performance varied between different metrics, generally the
model performed better on classification of “good” and “poor” images than on images of
“acceptable” quality.

Table 2. Per-class and macroaverage performance metrics for the ternary classification model.

Good
Quality

Acceptable
Quality

Poor
Quality

Macro
Average

Sensitivity 0.88 0.91 0.94 0.91
Specificity 0.97 0.91 0.99 0.96
Precision 0.95 0.81 0.97 0.91

F1 0.91 0.86 0.96 0.91
Balanced
Accuracy 0.93 0.91 0.96 0.93

Overall
Accuracy 0.91

Area under the receiver
operating curve (AUC) 0.98

Examples of images misclassified by the model are shown in Figure 3. Notably, all
misclassifications were no more than one category removed from their actual quality label
(i.e., no “good” images mistaken for “poor” and vice versa).
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Females were 33% more likely to have images of poor quality than good quality (OR
1.33, 95% CI [1.10, 1.60]). There was no significant gender difference between the good-
and acceptable-quality groups. On average, age at the time of disc photograph capture
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was significantly higher in images of acceptable (7.45 years, adjusted p < 0.01) and poor
(7.71 years, adjusted p < 0.01) quality than in those of good quality.

3.2. Binary Classification Model

Full classification metrics for the binary outcome model can be found in Table 3.
Overall, performance was better on the binary outcome model than the three-class model,
with an accuracy of 98.47%. Sensitivity and specificity were both high, at 98.91% and
97.47%, respectively. AUC was also high at 0.99. None of the collected demographic
information varied significantly between the usable and unusable quality groups.

Table 3. Performance metrics for the binary outcome model.

Sensitivity 0.99
Specificity 0.97
Precision 0.99
F1 0.99
Balanced Accuracy 0.98
Overall Accuracy 0.98
AUC 0.99

3.3. Independent Validation

Independent validation on 292 randomly selected images not included in the 2377-image
dataset used to develop the model was performed to further evaluate the robustness of the
model. Based on a three-clinician consensus grading, there were 225 good-, 53 acceptable-,
and 14 poor-quality images in this dataset. This distribution is likely more representative
of the entire optic disc photograph database.

The model agreed with the clinician consensus in 84.9% of cases, with a kappa value
of 0.66. This corresponded to a 97.3% agreement with clinicians (kappa = 0.65) when
considered as a binary outcome task, usable vs. unusable.

4. Discussion

The proposed system for automated IQA on optic disc fundus photographs achieves
high accuracy for both the three-class task (90.84%) and the binary outcome task (98.47%),
demonstrating that a CNN is able to provide a high degree of discrimination between im-
ages of good, acceptable, and poor quality. There is a wide breadth of literature concerning
IQA and its utility in nonglaucoma pathologies, but there is comparatively little specific to
glaucoma. We will be discussing both to contextualize our model and its performance.

4.1. Binary Approach—Non-Glaucomatous Fundus Photographs

In order to perform retinal IQA as a preliminary step in diabetic retinopathy screen-
ing, Saha et al. fine-tuned a pretrained AlexNet model to classify images from patients
with diabetic retinopathy into the categories “accept” and “reject” [27]. AUC, sensitivity,
specificity, and accuracy were all 100%. However, the authors excluded all “ambiguous”
images, defined by a lack of agreement in image quality among the graders, from the
training dataset. When these images were included, the model’s accuracy dropped to
54.5%, highlighting a major limitation of in the model’s potential utility in a clinical setting.
Similarly, Zago et al. adapted the Inception v3 architecture to the task of fundus IQA, again
for eyes with retinal pathology [28]. The model’s performance was evaluated by using
interdataset cross-validation on two publicly available datasets, DRIMDB and ELSA-Brasil.
The authors used image augmentation to synthesize poor-quality images, which were
poorly represented in both datasets, and achieved a high sensitivity and specificity (97%
and 100%, respectively, on DRIMDB; 92% and 96% on ELSA-Brasil) in the cross-validation.
Another recent paper by Chalakkal et al. described a unique approach to IQA [29]. Their
model first uses a deep learning classifier based only on image-quality markers such as
sharpness and illumination, then performs a second round of unsupervised classification
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on images the initial classifier marked as good quality. Good quality in the second stage is
defined by the presence of certain structural features of the retina, such as the optic disc,
fovea, and macula. The authors report successful outcomes by using this approach, with
an overall accuracy of 97.47%.

4.2. Binary Approach—Glaucomatous Optic Disc Photographs

Despite the success of the aforementioned models, they are not readily applicable to
images of glaucomatous optic discs due to the domain-specific way in which image quality
is defined. Diagnostically relevant pathological optic nerve head features such as vascular
abnormalities, parapapillary atrophy, and disc hemorrhages can be difficult for a neural
network to distinguish from poor-quality images or images with artifacts, and as such, it
is important to have a model trained on images of glaucomatous discs [13,30–32]. Retinal
IQA models traditionally focus on vessel visibility as the most important grading criterion,
while IQA for imaging performed on glaucoma patients would be better served by an
assessment of image quality in a region dominated by the optic disc [33]. There has been
relatively little research performed specifically on this disease population, perhaps due in
part to the scarcity of large, disease-specific, quality-labeled image databases [34].

