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Abstract: Biological therapy is very effective for treating patients with moderate to severe inflamma-
tory bowel disease (IBD). However, up to 40% can have primary non-response, and up to 50% of the
patients can experience a loss of response to anti-tumor necrosis factor therapy. These undesirable
outcomes can be attributed to either a mechanistic failure or pharmacokinetic (PK) issues character-
ized by an inadequate drug exposure and a high drug clearance. There are several factors associated
with accelerated clearance of biologics including increased body weight, low serum albumin and
immunogenicity. Drug clearance has gained a lot of attention recently as cumulative data suggest
that there is an association between drug clearance and therapeutic outcomes in patients with IBD.
Moreover, clearance is used by model informed precision dosing (MIDP) tools, or PK dashboards, to
adjust the dosing for reaching a target drug concentration threshold towards a more personalized
application of TDM. However, the role of drug clearance in clinical practice is yet to be determined.
This comprehensive review aims to present data regarding the variables affecting the clearance of
specific biologics, the association of clearance with therapeutic outcomes and the role of clearance
monitoring and MIPD in patients with IBD.

Keywords: clearance; inflammatory bowel disease; therapeutic drug monitoring; anti-TNF therapy;
vedolizumab; ustekinumab; mirikizumab; risankizumab; model informed precision dosing;
pharmacokinetic dashboard

1. Introduction

Biological therapy is very effective for treating patients with moderate to severe in-
flammatory bowel diseases (IBD) such as Crohn’s disease (CD) and ulcerative colitis (UC).
However, up to 40% and 80% of the patients can have primary non-response and primary
non-remission to anti-tumor necrosis factor (anti-TNF) therapy, respectively [1]. Moreover,
up to half of the patients with IBD may experience secondary loss of response [2]. Therapeu-
tic drug monitoring (TDM) can help to explain these unwanted outcomes attributed either
to a mechanistic failure in the presence of adequate drug concentration or pharmacokinetic
(PK) issues characterized by an inadequate drug exposure and a high drug clearance [3].

Drug clearance is expressed as the volume of plasma in the vascular compartment that
is cleared of drug per unit of time, and it is estimated using Bayesian modeling [3]. Mecha-
nisms underlying the clearance of monoclonal antibodies include intracellular catabolism
and endocytosis, increase in target load, protein-losing enteropathy and binding to anti-
drug antibodies. There are several factors associated with the above mechanisms that can
influence the clearance of biologics including body weight, serum albumin and immuno-
genicity (Figure 1) [4–46]. In particular, increased body weight, decreased albumin and
anti-drug antibodies (ADAs) have been associated with higher clearance for almost all the
biologics currently used in IBD (Figure 1).
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Figure 1. Variables associated with higher clearance of biologics in patients with inflammatory 
bowel disease. CD: Crohn’s disease; IBD: inflammatory bowel disease; UC: ulcerative colitis; ADA; 
anti-drug antibodies; CRP: C-reactive protein, AZA: azathioprine, MTX: methotrexate, FC: fecal cal-
protectin, CDAI: Crohn’s disease activity index, PMS: partial Mayo score, WBC: white blood count, 
ESR: erythrocyte sedimentation rate, EOW: every other week, PCDAI: pediatric CDAI, ALP: alka-
line phosphatase; nCD64: neutrophil CD64; ↑ higher; ↓ lower. 

Drug clearance has gained a lot of attention recently as an increased estimated base-
line clearance may identify patients at high risk of underexposure to biologics and PK-
related treatment failure. Furthermore, a sudden increase in clearance during therapy can 
precede the decrease in drug concentrations and may predict a flare prior to the develop-
ment of symptoms or low drug concentrations. Moreover, cumulative data suggest that 
there is an association between drug clearance and therapeutic outcomes in patients with 
IBD (Table 1) [17,21,22,24,32,36,40,47–51]. 

Table 1. Estimated clearance of biologics associated with therapeutic outcomes in patients with in-
flammatory bowel disease. 

