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Abstract: Scoliosis is a three-dimensional deformity of lateral bending and rotation of the spine.
Artificial intelligence (AI) is a set of theories and techniques for studying artificial intelligence, which
realizes machine intelligence by simulating and expanding human intelligence. With the continuous
development of the multidisciplinary integration trend of modern medicine, artificial intelligence
is used more and more in the diagnosis and treatment of scoliosis. Artificial intelligence has been
widely used in the study of scoliosis and has penetrated into all fields of clinical practice of scoliosis.
At present, artificial intelligence has shown good application prospects in early screening, diagnosis,
treatment decision making, intraoperative operation, and prognosis prediction of scoliosis. This paper
mainly summarizes the application of artificial intelligence in the clinical practice of scoliosis, and
briefly introduces the AI model and its specific applications. In addition, this paper also discusses the
limitations and future development of artificial intelligence. In the future, artificial intelligence will
bring greater convenience to the diagnosis and treatment of scoliosis and provide better therapeutic
effects for patients.
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1. Introduction

Scoliosis refers to a three-dimensional deformity of the spine with lateral curvature
and vertebral rotation, which covers some characteristics including rib hump, shoulder
imbalance, waist asymmetry [1,2]. The International Scoliosis Research Society (ISRS)
defines scoliosis as a deformity in which the Cobb measurement of the spine on the coronal
plane exceeds 10◦ [3]. Scoliosis can be divided into congenital scoliosis, neuromuscular
scoliosis, syndromic scoliosis, and idiopathic scoliosis, and it involves people of all ages
such as children, adolescents, and adults [4]. In addition, spine surgeons have proposed
numerous classification methods and standards based on the overall strategy, surgical
methods, and fusion levels for treating scoliosis, including King classification [5], Lenke
classification [6], and PUMC classification [7]. These classifications are widely recognized
for their comprehensiveness and the valuable guidance they provide for determining
treatment approaches. At present, the etiology and pathogenesis of idiopathic scoliosis, the
most common type of scoliosis, remain unclear [8]. This lack of understanding contributes
to the disease’s often undetected onset, leading to serious spinal deformities by the time
it is diagnosed. Such deformities gravely affect the physical and mental health, as well
as the quality of life, of patients. Untreated idiopathic scoliosis can worsen, resulting
in increased curve progression, back pain, respiratory and cardiovascular issues, and
neurological complications [9]. In view of the characteristics and complexity of scoliosis,
early screening and diagnosis, progress prediction, and rehabilitation should be thoroughly
considered [10].
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In recent years, artificial intelligence (AI) has developed rapidly and has been widely
used in various medical fields. AI aims to imitate, extend, and expand human intelligence
by studying artificial methods and technologies. This endeavor leads to the realization of
machine intelligence [11]. The integration of AI with orthopedics, a field at the forefront
of modern multidisciplinary cross-integration, showcases significant potential. Its clini-
cal application value is gradually emerging after continuous development. Nowadays,
the application and trend of AI in scoliosis mainly include the technology derived from
machine learning (ML) and deep learning (DL), intelligent robots, and digital 3D printing
technology [12]. As an advanced branch of AI, ML uses algorithms and machines to mine
data features and learning rules from a large amount of data, without explicit program-
ming [13]. In addition, the aim of DL is to simulate the neural network of the human brain
and the ability for analysis and learning, which has become a new field in ML and neural
network research [14]. At present, neural network technology based on ML and DL has
shown some advantages in early imaging screening, auxiliary diagnosis, determination
of the spinal parameters, determination of the diagnosis and treatment scheme, and pre-
diction of the disease prognosis of scoliosis [15]. Moreover, orthopedic intelligent robots
and AI-assisted 3D printing technologies also show unique advantages for improving the
treatment efficiency of scoliosis [16]. Therefore, this article summarizes the application of
AI in the diagnosis and treatment of scoliosis (Figure 1), in order to understand the current
progress and future development trends of AI in scoliosis.
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2. Early Imaging Screening

Early screening is the most effective way to find spinal deformity early, and early
screening and diagnosis will contribute to the early intervention and treatment of spinal
deformity [17]. Currently, imaging recognition has become an important field in the
screening of spinal deformity. In view of the unique morphological and biomechanical
characteristics of the spine, AI represented by ML has the ability to automatically obtain
information in two-dimensional and three-dimensional images, which makes it possible to
screen a wide range of spinal deformities.