Mahapatra et al. attempted to combat these gaps in large, publicly available datasets by
first extracting 30,000 150 × 150 pixel patches from the 101 images in the DRISHTI glaucoma
dataset, then using image augmentation (adding noise, altering contrast, etc.) to artificially
generate poor-quality images, as the original dataset contained none [35]. They saw high
accuracy (99.87%) by using these methods, and to the best of our knowledge were the first
group to build a CNN-based IQA system specific to glaucomatous optic disc photographs.
The next group to do so, Zapata et al., used 150,075 quality-labeled retinal images to train
a model to discern good vs. poor image quality, with an overall accuracy of 92% [36]. It
is unclear what portion of these images were from patients with glaucoma; 3776 of their
total 306,302 fundus photographs were considered to have “referable glaucomatous optic
neuropathy”. The authors defined good-quality images as those centered on the macula
with good focus, good visualization of the parafoveal vessels and at least two disc diameters
around the fovea, and ability to visualize at least three quarters of the optic disc and the
vascular arcades. This definition highlights our earlier point regarding disease-specific
criteria for image quality—in our study, as well as in a 2020 study by Bhatkalkar et al.,
visualization of the entire optic disc was necessary for the graders to consider an image of
good quality [37]. The lack of a standardized metric for defining image quality makes direct
comparison between models difficult, a pervasive theme in the domain of IQA. Bhatkalkar’s
model, which was trained by using three publicly available image databases along with
their own hospital database and was tested on three small public datasets, had an accuracy
ranging from 96.4% to 100%. Notably, their model was trained on fundus photograph
datasets of patients with diabetic retinopathy and age-related macular degeneration, and
thus is not generalizable to the assessment of IQA on patients with glaucomatous damage
to the optic nerve. However, it does provide an indication of the success that may be
achievable in such populations.

Our model achieved performance similar to that reported for other IQA systems. As
all the reported glaucoma-specific IQA systems provide binary outputs, we will be directly
comparing the performance of our binary model. Our binary classification model shows
comparable accuracy to the models developed by Mahapatra, Zapata, and Bhatkalkar
(98.5% vs. 99.87%, 92%, and 96.4–100%, respectively). We report sufficiently high sensitivity
(98.9) and specificity (97.5) values which are on par with those reported by Mahapatra (100,
99.8) and Zapata (96.9, 81.8). These results are also consistent with the high level of success
achieved by other groups developing similar models for IQA of patients afflicted with
diabetic retinopathy, age-related macular degeneration, and other retinal pathologies.

Our study is unique for several reasons, most notably the size of our training dataset
and the balanced sample sizes of the three quality classes. We trained, tested, and validated
the model by using a total of 2377 images, which to the best of our knowledge is the largest
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dataset of quality-labeled glaucomatous disc photographs used in the development of such
a model. Due to the scarcity of large databases of images from glaucomatous eyes, other
studies have used smaller datasets, ranging in size from 99 to 397 images [35,37]. Moreover,
the majority of publicly available datasets contain insufficient proportions of poor-quality
images, which can result in lower predictive accuracy for the underrepresented class. As
an extreme example, in the dataset used by Saha et al., only 143 out of the total 3577 images
(4%) were of “reject” quality; given this distribution, a naïve model that only outputs
“accept” will achieve 96% accuracy [27]. Some groups relied on image augmentation to
artificially generate poor quality images and overcome this limitation, the success of which
may not be successfully transferred to clinical practice [35]. Our model’s performance also
highlights the success achievable on a code-free machine learning platform, which can
significantly reduce the in-house computational power and deep-learning expertise that is
typically required when developing a neural network [38].