Author (Year) Study Design Drug Population (N) 
Estimated  
Clearance 

Time Point 

Estimated Clearance 
Threshold, L/Day 

Therapeutic  
Outcome 

(Time Point) 
Battat (2021) 

[47] 
Retrospective IFX ASUC (N = 39) Baseline ≥0.627 Colectomy  

(6 months) 
Vande 

Casteele 
(2019) [48] 

ACT 1 and 2 RCTs IFX UC (N = 484) Baseline <0.397 
MES ≤1  
(week 8) 

Vande 
Casteele 

(2019) [48] 
ACT 1 and 2 RCTs IFX UC (N = 484) Baseline <0.364 

MES ≤1  
(week 30) 

Peticollin 
(2019) [17] Prospective IFX IBD (N = 91) 

At time of  
de-escalation >0.320 

Relapse following 
treatment de-esca-

lation 

Figure 1. Variables associated with higher clearance of biologics in patients with inflammatory
bowel disease. CD: Crohn’s disease; IBD: inflammatory bowel disease; UC: ulcerative colitis; ADA;
anti-drug antibodies; CRP: C-reactive protein, AZA: azathioprine, MTX: methotrexate, FC: fecal
calprotectin, CDAI: Crohn’s disease activity index, PMS: partial Mayo score, WBC: white blood count,
ESR: erythrocyte sedimentation rate, EOW: every other week, PCDAI: pediatric CDAI, ALP: alkaline
phosphatase; nCD64: neutrophil CD64; ↑ higher; ↓ lower.

Drug clearance has gained a lot of attention recently as an increased estimated baseline
clearance may identify patients at high risk of underexposure to biologics and PK-related
treatment failure. Furthermore, a sudden increase in clearance during therapy can precede
the decrease in drug concentrations and may predict a flare prior to the development of
symptoms or low drug concentrations. Moreover, cumulative data suggest that there is
an association between drug clearance and therapeutic outcomes in patients with IBD
(Table 1) [17,21,22,24,32,36,40,47–51].

Table 1. Estimated clearance of biologics associated with therapeutic outcomes in patients with
inflammatory bowel disease.

Author (Year) Study Design Drug Population (N)
Estimated
Clearance

Time Point

Estimated
Clearance
Threshold,

L/Day

Therapeutic
Outcome

(Time Point)

Battat (2021)
[47] Retrospective IFX ASUC (N = 39) Baseline ≥0.627 Colectomy

(6 months)

Vande Casteele
(2019) [48]

ACT 1 and
2 RCTs IFX UC (N = 484) Baseline <0.397 MES ≤ 1

(week 8)

Vande Casteele
(2019) [48]

ACT 1 and
2 RCTs IFX UC (N = 484) Baseline <0.364 MES ≤ 1

(week 30)

Peticollin (2019)
[17] Prospective IFX IBD (N = 91) At time of

de-escalation >0.320
Relapse following

treatment
de-escalation
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Table 1. Cont.

Author (Year) Study Design Drug Population (N)
Estimated
Clearance

Time Point

Estimated
Clearance
Threshold,

L/Day

Therapeutic
Outcome

(Time Point)

Whaley (2023)
[21] Prospective IFX ASUC * (N = 38) Day 3 after

drug initiation >0.480 Colectomy

Chung (2023)
[24] Retrospective IFX CD (N = 85) Baseline <0.230 Remission

(5 months)

Chung (2023)
[24] Retrospective IFX CD (N = 85) Baseline <0.238 Remission

(10 months)

Chung (2023)
[24] Retrospective IFX CD (N = 85) Baseline <0.243 Remission

(16 months)

Chung (2023)
[24] Retrospective IFX CD (N = 85) End of

induction <0.230 Remission
(5 months)

Chung (2023)
[24] Retrospective IFX CD (N = 85) End of

induction <0.213 Remission
(10 months)