In 2000, Jaremko et al. [18] firstly applied artificial neural network (ANN) to the
study of scoliosis. The results showed that the average correct prediction rate of ANN
was 60%, which was more accurate than the 34% of regression analysis, which indicates
that this technology predicted rib deformity more accurately and allowed for evaluating
the severity of scoliosis with the least use of harmful X-rays. Ramirez et al. [19] used a
support vector machine (SVM) to process the human back topography image to evaluate
the severity of idiopathic scoliosis. The results showed that the test accuracy of the SVM
system reached 69–85%. Yang et al. [20] used the combined algorithm of Faster-RCNN
and Res-Net to process unclothed back images to screen for AIS. The accuracy of this
algorithm in detecting scoliosis and cases with curve ≥ 20◦ was better than that of human
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experts, and it could be potentially applied to routine scoliosis screening and as a periodic
tool for monitoring disease progress without radiation exposure. However, initial radio-
graphic examinations are necessary to rule out congenital scoliosis and syndromic scoliosis.
Watanabe et al. [21] established a scoliosis screening system by evaluating spinal alignment,
Cobb angle, and spinal rotation through Moiré topography. The system estimated the
positions of 12 thoracic vertebrae, 5 lumbar vertebrae, and 17 spinous processes, as well
as the vertebral rotation angle of each vertebra, through a convolutional neural network
(CNN) with higher accuracy. In addition to processing back images using an algorithm
of AI to screen scoliosis, Greer et al. [22] innovatively combined ultrasonic images and
neural networks to achieve scoliosis screening for the population, and the system could
also monitor the disease progress of scoliosis patients.

In the realm of AIS, the application of large language models (LLMs), such as advanced
AI-based chatbots, is revolutionizing patient education and information dissemination.
These AI-driven systems are adept at delivering personalized, comprehensible, and medi-
cally accurate information to patients and their families. The integration of LLMs in AIS
management is particularly beneficial, given the condition’s complexity and the diverse
treatment options available. LLMs provide a convenient and accessible platform for pa-
tients and families to address their questions, grasp the nuances of different treatment
strategies, and participate actively in decision-making processes [23]. Furthermore, LLMs
can tailor their responses to suit the user’s knowledge level and emotional state, ensuring a
supportive and empathetic interaction [24]. This aspect is vital in AIS management, where
patient engagement and comprehension are key factors in successful treatment outcomes.
The incorporation of LLMs into AIS patient education programs is poised to augment
patient autonomy, alleviate anxiety, and promote a participatory healthcare model, thereby
leading to enhanced patient satisfaction and improved adherence to treatment plans.

Beyond educational purposes, LLMs also work well in assessing the severity of
scoliosis. Contrastive language-image pretraining (CLIP) [25] is an AI model developed by
OpenAI that combines text and image understanding in a joint embedding space. CLIP
is designed to process and understand both text and images simultaneously, allowing
it to perform tasks such as image classification, object detection, and image generation.
Fabijan et al. [26] used 23 postural images of patients with severe scoliosis, evaluated by
two neurosurgery experts. The images are fed into the CLIP system and the predictions
obtained are compared with the actual data. The results show that the CLIP system can
perform a basic evaluation of X-ray images showing severe scoliosis with a high sensitivity.
Research suggests that in the future, open-source AI models specialized for image analysis,
such as CLIP, may be commonly used to evaluate X-ray images of scoliosis.

