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Abstract: Many studies have recently used several deep learning methods for detecting skin cancer.
However, hyperspectral imaging (HSI) is a noninvasive optics system that can obtain wavelength
information on the location of skin cancer lesions and requires further investigation. Hyperspectral
technology can capture hundreds of narrow bands of the electromagnetic spectrum both within and
outside the visible wavelength range as well as bands that enhance the distinction of image features.
The dataset from the ISIC library was used in this study to detect and classify skin cancer on the basis
of basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and seborrheic keratosis (SK). The
dataset was divided into training and test sets, and you only look once (YOLO) version 5 was applied
to train the model. The model performance was judged according to the generated confusion matrix
and five indicating parameters, including precision, recall, specificity, accuracy, and the F1-score
of the trained model. Two models, namely, hyperspectral narrowband image (HSI-NBI) and RGB
classification, were built and then compared in this study to understand the performance of HSI with
the RGB model. Experimental results showed that the HSI model can learn the SCC feature better
than the original RGB image because the feature is more prominent or the model is not captured in
other categories. The recall rate of the RGB and HSI models were 0.722 to 0.794, respectively, thereby
indicating an overall increase of 7.5% when using the HSI model.

Keywords: skin cancer; hyperspectral imaging; convolutional neural network; YOLO

1. Introduction

The most common and most diagnosed among the cancers is nonmelanoma skin cancer
(NMSC) [1]. Common types of skin cancer include basal cell carcinoma (BCC), squamous
cell carcinoma (SCC), and seborrheic keratosis (SK) [2]. BCC is the least aggressive NMSC
and can be characterized by cells that resemble epidermal basal cells, while squamous cells
are invasive and may metastatically proliferate in an abnormal manner [3]. BCC is the most
prevalent kind of skin cancer and usually develops in the head and neck area in 80% of
patients without metastasizing [4,5]. Meanwhile, SCC is the second most common skin
cancer, and it is also associated with aggressive tumors with highly invasive properties [6].
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The demand for rapid prognosis of skin cancer has grown because of the steadily
increasing incidence of skin cancer [7–12]. Early diagnosis is a critical factor in skin
treatment [13–15]. Although doctors typically adopt biopsy, this method is slow, painful,
and time consuming [16] because it collects samples from potential spots of skin cancer,
and these samples are medically determined to detect cancer cells [17]. However, many
computer-aided detection (CAD) models have been developed in recent years since the
development of artificial intelligence (AI) to detect various types of cancers [18–21].

Haenssle et al. [22] used the InceptionV4 model to detect skin cancer and then com-
pared the results with the findings of 58 dermatologists. The CAD model outperformed the
dermatologists in sensitivity by 8% but underperformed in specificity by 9%. Han et al. [23]
used ResNet-152 to classify images in an Asan training dataset, which was only at par
with the results of 16 dermatologists. Fujisawa et al. [24] utilized a deep learning method
on 6000 images to detect malignant and benign cases and achieved an accuracy of 76%.
In addition to CAD, biosensors are a cost-effective tool for early cancer diagnosis [23–25].
However, environmental adaptabilities of these nanomaterials remain a challenge [26,27].
CAD modes based on conventional red, green, and blue (RGB) have also reached an up-
per saturation limit [28]. However, hyperspectral imaging (HSI) is an approach that can
overcome the disadvantages of conventional methods [29,30].

HSI is an emerging method that analyzes a wide range of wavelengths instead of only
providing each pixel one of the three primary colors [31,32]. HSI has been used in numer-
ous classifications fields, such as agriculture [33], cancer detection [34–37], military [38],
air pollution detection [29,39], remote sensing [40], dental imaging [41], environment
monitoring [42], satellite photography [43], counterfeit verification [44–46], forestry moni-
toring [47], food security [48], natural resource surveying [49], vegetation observation [50],
and geological mapping [51].

Many researches have also been conducted on skin cancer detection using HSI [52–54].
Leon et al. proposed a method based on supervised and unsupervised learning techniques
for automatic identification and classification of the pigmented skin lesions (PSL) [55].
Courtenay et al. built an ad-hoc platform combined with a visible-near infra-red (VNIR)
hyperspectral imaging sensor to find an ideal spectral wavelength to distinguish between
normal skin and cancerous skin [56]. In another study by Courtenay et al. HSI was utilized
to obtain spectral differences between benign and cancerous dermal tissue specimens [57].
However, most of current methods use an HSI imaging sensor or camera to capture the
skin which is expensive and a difficult procedure.