Chung (2023)
[24] Retrospective IFX CD (N = 85) End of

induction <0.252 Remission
(16 months)

Vermeire (2022)
[22] Prospective IFX IBD (N = 276) Baseline, weeks

2, 6, 14 <0.250 CRP-based clinical
remission

Abraham (2023)
[49] Prospective IFX IBD (N = 275) Maintenance >0.294 Active disease,

drug discontinuation

Wright (2023)
[50] Retrospective ADM CD (N = 237) Maintenance # <0.350 SES-CD < 3

Wright (2023)
[50] Retrospective ADM CD (N = 237) Maintenance # <0.280 FC < 100 ug/g

Wright (2023)
[50] Retrospective ADM CD (N = 237) Maintenance # <0.300 CRP-based clinical

remission

Lefevre (2022)
[32]

PRECiSE 1 and
2 RCTs CZP CD (N = 964) Baseline >0.500 Drug TC < 36 µg/mL

(week 6)

Vande Casteele
(2022) [51] Retrospective VDZ IBD (N = 695) Baseline <0.170 Clinical remission

(week 52)

Vande Casteele
(2022) [51] Retrospective VDZ IBD (N = 695) Baseline <0.160 Deep remission

(week 52)

Osterman
(2019) [36] GEMINI 1 RCT VDZ UC (N = 693) Week 6 <0.140 Clinical response

(week 14)

Colman (2022)
[40] Prospective VDZ IBD (N = 21) Baseline <0.161 FC < 250 mg/g

(week 14)

* Pediatric; # The sampling time for adalimumab pharmacokinetics were matched to the study visit assessment,
occurring anytime relative to the last dose. IFX: infliximab; ADM: adalimumab; CZP: certolizumab pegol; VDZ:
vedolizumab; ASUC: acute severe ulcerative colitis; IBD: inflammatory bowel disease; MES: Mayo endoscopic
score; CD: Crohn’s disease; UC: ulcerative colitis; FC: fecal calprotectin; CRP: C-reactive protein; SES-CD: Simple
Endoscopic Score for Crohn’s Disease; RCT: randomized controlled trial; TC: trough concentration.

Finally, clearance is used by model informed precision dosing (MIDP) tools, or PK
dashboards, to adjust the dosing for reaching a target drug concentration threshold, typi-
cally depending on the desired therapeutic set by the treating physician. However, the role
of drug clearance in clinical practice is yet to be determined.

The aim of this comprehensive review is to present data regarding the variables
affecting the clearance of specific biologics, the association of clearance with therapeutic
outcomes and the role of clearance monitoring and MIPD in patients with IBD.
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2. Variables Affecting Clearance of Biologics
2.1. Infliximab

Numerous factors have been shown to accelerate infliximab clearance in patients
with IBD. The most frequently identified variables from studies were increased body
weight, lower albumin and immunogenicity (Figure 1) [4–20]. Other factors that can
lead to high clearance include male gender [5,12,18], induction compared to mainte-
nance therapy [14,21,22], prior biologic therapy [13], an increased Crohn’s disease ac-
tivity index (CDAI) [11], as well as elevated fecal calprotectin [10,11], C-reactive protein
(CRP) [14,23,24] and erythrocyte sedimentation rate (ESR) [10]. On the other hand, con-
comitant immunomodulators (IMMs) (thiopurines/methotrexate) were found to decrease
infliximab clearance by around 15% [6,9,17]. This is probably due to the fact that IMM can
prevent or suppress immunogenicity as well as decrease the TNF target-antigen burden
and consequently the target-mediated elimination of infliximab; although, the mechanisms
by which IMM decrease infliximab clearance have not been clearly defined yet [17].