4.3. Multiclass Approach

Although binary classification models like those previously described make up the
majority of current IQA systems, recent literature has suggested that there may be a need
for a more granular classification system with more than two levels of quality. We agree that
a multiclass model addresses one of the primary limitations of a binary model, namely that
it has difficulty classifying images of borderline quality [13]. By denoting an intermediate
“acceptable” category, we attempted to keep such images from being mixed with the highest-
quality images. There is a small amount of existing literature that relies on a multilevel
grading system similar to our proposed three-class methodology. In a 2019 study by Fu
et al., the authors define three levels of image quality: “good” (high-quality images with
all retinopathy characteristics visible), “usable” (low contrast, blur, poor illumination, or
artifacts, but main structures still identifiable by ophthalmologists), and “reject” (unreliable
diagnostically) [25]. They report comparable accuracy (91.75%) to our ternary classification
model. Other researchers have suggested parsing out image-quality categories even further
to increase clinical utility—for example, Wang et al. define five levels of quality (adequate,
just noticeable blur, incomplete optic disc, under/over-illumination, and opacity) [39]. By
using a 121-layer, 4 block DenseNet architecture, they applied transfer learning and fine-
tuned the model to suit their five image-quality classes. Their model was relatively accurate
(92.7% overall accuracy with per-class accuracy 77–100%) in discrimination between the
four image degradation categories, but the wide range in per-class accuracy illustrates the
challenges faced when shifting from binary to multiclass classification systems. The authors
saw better outcomes in their binary classification model (good vs. poor, accuracy 97.2%
and 98.2% on the two datasets used). We saw this reflected in our model’s performance as
well, with overall accuracy increasing when we adapted our three-level classification to a
binary system.

Although our model demonstrated a relatively high level of accuracy in both the
binary and multiclass forms, it is not without limitations. As previously mentioned, binary
models have difficulty classifying images of borderline quality. This is not unique to our
model, nor is it unique to neural networks. Image quality, even when precisely defined,
is a subjective measure on which even trained ophthalmologists often disagree [27]. We
attempted to address this with a three-class model in the hopes of isolating the borderline
quality images, which investigators can choose to use or discard, depending on the task at
hand. Additionally, for our model to be more useful in widespread population screening,
it should be tested on images captured from a wider variety of cameras, particularly
nonmydriatic fundus cameras, portable cameras, and ophthalmic lens attachments for
smartphones. Additional validation, particularly on an external dataset, would better
assess the robustness and generalizability of our model. However, there is a relative
lack of public datasets of glaucomatous optic disc photographs, and an absolute lack of
quality-labeled datasets, both of which limit our ability to externally evaluate the model’s
performance [34].
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There is immediate potential for clinical and research utility of an IQA CNN such
as ours. It has been suggested that models such as the one described in this paper can
be integrated with the software of the camera capturing the fundus photographs to pro-
vide real-time feedback to photographers and allow for timely recapture of any unusable
images [13]. Such an integration has the potential to improve clinical efficiency and is
increasingly relevant with the advent of telemedicine in ophthalmology, where a trained
ophthalmologist might not immediately be evaluating the images.

Although binary models may be more immediately applicable to clinical practice as
they provide a simple outcome of diagnostically usable or unusable, a multiclass model
may be better suited to certain tasks. For example, when examining serial disc photographs,
image artifacts (media opacities, dust on the camera lens, patient eyelashes, lens flare, etc.)
presumably present at a higher rate in the “acceptable” category may hinder accurate detec-
tion of real glaucomatous progression. Furthermore, as artificial intelligence for diagnostics
and screening is increasingly the subject of ophthalmologic research, the development of
large-scale fundus photograph databases is of paramount importance. Many studies have
demonstrated that inclusion of low-quality images greatly decreases the accuracy of these
diagnostic algorithms and limits their deployability into clinical practice [26]. A multiclass
IQA network would directly benefit research efforts by allowing researchers to quickly
select only appropriate quality images for use in training diagnostic models.

Future research should focus on further improving both binary and multiclass clas-
sification of optic disc IQA. Alternatively, the development of a model that outputs a
continuous quality grade could allow even further control when selecting a threshold for
inclusion as an image of “good” quality, offering the greatest flexibility for project-specific
quality needs. Additionally, the development of a system capable of outputting the reason
for assigning a “poor” quality grade (e.g., optic disc not completely in view, poor con-
trast, not focused, media opacity, etc.) could further enhance the clinical utility of an IQA
algorithm and allow photographers to adjust their technique in real time.

5. Conclusions

Image quality is an important consideration when automating the process of disease
diagnosis, which is a growing focus of glaucoma research. Poor-quality images are often
excluded from datasets used to train machine learning models, a highly time-consuming
process when the dataset size is in the order of hundreds of thousands. Moreover, when
these diagnostic models are ultimately implemented into clinical practice, the presence
of poor-quality images may limit their ability to correctly identify the presence of glauco-
matous damage to the optic disc. Thus, a tool such as the proposed IQA model has clear
applications to the development and implementation of AI-supported glaucoma diagnosis.

The proposed method classifies an optic disc photograph into one of three classes
based on image quality: good, acceptable, and poor. We report outcomes for this multi-class
model as well as a binary classification system where images of “good” and “acceptable”
quality are all considered part of a “usable” image class. Our model, developed on a code-
free deep learning platform, is highly accurate, agreeing with human graders 90.8% (three-
class model) and 98.5% (binary model) of the time. These rates are comparable to several
existing methods for fundus IQA and provide evidence not only for the feasibility and
utility of automated IQA of glaucomatous disc photographs, but also for the effectiveness
of a code-free platform usable by nonexperts for developing neural networks.
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