The key to the early screening of scoliosis by AI is to obtain human trunk information.
Currently, the methods of AI for the early screening of scoliosis are constantly being
updated, and its reliability and accuracy are constantly improving. In addition to these
advancements, it is crucial to implement regular evaluations and updates to these AI
models to ensure their effectiveness in clinical settings. This involves rigorous performance
monitoring to assess accuracy, sensitivity, and specificity in different populations and under
varying clinical conditions. Moreover, model recalibration is essential to adjust algorithms
in response to new findings or shifts in epidemiological trends. This recalibration should be
an ongoing process, adapting the models to maintain their relevance and accuracy over time.
Equally important is the incorporation of new data, which can come from recent clinical
studies, patient demographics, or novel imaging techniques. By continually integrating
this new information, AI models can evolve to become more robust and reflective of the
current state of scoliosis presentations and treatments. It is believed that AI will become a
common means for screening and monitoring scoliosis in the near future.

3. Automatic Evaluation of Scoliosis-Related Parameters

Quantitative analysis of scoliosis is a necessary step in the diagnosis and treatment of
scoliosis [27]. The automatic analysis of related imaging indicators has the advantages of
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saving manpower and providing high accuracy, compared with manual measurement [28].
With the development of AI, more and more automatic analysis programs of spinal defor-
mity images have been developed, presenting a more intelligent and accurate trend.

Automatic image analysis of spinal deformity mainly includes direct estimation and
segmentation-based methods [29]. The acquisition of the Cobb angle in the direct estimation
method is based on spinal X-ray images and the clinical measurement method. The spine
feature points are identified on the X-ray, and then the subsequent parameters are calculated
and the deflection angle is obtained, so as to calculate the Cobb angle. Weng et al. [30] used
ResU-Net for the automatic measurement of the sagittal vertical axis of the spine. This
model showed a high reliability for different types and degrees of deformity. BoostNet [31]
was developed through the integration of a stand-alone deep CNN and a robust generative
adversarial network, forming an ensemble network that effectively enhanced the denoising
performance. On the basis of BoostNet, Wu et al. [32] proposed MVC-Net, which integrated
the spine curvature of multi-view X-ray in anterior−posterior (AP) and lateral (LAT)
positions, and could accurately and reliably evaluate Cobb angle and spinal landmarks.
Wang et al. [33] further designed MVE-Net, which directly estimated Cobb angle from
multi-view X-rays. Zhang et al. [34] proposed MPF-net, which effectively solved the
problem of unclear identification of vertebral key points of LAT X-ray through the designed
feature fusion module, which utilized the information in both AP and LAT X-rays for
better performance, and further improved the accuracy of the automatic evaluation of the
Cobb angle.

The segmentation-based method extracts the vertebral contour, and then measures
scoliosis according to the segmentation results. Previous studies have developed a variety
of segmentation-based methods for evaluating scoliosis, such as Hough transform [35,36],
active contour models [37], customized filters [38], and an improved charged particle
model [39]. Although these traditional segmentation methods have a low dependence
on clinical measurement, they are still limited by some measurement shortcomings, such
as the preference of user and vertebral selection. In recent years, deep learning methods
have made remarkable progress in image recognition and segmentation, and several U-net
models have been developed for spine segmentation and Cobb angle estimation [39–41].
Horng et al. [39] compared several U-Net models with the effect of vertebra X-ray image
segmentation, and the results showed that Res U-Net had a better segmentation effect than
U-Net and Dense U-Net. In addition, there was no significant difference in cobb angle
measurement between these three U-Net models and clinicians. Recently, Zhao et al. [41]
proposed a new U-Net model, which used the Inception block, Res block, and CBAM
block to extract the multi-scale features of vertebrae, further improving the segmentation
performance and the measurement accuracy of the Cobb angle.