A post hoc analysis of the REACH and ACCENT I randomized controlled trials (RCTs)
showed that the clearance was higher in those who developed ADAs or had low baseline
albumin [6]. Moreover, concurrent IMM use decreased infliximab clearance by 14% [6].
Data from the Phase I study of maintenance subcutaneous therapy with the infliximab
biosimilar CT-P13 in patients with IBD showed that clearance could be increased by 43.2%,
30.1% and 39% by an elevated body weight (from 70 to 120 kg), lower albumin (from
44 to 32 gr/L) and positive ADAs, respectively [13]. The same study showed that patients
previously treated with biologics also exhibited a higher drug clearance compared to anti-
TNF naïve patients, probably reflecting a more refractory disease and a higher tendency to
develop ADAs [13]. A multi-center prospective study including pediatric patients with CD
showed that median clearance was higher in ADA-positive compared to ADA-negative
patients (0.0111 L/h vs. 0.0094 L/h, p < 0.001) [8]. A post hoc analysis of the TAILORIX RCT
showed that higher infliximab clearance in patients with CD was associated with increased
fecal calprotectin, decreased albumin, increased CDAI and immunogenicity [11]. In a PK
analysis of the ACT1 and ACT2, RCTs increased body weight, and lower albumin predicted
a higher infliximab clearance in UC. The same study also showed that the mean clearance
was 47.1% higher for patients with positive ADAs [12]. A prospective PK study regarding
patients with IBD showed that concomitant azathioprine use led to a 15.1% decrease in
infliximab clearance [17].

2.2. Adalimumab

Several factors have been shown to accelerate adalimumab clearance in patients with
IBD including body weight, lower albumin and immunogenicity. (Figure 1) [26–30]. Other
factors associated with increased clearance include prior biologic exposure [50], every week
dosing [27], UC [29], elevated CRP [29,30] and higher fecal calprotectin [29].

A post hoc analysis of the SERENE CD and UC RCTs identified increased body weight,
lower baseline albumin and immunogenicity as variables associated with higher drug
clearance [29]. Other factors associated with accelerated adalimumab clearance were UC
and elevated baseline fecal calprotectin and CRP levels. The PK analysis of the IMAgINE-
1 RCT showed that increased body weight, higher baseline CRP and lower baseline albumin
levels were associated with a greater clearance of adalimumab in pediatric CD [30]. In a
prospective multicenter study, positive ADAs increased the clearance of a typical patient
with CD from 0.330 L/d to 0.525 L/d [26]. Similarly, another study showed a four-fold
increase in adalimumab clearance in the presence of ADAs in patients with CD [27].

2.3. Certolizumab Pegol

Variables associated with a higher clearance of certolizumab pegol in patients with
CD include increased body weight, lower albumin, immunogenicity and elevated CRP
(Figure 1) [31,32].
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In a certolizumab pegol PK modeling study, body weight (46.8–100.5 kg) increased
the median clearance from 82 to 120%; albumin (32–48 g/L) decreased drug clearance
from 123 to 85%; CRP (0.5–54.0 mg/L) increased the median clearance from 83 to 113%;
and positive ADAs increased the median clearance by 142–174% [31]. A PK analysis on
phase 2 and 3 certolizumab pegol clinical trials demonstrated that the predicted baseline
certolizumab pegol clearance of ≥0.5 L/d was associated with a higher probability of a
sub-therapeutic drug concentration at week 6 [32]. The same study using the PRECiSE
1 and 2 RCTs datasets identified a baseline certolizumab pegol clearance associated with
composite remission (CDAI ≤ 150 and fecal calprotectin concentration ≤ 250 µg/g) at both
week 6 [odds ratio (OR): 0.92; 95% confidence interval (CI): 0.87–0.96] and week 26 (OR:
0.93; 95%CI 0.88–0.97) [32].

2.4. Golimumab

Limited data show that the factors associated with a higher golimumab clearance in
patients with UC include increased body weight, lower albumin, immunogenicity, previous
biological therapy and a lack of concomitant methotrexate use (Figure 1) [33,34].