Therefore, a rapid skin cancer detection method using the you only look once (YOLO)
version 5 model combined with HSI technology was proposed in this study. The developed
model was judged on the basis of five indicators, namely, precision, recall, specificity,
accuracy, and F1-score.

2. Methods
2.1. Data Preprocessing

This study focuses on three skin-related diseases: BCC, SCC, and SK. The dataset
consists of a training set of 654, 336, and 480 images, and a validation set of 168, 90, and
126 images of BCC, SCC, and SK, respectively. A total of 1470 images in the training set
and 384 images in the validation set are trained on the network. The whole study can be
divided into three parts, namely, image preprocessing, database creation, and evaluation
of the training results of the YOLOv5 model, as shown in Figure 1. ISIC data were used.
Figures 2–4 show the squamous cell carcinoma (SCC), basal cell carcinoma (BCC), and
seborrheic keratosis, respectively.
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Figure 4. Seborrheic keratosis (a,b) due to hyperplasia of mutant epidermal keratinocytes and
(c) black mass of keratinocytes.

Each image was set to a default size of 640 × 640 pixels during image preprocessing to
avoid problems, such as insufficient computer memory, during spectrum conversion and to
ensure that the format is consistent. LabelImg software was adopted to mark the three sets
of images, which are outputted as an xml file. This file is then converted to a txt file and fed
to the YOLOv5 model for training. Note that the annotated image file was converted into an
HSI narrow-band image (NBI) through a spectrum conversion algorithm prior to training.
The three types of skin cancer conditions are first analyzed by comparing the normalized
reflection spectrum of the lesion area, as shown in Figure 5. Wavelength bands with large
differences in reflected light intensity are compared. The spectrum is converted into an
HSI with a spectral resolution of 1 nm in the range of 380–780 nm. However, dimensional
data will result in high computing and storage space requirements. Principal component
analysis (PCA) is utilized to counter this problem and transform the data from the image to
a new data space in a linear manner. PCA generates new component information, extracts
important parts of features, and reduces the dimensionality of the image. Data are finally
projected in a low-dimensional space in which spectral information is decorrelated.

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 4 of 10 
 

 

Figure 4. Seborrheic keratosis (a,b) due to hyperplasia of mutant epidermal keratinocytes and (c) 
black mass of keratinocytes. 

Each image was set to a default size of 640 × 640 pixels during image preprocessing 
to avoid problems, such as insufficient computer memory, during spectrum conversion 
and to ensure that the format is consistent. LabelImg software was adopted to mark the 
three sets of images, which are outputted as an xml file. This file is then converted to a txt 
file and fed to the YOLOv5 model for training. Note that the annotated image file was 
converted into an HSI narrow-band image (NBI) through a spectrum conversion algo-
rithm prior to training. The three types of skin cancer conditions are first analyzed by 
comparing the normalized reflection spectrum of the lesion area, as shown in Figure 5. 
Wavelength bands with large differences in reflected light intensity are compared. The 
spectrum is converted into an HSI with a spectral resolution of 1 nm in the range of 380–
780 nm. However, dimensional data will result in high computing and storage space re-
quirements. Principal component analysis (PCA) is utilized to counter this problem and 
transform the data from the image to a new data space in a linear manner. PCA generates 
new component information, extracts important parts of features, and reduces the dimen-
sionality of the image. Data are finally projected in a low-dimensional space in which 
spectral information is decorrelated. 

 
Figure 5. Normalized reflection spectra of BCC, SCC, and SK. The orange line represents BCC, the 
blue line represents SCC, and the green line represents SK. 

Characteristic bands of the visible light absorption spectrum for skin irradiation are 
between 405–435 nm and 525–555 nm due to the absorption intensity and wavelength po-
sition of visible light by heme in the blood flow change. Wavelengths in the range of 435 
and 525–555 nm are used to extract important parts of skin lesions, and the output obtains 
the HSI-NBI image, as shown in Figure 6. 