In the realm of scoliosis diagnosis and treatment, AI has revolutionized the automatic
evaluation of related parameters, particularly in quantitative analysis, which is crucial
for accurate diagnosis and treatment planning. The advancement of AI has led to the
development of various automatic analysis programs for spinal deformity images, show-
casing a trend towards greater intelligence and precision. These include direct estimation
methods like ResU-Net, BoostNet, MVC-Net, and MVE-Net, which have demonstrated a
high reliability for measuring spinal parameters such as the Cobb angle from X-ray images.
In parallel, segmentation-based methods, evolving from traditional techniques like Hough
transform and active contour models to advanced deep learning approaches like various
U-Net models, have significantly improved in vertebral segmentation and Cobb angle esti-
mation. For instance, Horng et al. [39] and Zhao et al. [41] provided notable contributions
with their U-Net models, enhancing segmentation accuracy and measurement precision.
To maintain the effectiveness and relevance of these AI models, continuous performance
monitoring is essential. This entails regularly assessing their accuracy and recalibrating
algorithms based on new clinical data and imaging techniques. By incorporating such
ongoing updates and evaluations, these AI models can sustain their accuracy and utility in
the ever-evolving landscape of scoliosis diagnosis and treatment.
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4. Therapeutic Decision-Making

The classification of scoliosis can help surgeons classify curve types and guide them
to make treatment decisions [42]. Currently, the classification of scoliosis includes the
King [5], Lenke [6], and PUMC [7] classifications. AI technology such as ML and DL can
realize the rapid classification and diagnosis of scoliosis, and plays a positive role in making
treatment decisions.

With the support of big data and image recognition technology, AI assists orthopedic
surgeons to diagnose and treat diseases by learning massive knowledge and experience.
Phan et al. [43] applied a decision tree to classify 72 patients with scoliosis, and the accuracy
rate reached 92.9%. Chen et al. [44] designed a combined model of Faster R-CNN and
ResNet to classify spinal images, which realized the accurate and rapid classification of
scoliosis, thus contributing to the standardization and automation of surgical diagnosis.

Early prediction of the progression risk of scoliosis has significant clinical value, so
as to help ensure that patients at risk of progression receive early supportive treatment
and to strengthen treatment compliance. An AI algorithm can be applied to automatically
predict the risk of scoliosis progression. Yahara et al. [45] developed a deep convolution
neural network (DCNN) system to predict the curve progress of scoliosis by incorporating
the source data of the X-rays of 58 AIS patients with three regions of interest (ROI): lung,
abdomen, and whole spine. This model could predict the progress of scoliosis more
accurately than spinal surgeons, with the highest accuracy of 69% and AUC of 0.7. Wang
et al. [46] automatically predicted the progress of the AIS curve based on radiology and the
CapsNet algorithm, which is helpful to guide the treatment strategy when visiting a doctor.

The procedure of surgical instrumentation for scoliosis is complicated, in which the
choice of a fusion region is very challenging. Currently, the Lenke classification model is
used in the surgical planning of spinal deformity to determine the appropriate fusion region.
Mezghani et al. [47] trained self-organizing maps (SOMs) to determine the relationship
between Lenke classification and fusion region selection from the database of 1776 AIS
cases treated by surgery. The results showed that the overall consistency between them
reached 88%, except for the near boundaries between Lenke maps. In addition, the SOM
developed by the team bypassed the restrictions imposed by strict classification on the
definition of curve types, thus guiding surgery [48].

Incorporating the prediction of surgical results into treatment decisions can improve
patients’ satisfaction and reduce the occurrence and risk of reoperation. Pasha et al. [47]
used the K-means algorithm to cluster and analyze the 3D spinal curve of AIS patients
before, during, and 2 years after operation, which showed a good guiding role in treatment
decision making and surgical operation. In addition, Pasha et al. [49] also cluster-analyzed
the 3D spinal curve patterns of 371 AIS patients who underwent spinal fusion surgery
before and 2 years after operation. The results showed that the 3D preoperative cluster
classification had a higher accuracy than the Lenke classification in postoperative spinal
alignment, and this classification system had potential application value in the prediction
model of AIS surgical results [50]. Koller et al. [51] established a prediction model of
postoperative spontaneous lumbar Cobb correction (SLCC) by using a logistic regression
model, which contributed to surgical decision making during selective thoracic spinal
fusion. In addition to determining the fusion levels and predicting the postoperative
outcome, some AI methods have been developed to predict the progression of scoliosis,
which helps doctors choose appropriate treatment measures. Carlo et al. [52] predicted
the development of neuromuscular scoliosis in children with cerebral palsy based on a
logistic regression algorithm, which could provide the basis for the treatment of patients.
Cano et al. [53] utilized a neural network to extract the 3D structure of a patient’s spine
and employed Independent Components Analysis [54] to predict the spine’s shape and
changes from the first visit, enhancing the accuracy of predicting the curve progression.
This approach guided the treatment effectively to prevent the curvature from progressing.