A population PK model developed on pooled data from studies regarding adults
(NCT00487539 and NCT00488631) and children with moderate-to-severe UC (NCT 01900574),
as well as children with polyarticular juvenile idiopathic arthritis (NCT01230827), showed
that golimumab clearance increased with body weight and immunogenicity, while the
clearance decreased with higher baseline albumin and concomitant methotrexate. Pa-
tients receiving methotrexate had a 17% lower clearance compared to those on golimumab
monotherapy, and positive ADAs were associated with a 21% higher drug clearance [34].
In the same line, in a PK study of 56 patients with moderate-to-severe UC, golimumab
clearance was 31% higher when ADAs were detected [33].

2.5. Vedolizumab

Several factors have been identified to accelerate vedolizumab clearance in patients
with IBD; the most important ones being increased body weight, lower albumin and
immunogenicity (Figure 1) [35–40]. Other factors that can lead to a high clearance include
prior biological therapy [36,38,39], older age [36], and higher endoscopic Mayo score [35],
as well as elevated fecal calprotectin [36,39], CRP [39] and ESR [40].

The prospective multicenter LOVE-CD (NCT02646683) study showed that vedolizumab
clearance was higher in patients with CD with lower serum albumin concentrations (+26%,
from 41 g/L to 28 g/L), presence of ADAs (+89% compared to no ADAs) and previous
exposure to other biologic therapies (+25% compared to no biologic naïve patients) [38]. A
PK study of the GEMINI 1 RCT demonstrated that the vedolizumab clearance was higher
in patients with UC with a history of prior anti-TNF treatment, lower serum albumin and
higher fecal calprotectin [36].

2.6. Ustekinumab

Several factors have been identified to accelerate the ustekinumab clearance in pa-
tients with IBD including increased body weight, lower albumin and immunogenicity
(Figure 1) [41–44]. Other factors that can lead to a high clearance include prior exposure
to biologics [42,43], increasing fat-free mass [43], male gender [42,44], Asian race [42] and
higher CRP levels [42].

Data from four phase IIb/III ustekinumab clinical trials (C0743T26, CNTO1275CRD3001,
CNTO1275CRD3002, CNTO1275CRD3003) demonstrated that increased body weight,
elevated CRP, decreased albumin, TNF antagonist failure status (11% higher in failed
patients), immunogenicity (increased by 13% in positive ADA status), sex (17% higher in
males) and race (14% higher in Asian compared to non-Asian races) were associated with a
higher clearance in CD [42]. In a PK analysis of UNIFI (NCT02407236), clearance increased
non-linearly with body weight in patients with UC [44]. Moreover, a higher ustekinumab
clearance was associated with lower albumin, male sex and immunogenicity [44].
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2.7. Risankizumab

A PK analysis from a phase I study in healthy participants (NCT05305222) and phase
II and III studies in CD (NCT02031276, ADVANCE, MOTIVATE and FORTIFY) identified
increased body weight, decreased albumin, increased fecal calprotectin, corticosteroid use,
increased creatinine clearance and male gender as variables associated with higher risak-
inumab clearance (Figure 1) [45]. Neutralizing antibodies and ADAs were not identified as
significant covariates for risankizumab clearance [45].

2.8. Mirikizumab

A PK analysis of three RCTs (NCT02589665, NCT03518086, NCT03524092), including
1362 patients with UC, identified increased body weight and decreased albumin as factors
associated with higher mirikizumab clearance (Figure 1) [46].

3. Association of Clearance with Therapeutic Outcomes

There is cumulating evidence suggesting that a higher clearance is associated with
sub-therapeutic drug concentrations and unwanted therapeutic outcomes in patients with
IBD, while a lower drug clearance is associated with clinical, biomarker, endoscopic and
deep remission (Table 1).