Figure 5. Normalized reflection spectra of BCC, SCC, and SK. The orange line represents BCC, the
blue line represents SCC, and the green line represents SK.



J. Clin. Med. 2023, 12, 1134 5 of 10

Characteristic bands of the visible light absorption spectrum for skin irradiation are
between 405–435 nm and 525–555 nm due to the absorption intensity and wavelength
position of visible light by heme in the blood flow change. Wavelengths in the range of 435
and 525–555 nm are used to extract important parts of skin lesions, and the output obtains
the HSI-NBI image, as shown in Figure 6.
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Two data sets were obtained using the RGB and HSI images. The training and test
sets need to be divided. Hence, 80% of the data was divided for training while the
remaining 20% of the data were used for testing the model after image amplification of
the two data sets. The PyTorch deep learning framework was built using the Windows
10 operating system, and the program written in the Python language was based on the
Python 3.9.12 platform.

2.2. YOLOv5 Model

YOLOv5 was specifically chosen in this study because previous research suggests that
when compared with other models such as RetinaNet or SSD, YOLO had a better detection
speed which helps to achieve real-time performance [58]. YOLOv5 comprises three main
parts, namely, backbone, neck, and head terminals (detailed information on its structure
is presented in Section S1 of the Supplement Materials). Backbone is the architecture of
the convolutional neural network (CNN) and mainly composed of models, such as focus,
CONV-BN-Leaky ReLU (CBL), cross stage partial (CSP), and spatial pyramid pooling
(SPP) models. The function of focus is to slice the input image, reduce the required CUDA
memory and number of layers, increase forward and back propagation speed, aggregate
different fine-grained images, and form image features. Focus cuts the input image with
a preset image of 640 × 640 × 3 into four 320 × 320 × 3 images and then passes through
CONCAT combined with slices and layers of convolution kernels to obtain a 320 × 320 × 32
image by reducing the image dimension to accelerate the training. SPP is a pooling layer
that keeps the image input from being limited by the input size while maintaining integrity.
Neck consists of CBL, Upsample, CSP2_X, and other models; it is a series of feature
aggregation layers that combines image features and generates feature pyramid (FPN) and
path aggregation (PAN) networks. YOLOv5 retains the CSP1_X structure of the YOLOv4
version CSPDarknet-53 and then adds the CSP2_X structure to reduce the model size and
extract increasingly complete image features. Head uses GIoU Loss as the loss function for
bounding boxes.

The loss function in YOLOv5 is divided into three types: bounding box regression,
confidence, and classification losses. The loss function is used to describe the predicted
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and true values of the model to indicate the degree of difference. The loss function of the
YOLOv5 model is expressed as follows:

LGIOU = ∑S2

i=0 ∑B
j=0 Iobj

ij

[
1− IOU +

Ac −U
Ac

]
(1)

where S2 represents the number of grids and B is the number of bounding boxes in each
grid. The value of Iobj

ij is equal to 1 when an object exists in the bounding box; otherwise, it
will be 0.

Lcon f = −
S2

∑
i=0

B
∑

j=0
Iobj
ij

[
_j
C ilog

(
Cj

i

)
+

(
1−

_j
C i

)
log
(

1− Cj
i

)]

−λnoobj ∑S2

i=0 ∑B
j=0 Inoobj

ij

[
_j
C ilog

(
Cj

i

)
+
(

1− Cj
i

)
log
(

1− Cj
i

)] (2)

where
_j
C i is the predicted confidence of the bounding box of j in the grid of i, Cj

i is the true
confidence of the bounding box of j in the grid of i, and λnoobj is the confidence weight
when objects are absent in the bounding box.

Lclass = −∑S2

i=0 Inoobj
ij (3)

∑
c∈classes

[
_j
P i(c)log

(
Pj

i (c)
)
+

(
1−

_j
P i(c)

)
log
(

1− Pj
i (c)

)]
(4)

where
_j
P i(c) is the probability that the detected object is predicted to be the category and

Pj
i (c) is the probability that it actually belongs to the category.