AI plays a pivotal role in therapeutic decision making in scoliosis, enhancing the
classification, progression prediction, and surgical planning processes. AI facilitates rapid
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and accurate scoliosis classification, as seen in the works of Phan et al. [43] and Chen
et al. [44], who employed decision trees and combined models of Faster R-CNN and
ResNet, respectively. These classifications aid in making informed treatment decisions.
Additionally, AI algorithms predict scoliosis progression, exemplified by Yahara et al.’s
deep convolution neural network [45] and Wang et al.’s CapsNet algorithm [46], providing
crucial early intervention insights. In surgical planning, AI models like self-organizing
maps by Mezghani et al. [47] help determine appropriate fusion regions, offering a more
flexible approach compared with traditional Lenke classification. Moreover, AI-assisted
predictions of surgical outcomes, as researched by Pasha et al. [49], Koller et al. [51],
Carlo et al. [52], and Cano et al. [52], contribute significantly to patient satisfaction and
treatment strategies. To ensure these AI systems remain effective and relevant, continuous
performance monitoring, model recalibration, and the integration of new clinical data are
imperative. This ongoing process of evaluation and enhancement ensures AI models adapt
to evolving medical knowledge and patient needs, solidifying their role in the dynamic
landscape of scoliosis treatment.

5. Surgical Assistance
5.1. Insertion of Pedicle Screw

Pedicle screw insertion is a key step in scoliosis correction surgery. Pedicle localization
and identification play an important role in screw insertion for spinal deformity. The AI
algorithm contributes to the localization and identification of pedicles. Esfandiari et al. [55]
established a DL framework based on fluoroscope for automatic segmentation and posed
estimation of pedicle screws, which showed a good application effect, where the accuracy
of pose estimation of this framework in clinical cases was 1.93 ± 0.64◦ and 1.92 ± 0.55 mm.
Burström et al. [56] used an ML algorithm to construct an intraoperative 3D surgical
navigation system, and the system could automatically identify the pedicle and provided
suggestions for pedicle screw insertion. Further, the 3D prototype model and navigation
system based on the AI algorithm can be used to guide surgeons to implant pedicle screws
and improve its accuracy. Li et al. [57] utilized a rapid prototyping spinal model to insert
screws using pedicle guide navigation. The intraoperative findings of this technique were
completely consistent with the preoperative 3D reconstruction results, which improved
the accuracy of pedicle screw insertion in complex scoliosis surgery. Zhang et al. [58]
constructed a deformable 3D−2D registration framework based on preoperative CT and
intraoperative long cross-sectional images. This method could automatically evaluate
the overall spinal alignment and contribute to the accurate insertion of pedicle screws
in the case of spinal deformation. Elmi-Terander et al. [59] compared the screw fixation
accuracy of adding realistic surgical navigation (ARSN) and free hand (FH) technology,
and ARSN showed a higher screw insertion accuracy, but both groups had no misplaced
screws, and no differences in medial breaches were reported. Currently, the AI algorithm
is also used to improve the product performance of pedicle screws, which can reduce
the incidence of fixation failure in short-segment fixation. Amaritsakul et al. [60] carried
out multi-objective optimization design of pedicle screws based on ANNs and a genetic
algorithm (GA), and developed Pareto Optima, which balanced the bending strength and
drawing strength. Finally, an ideal product with a high bending and drawability was
developed using the AI algorithm. To summarize, AI algorithms could indeed be very
useful for developing personalized implants based on patient-specific needs. By leveraging
patient data and machine learning techniques, AI can predict and model optimal implant
shapes, sizes, and materials that conform precisely to individual anatomical structures. This
personalized approach could lead to implants that are more compatible with the patient’s
body, potentially improving the success rates of surgeries, reducing recovery times, and
minimizing the risk of postoperative complications.
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5.2. Simulation of Deformity Correction and Intraoperative Monitoring