Regarding infliximab, a PK analysis of the ACT 1 and two RCTs found a linear
relationship between the baseline infliximab clearance and week 8 Mayo endoscopic scores
(MES) (p < 0.001). Based on a receiver operating characteristic (ROC) curve analysis, a
threshold of <0.397 L/d was associated with week 8 MES of ≤ 1 with a sensitivity (SN),
specificity (SP), positive predictive value and area under the curve (AUC) of 75%, 48%,
68% and 0.64, respectively [48]. A prospective study of 31 children with IBD showed
that patients who achieved deep remission at week 24 had a lower infliximab clearance
at week 6 (0.202 L/d vs. 0.269 L/d, p = 0.020) and week 12 (0.215 L/d vs. 0.243 L/day,
p = 0.022) compared to patients not achieving deep remission [52]. In a retrospective study
of patients with acute severe UC, the median baseline calculated clearance was higher in
patients requiring a colectomy at 6 months than in patients without a colectomy (0.733 vs.
0.569 L/d; p = 0.005). An infliximab clearance threshold of 0.627 L/d identified patients
who required a colectomy with 80% SN and 82.8% SP (AUC: 0.80) [47]. A multivariable
analysis identified the baseline infliximab clearance as the only factor associated with
colectomy [47]. A retrospective study of 36 patients with corticosteroid-refractory acute UC
showed that the infliximab clearance increased over time in those requiring a colectomy [14].
A prospective study by Peticollin et al. aiming to explore the link between PK parameters
and the probability of relapse after de-escalation of infliximab therapy in patients with IBD
showed that a drug clearance higher than 0.320 L/d at the time of infliximab de-escalation
was associated with a shorter time to relapse [17].

There are only limited data regarding the association of adalimumab clearance with
clinical outcomes in patients with IBD (Table 1). A recent retrospective cohort study
including patients with CD showed that the median clearance was lower in patients
achieving endoscopic remission as compared to those with persistent active endoscopic
disease (0.247 L/d vs. 0.326 L/d, p < 0.01) [50]. Of note, there was no significant difference
in the median adalimumab concentration between patients with endoscopic remission
compared to those without (9.3 µg/mL vs. 11.7 µg/mL), implying that drug clearance may
be a more superior PK measure than drug concentration to predict outcomes and a better
reflection of inflammatory burden than drug concentration. While highly correlated with
one another, clearance performed better than drug concentration alone with respect to all
investigated outcomes based on the higher AUC in the ROC curve analysis [50].

Regarding the association of vedolizumab clearance with clinical outcomes in patients
with IBD, the ERELATE study showed that baseline vedolizumab clearance thresholds
of <0.17 L/d and <0.16 L/d were associated with clinical and deep remission at week
52, respectively [51]. The same study showed that clearance in the lower quartiles was
associated with higher rates of favorable therapeutic outcomes, including clinical and
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deep remission assessed either at week 14 or week 52 [51]. In a propensity-score-based
case-matching analysis using data from the GEMINI 1, the RCT clinical response and
remission rates at week 14 were 26.6% and 5.9%, respectively, in the highest vedolizumab
clearance quartile (0.23 to <0.55 L/d) compared to 65.5% and 35.7, respectively, in the
lowest vedolizumab clearance concentration quartile (0.03 to <0.14 L/d) at week 6 [36]. In
a prospective multicenter study in children with IBD, starting with a vedolizumab baseline
clearance of less than 0.161 L/d predicted a fecal calprotectin remission (<250 µg/g) at the
end of the induction [40].

Currently, there are no data available regarding the association of ustekinumab,
mirikzumab or risankizumab clearance with therapeutic outcomes in patients with IBD.

4. Clearance Monitoring and Model Informed Precision Dosing

The optimal dose of a biologic is not the same for every patient with IBD due to
the high interindividual variability in the monoclonal antibodies’ PK, and one size does
not fit all [3]. Clinical decisions based only on TDM are rather empirical as they are
based on analog flowcharts or decision trees that refer more to a trial-and-error treatment
optimization, underestimating the true value of TDM [53]. One of the most important
aspects of PK is clearance. Clearance precedes changes in drug concentrations and can
be an early predictor of disease relapse or development of immunogenicity. A recent
study showed that a combination of infliximab concentration and clearance was a better
predictor of CRP-based clinical remission compared to either one alone [54]. Another study
showed that clearance may be even better than drug concentrations for predicting favorable
therapeutic outcomes in patients with CD treated with adalimumab [50].