3. Results

The batch size was set to 16, and value curves of the training and validation sets were
determined after 300 iterations of training the loss function. Detailed information on the
original image is presented in Section S1 of Supplement Materials). The confusion matrix
of the developed models in this study is presented in Table 1. Among the 384 test images,
301 images were correctly predicted in the RGB model while 274 images were correctly
identified in the HSI model. The results were analyzed using several indicators, including
precision, recall, specificity, accuracy, and F1 score, to evaluate the detection performance of
the YOLOv5 network (see Supplement Materials, Section S2 for the detailed information on
different equations of indicators). The obtained results are listed in Table 2 (see Supplement
Materials, Table S1 for the heatmap of the confusion matrix). The respective accuracies of
the RGB and HSI models of 0.792 and 0.787 indicated their similarity. The more evident
SCC category in the HSI model presents a more significant improvement with other labels
than the original image category SCC. This finding demonstrated the high degree of
completeness of the model in the learning of lesion features. It can be seen that the accuracy
rate of both the RGB model and the HSI model are similar because the number of images
used are comparatively lesser. However, it can be proved from this study that the HSI-based
conversion algorithms which have the capability to convert the RGB images to HSI images
have the potential to classify and detect skin cancers. Although most of the results are
similar, this research has significantly improved the recall rate and specificity of the SCC
category. This study has also improved the specificity also known as the true negative rate
for the SK category.
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Table 1. Confusion matrix for the YOLOv5 detection model.

Skin Disease
Results of the RGB Model

True

BCC SCC SK Background FP

Pr
ed

ic
te

d BCC 133 7 8 45
SCC 6 66 0 27
SK 6 1 102 54

Background FN 23 16 16

Skin Disease
Result of HSI Model

True

BCC SCC SK Background FP

Pr
ed

ic
te

d BCC 102 4 19 74
SCC 17 72 0 10
SK 6 0 100 55

Background FN 43 14 7

Table 2. Performance results of YOLOv5 training.

RGB Model Precision Recall Specificity F1-Score Accuracy

All 0.888 0.758 0.798 0.818

0.792
BCC 0.899 0.747 0.791 0.816

SCC 0.812 0.722 0.833 0.764

SK 0.954 0.805 0.71 0.873

HSI Model Precision Recall Specificity F1-score Accuracy

All 0.8 0.726 0.786 0.761

0.787
BCC 0.813 0.624 0.716 0.706

SCC 0.746 0.794 0.878 0.769

SK 0.841 0.76 0.764 0.798

The future scope of this study is to implement the hyperspectral imaging conversion
technique to capsule endoscopy. In a capsule endoscopy, there is no space to add an
additional narrow band imaging filter which improves the performance of detecting cancers.
The same algorithm can be used to convert the RGB images to HSI images. Another
advantage of this algorithm is that it reduces the cost of the hyperspectral dermatologic
acquisition system, which is not cost-effective. Therefore, this method can be implemented
on the RGB images taken to detect skin cancers. In addition, video dermatoscopes combined
with AI software can also be used for automatic diagnosis.

4. Conclusions

Skin cancer images are primarily classified into three categories of SCC, BCC, and
SK using YOLOv5 based on the CNN architecture. Lesion categories, including RGB and
hyperspectral datasets, are utilized to create a confusion matrix and calculate the precision,
recall, specificity, precision, and F1-score values, which are used as classification indicators.
The experimental results showed that the SCC category in the HSI model can successfully
learn characteristic features. The HSI classification model presents a better detection effect
than the original RGB image. The recall rate improved from 0.722 to 0.794. The HSI model
can extract detailed spectral bands, reduce the noise from the image, and highlight lesion
features. Because some symptoms of BCC are similar to SK, it is easy to be confused, so
the recall rate is the lowest. Compared with previous versions, YOLOv5 is simpler to use
because the input image can be automatically scaled to the required size. The relatively
small model structure achieves an accuracy similar to that of the previous version at a faster
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speed. The gain can be used in the subsequent designs of the experiment to improve the
accuracy in future investigations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm12031134/s1, Figure S1. YOLOv5 network architecture.
Figure S2. Convergence of loss functions for training set and validation set of original images
and precision, recall, and average precision. Figure S3. Hyperspectral image training set and valida-
tion set loss functions and convergence of precision, recall, and mean precision. Table S1. Heatmap of
the confusion matrix.
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