Correction simulation and intraoperative functional detection of spinal deformity can
gain profit from the contribution of AI. By considering preoperative spinal alignment and
possible complications during operation, it will help shorten the operation time and reduce
the risk of blood loss, nerve injury, and infection. The bending of the rods during operation
needs repeated comparison, which is not only time consuming, but also increases the risk of
infection. Solla et al. [61] obviously improved the accuracy and time control of the operation
through bending of the rods. Tachi et al. [62] developed a 4D surgical planning simulation
system combined with pre-bent rods by studying the preoperative and postoperative
information of 47 patients and 11 kinds of pre-bent rods. The predicted results of this system
were significantly related to the actual postoperative spinal alignment after anatomical 4D
spinal correction surgery, and the error between the simulated measured values and the
actual values was within 5◦. The AI algorithm can be used to predict the physiological
changes of somatosensory evoked potentials. Fei et al. [63] combined the long-term and
short-term memory of attention (LSTM) with CNNs, which could predict the somatosensory
evoked potential (SEP) when physiological variables changed during scoliosis surgery, and
realized the real-time monitoring of intraoperative neurological deficits.

5.3. Robotics in Scoliosis Surgery

In recent years, robot-assisted technology has been applied in scoliosis correction
surgery. Orthopedic robots use intraoperative image guidance technology and surgical
navigation data to map surgical space and plan surgical paths, which has the functions of
active positioning and coordinated human−computer movement [64]. In spinal surgery,
this technique uses a robotic arm to drill the trajectory of pedicle screws, which has the
advantages of a high accuracy for screw implantation, low risk of radiation exposure, and
less complications such as neurovascular injury during operation [65]. Chen et al. [66]
compared the accuracy and safety of robot-assisted pedicle screw implantation and artificial
pedicle screw implantation in AIS surgery, and found that the intraoperative blood loss,
screw implantation time, and screw adjustment times of robot-assisted pedicle screw
implantation were significantly less. Additionally, compared with traditional fluoroscopy-
assisted technology and navigation technology, robot-assisted technology also showed
better accuracy for pedicle screw placement in AIS surgery [67,68].

However, the robot device is controlled by the surgeon, and its surgical effect is
influenced by the learning curve stage of the manipulator. Therefore, solid surgical skills
and knowledge are still essential for surgeons to ensure the safety of patients.