Baseline clearance, although imprecise as it is estimated only based on patients’ clinical
and demographic data, can be used to identify patients at high risk of underexposure
requiring early proactive TDM and an intensified induction regimen [55]. Drug clearance
during biologic therapy is more accurately estimated as drug concentrations are taken into
account and can be used by an MIPD tool towards a more personalized implementation of
TDM, allowing patient-specific dosing forecasts to accurately achieve a predefined drug
concentration target [55]. Of note, clearance monitoring and MIPD do not require TDM
at a trough but can operate with intermediate drug concentrations. This allows for more
flexibility in the sampling and an extended window of opportunity to adjust dosing. This is
particularly important for reactive TDM, as patients are symptomatic and cannot wait until
the next drug administration for a clinical decision to be made. A recent study showed an
excellent correlation of forecasted infliximab trough concentrations from mid-cycle blood
samples with measured trough specimens [56].

MIPD typically uses Bayesian modeling to estimate clearance based on population PK
modeling and patient data and a software tool to predict the optimal dosing for achieving
a target drug concentration. Preliminary data from retrospective and prospective studies
both in adult and pediatric patients with IBD treated with infliximab support the concept
of MIPD-based proactive TDM for maintaining therapeutic drug concentrations, showing
the benefits of reduced immunogenicity, higher response rates, drug durability and fewer
complications [52,57–63]. Most importantly, the PRECISION RCT (NCT02453776) demon-
strated that a PK dashboard-based proactive TDM of infliximab was superior to standard
dosing for sustaining remission during maintenance therapy [64].

The real-world impact of infliximab precision-guided dosing on management of pa-
tients with IBD was demonstrated by a recent study of 275 patients and 37 providers, where
in 58% of cases, providers modified the treatment plans based on the results of the MIDP,
including dose modifications (41%) and drug discontinuation (8%). Moreover, all providers
reported that MIPD was beneficial in guiding treatment decisions and added more value to
their practice than routine TDM [49]. A physiologically based pharmacokinetic model was
recently used to predict the PK of anti-TNF agents in pregnant women, fetuses and infants
to inform dosing decisions for infliximab, adalimumab and golimumab in pregnancy and
vaccination regimens for infants [65]. However, wide utilization of MIPD in clinical practice
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is hindered by its limited availability, high cost, undetermined optimal TDM sampling
based also on the assay used, the lack of clearly defined targets for drug concentrations
among different IBD phenotypes and the complexity of bedside implementation. Prelimi-
nary data suggest that an MIPD tool can be embedded within the electronic health record,
guiding clinical decisions in real time for pediatric patients with CD treated with infliximab
or adalimumab [10,66].

5. Conclusions

Cumulative data suggest that clearance monitoring of biologics can predict thera-
peutic outcomes in IBD. Preliminary data also demonstrate the importance of clearance
when estimated by MIPD tools for providing dosing recommendations towards treatment
optimization. However, more prospective studies are needed to establish the role of MIPD
of biologics in IBD and to investigate the efficacy of a novel therapeutic strategy that in-
cludes the combination of MIPD-based proactive TDM and pharmacodynamics monitoring.
The ongoing RCTs TITRATE (NCT03937609), MODIFI (NCT04982172), REMODEL-CD
(NCT05660746) and OPTIMIZE (NCT04835506) will shed more light on the role of MIPD of
infliximab in IBD. Future perspectives regarding the use of MIPD include the incorporation
of additional factors such as visceral adipose tissue, human leukocyte antigen haplotypes
or drug concentration at the site of inflammation that could increase the accuracy of the
estimated clearance and the dosing predictions.
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