6. Prediction of Prognosis

Employing machine learning algorithms to anticipate the prognosis and potential
complications following scoliosis surgery can significantly enhance the assurance of pa-
tient recovery in the postoperative phase. Imaging complications of scoliosis patients
mainly include proximal junctional kyphosis (PJK) and proximal junctional failure (PJF).
Scheer et al. [69] used the C5.0 algorithm to build a decision tree set. This model could
predict PJK and PJF in the perioperative period with an accuracy of 86.3% and an operating
characteristic curve (AUC) of 0.89. Peng et al. [70] established a prognostic model for
patients with Lenke 5 AIS based on the random forest trained by SMOTE. The accuracy
of this model was 90.9% and AUC was 0.944, which was of great value for predicting
the individual risk of PJK after AIS fusion surgery. Yagi et al. [71] predicted the risk of
complications after Adult Spinal Deformity (ASD) surgery for 2 years based on decision
tree analysis, and found that implant-related complications were the most common compli-
cations within 2 years after surgery. The accuracy of this model was 84%, and the AUC was
0.963. Pellisé et al. [72] employed a stochastic forest survival algorithm to forecast the likeli-
hood of adverse events following surgery for ASD, revealing that the cumulative risk of
significant complications in individual surgeries ranged from 3.9% to 74.1% over a two-year
period. This research underscores the critical clinical relevance of utilizing AI algorithms
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for prognostic predictions. To further enhance this understanding, the study constructed
two distinct models for each outcome, utilizing random survival forest algorithms. This
approach emphasizes the crucial importance of developing precise and accurate prognostic
models in clinical practice. Ames et al. [73] created a prediction model to simulate the
possibility of achieving the minimum clinically significant difference in patient-reported
outcomes (PROs) between 1 and 2 years after operation. The model found that the average
improvement degree of patients with poor baseline PROs before operation was the highest,
which had important clinical significance for postoperative care and rehabilitation. Addi-
tionally, the team developed a model based on the Scoliosis Research Society-22R (SRS-22R)
questionnaire to forecast the scores 1 and 2 years post-surgery. This innovation is significant
for enhancing our understanding of patients’ quality of life postoperatively. To our knowl-
edge, this is the first study to focus on modeling the prediction of specific responses to the
SRS-22R questionnaire at 1 and 2 years following deformity surgery. Predicting individual
responses to this questionnaire can be particularly beneficial for personalized preoperative
counseling, aligning with the contemporary trend of individualized medicine [74].

7. Future Directions of AI in Scoliosis

In recent years, AI has made remarkable progress in the diagnosis and treatment
of scoliosis. In addition, AI has been gradually applied in case management and post-
operative rehabilitation of patients. At present, AI technology is in the early stage of
development, and there are still the following limitations and problems: 1© AI has missed
diagnosis and misdiagnosis in disease screening and diagnosis, and its accuracy is not
100% effective. 2© Limited data and lack of multi-center verification in diverse clinical
environments. 3© Lack of a perfect model integration platform, and lack of stability and
limited generalization ability of the model. 4© Multi-professional collaboration to support
and develop AI may pose economic challenges. 5© The execution rate of surgical robot
programs is limited, and the operating systems are not fully intelligent. 6© AI involves
patients’ data privacy and security, and its ethical issues cannot be ignored.

When evaluating the transformative potential of AI in the management of scoliosis,
it is paramount to consider its impact on the standard of healthcare. AI methodologies,
particularly advanced imaging algorithms and machine learning techniques, promise a
paradigm shift in both diagnosis and treatment strategies. For instance, AI can enhance the
accuracy of scoliosis detection and curve progression prediction, leading to more timely and
personalized interventions. Moreover, AI’s ability to integrate and analyze vast datasets
can aid in developing more effective treatment modalities, potentially reducing the need for
invasive procedures such as surgery. However, the integration of AI into clinical practice
also raises significant ethical considerations. The use of AI in medical decision making
must ensure patient privacy, data security, and mitigate biases inherent in algorithmic
processes. As highlighted in the article “Ethical Issues of Artificial Intelligence in Medicine and
Healthcare” [75], there is a critical need for ethical frameworks that guide AI implementation
in healthcare settings. These frameworks should address issues such as informed consent,
transparency of AI-driven decisions, and equitable access to AI-enhanced medical care. By
rigorously addressing these aspects, AI can be harnessed to not only advance the standard
of care in scoliosis, but also to uphold the ethical integrity of medical practice.

In terms of models, the simulation system and future planning of AI need to be contin-
uously optimized in many details, and clinical problems should be solved in combination
with doctors’ clinical experience when designing the model. In terms of data, future AI
algorithms need to be verified on the multi-center database platform to continuously im-
prove the number and diversity of samples. Furthermore, it is imperative to underscore
the importance of long-term studies for validating AI applications in diverse clinical envi-
ronments. The effectiveness and safety of AI-driven interventions in scoliosis care must be
demonstrated over extended periods and across varied healthcare settings. This is not only
essential to ensure that these innovative technologies provide immediate clinical benefits,
but also to maintain their efficacy and safety in the long term. Longitudinal studies will
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allow for the comprehensive assessment of AI’s impact on long-term patient outcomes,
including quality of life and functional status post-treatment. Additionally, deploying AI
tools in a variety of clinical settings, from specialized scoliosis centers to general hospitals,
will enable the evaluation of their adaptability and generalizability across different patient
populations and healthcare infrastructures. This approach aligns with the calls for rigorous
validation in medical AI research, as is emphasized by Chen et al. [76]. By committing to
extensive validation through long-term, multi-center studies, the medical community can
ensure that AI tools used in scoliosis care are not only innovative, but that they are also
reliable and universally beneficial.

The development of AI needs the joint efforts of bioinformaticians, computer scientists,
data engineers, and doctors. Facing the rapid development of science and technology,
doctors should know and be familiar with the theoretical knowledge and operating system
of AI as much as possible, and gain the initiative in clinical use in the combination of AI
and medical technology, so as to serve human society more effectively.

8. Conclusions

AI plays an important role in the clinical practice of scoliosis, which aims to assist
the diagnosis of scoliosis and improve the treatment efficiency. At present, the application
of AI in scoliosis mainly uses ML and DL algorithms for image segmentation to assist its
diagnosis and treatment. In addition, the emergent spinal robotic technology also allows
the surgical treatment of scoliosis to be more minimally invasive and intelligent, which can
significantly improve its surgical outcomes. Although AI has made gratifying progress in
early imaging screening, automatic evaluation of imaging parameters, treatment decision
making, surgical assistance, and prognosis prediction of scoliosis, it still has some problems
such as limited generalization ability and limited data sources. Looking ahead, several
promising directions can further advance AI’s role in scoliosis management. First, there
is a critical need for developing AI systems with enhanced generalization capabilities,
capable of accurately functioning across diverse patient populations and varied clinical
settings. This requires the collection and integration of large, varied datasets that reflect
the spectrum of scoliosis presentations. Second, interdisciplinary collaborations between
AI researchers, clinicians, and biomechanical engineers can foster innovative solutions,
particularly in the realm of personalized medicine. Customized treatment plans based
on AI-driven predictions could significantly improve patient outcomes. Third, exploring
the potential of AI in patient monitoring and postoperative care can optimize long-term
treatment strategies and enhance patient quality of life. Finally, as AI technology evolves,
ethical considerations and the development of robust guidelines for its application in
clinical practice must be a priority to ensure patient safety and data privacy. We believe
that with the continuous development and optimization of AI, it can achieve revolutionary
changes in the diagnosis and treatment of spinal surgery. In the future, AI will present
more new methods and more reliable prediction models and infiltrate into all aspects of
clinical practice related to scoliosis.
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et al. Development of predictive models for all individual questions of SRS-22R after adult spinal deformity surgery: A step
toward individualized medicine. Eur. Spine J. 2019, 28, 1998–2011. [CrossRef] [PubMed]

75. Farhud, D.D.; Zokaei, S. Ethical Issues of Artificial Intelligence in Medicine and Healthcare. Iran J. Public Health 2021, 50, i–v.
[CrossRef] [PubMed]

76. Chen, E.; Prakash, S.; Janapa Reddi, V.; Kim, D.; Rajpurkar, P. A framework for integrating artificial intelligence for clinical care
with continuous therapeutic monitoring. Nat. Biomed. Eng. 2023. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00586-019-06079-x
https://www.ncbi.nlm.nih.gov/pubmed/31325052
https://doi.org/10.18502/ijph.v50i11.7600
https://www.ncbi.nlm.nih.gov/pubmed/35223619
https://doi.org/10.1038/s41551-023-01115-0

	Introduction 
	Early Imaging Screening 
	Automatic Evaluation of Scoliosis-Related Parameters 
	Therapeutic Decision-Making 
	Surgical Assistance 
	Insertion of Pedicle Screw 
	Simulation of Deformity Correction and Intraoperative Monitoring 
	Robotics in Scoliosis Surgery 

	Prediction of Prognosis 
	Future Directions of AI in Scoliosis 
	Conclusions 
	References

