
Citation: Ahsan, H.; Malik, S.I.; Shah,

F.A.; El-Serehy, H.A.; Ullah, A.; Shah,

Z.A. Celecoxib Suppresses NF-κB

p65 (RelA) and TNFα Expression

Signaling in Glioblastoma. J. Clin.

Med. 2023, 12, 6683. https://

doi.org/10.3390/jcm12206683

Academic Editor: Chunsheng Kang

Received: 2 June 2023

Revised: 13 July 2023

Accepted: 3 August 2023

Published: 23 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Celecoxib Suppresses NF-κB p65 (RelA) and TNFα Expression
Signaling in Glioblastoma
Hina Ahsan 1,2, Shaukat Iqbal Malik 1,*, Fawad Ali Shah 3 , Hamed A. El-Serehy 4 , Amin Ullah 5,6

and Zafar Abbas Shah 7

1 Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences,
Capital University of Science and Technology (CUST), Islamabad 44000, Pakistan; hina.ahsan@riphah.edu.pk

2 Riphah Institute of Pharmaceutical Sciences Islamabad, Riphah International University,
Islamabad 44000, Pakistan

3 Swat College of Pharmaceutical Sciences, Swat 19200, Pakistan; fwd_shah@yahoo.com
4 Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;

helserehy@ksu.edu.sa
5 Department of Health and Biological Sciences, Abasyn University Peshawar, Peshawar 25000, Pakistan;

amin.ullah@abasyn.edu.pk
6 Institute of Pathology, University Hospital of Cologne, 50923 Cologne, Germany
7 Department of Bioinformatics, Hazara University, Mansehra 21120, Pakistan
* Correspondence: drshaukat@cust.edu.pk or dbs183002@cust.pk

Abstract: Background: Glioblastoma (GBM) harbors significant genetic heterogeneity, high infiltra-
tive capacity, and patterns of relapse following many therapies. The expression of nuclear factor
kappa-B (NF-κB p65 (RelA)) and signaling pathways is constitutively activated in GBM through
inflammatory stimulation such as tumor necrosis factor-alpha (TNFα), cell invasion, motility, ab-
normal physiological stimuli, and inducible chemoresistance. However, the underlying anti-tumor
and anti-proliferative mechanisms of NF-κB p65 (RelA) and TNFα are still poorly defined. This
study aimed to investigate the expression profiling of NF-κB p65 (RelA) and TNFα as well as the
effectiveness of celecoxib along with temozolomide (TMZ) in reducing the growth of the human
GBM cell line SF-767. Methods: genome-wide expression profiling, enrichment analysis, immune
infiltration, quantitative expression, and the Microculture Tetrazolium Test (MTT) proliferation assay
were performed to appraise the effects of celecoxib and TMZ. Results: demonstrated the upregulation
of NF-κB p65 (RelA) and TNFα and celecoxib reduced the viability of the human glioblastoma cell
line SF-767, cell proliferation, and NF-κB p65 (RelA) and TNFα expression in a dose-dependent
manner. Overall, these findings demonstrate for the first time how celecoxib therapy could mitigate
the invasive characteristics of the human GBM cell line SF-767 by inhibiting the NF-κB mediated
stimulation of the inflammatory cascade. Conclusion: based on current findings, we propose that
celecoxib as a drug candidate in combination with temozolomide might dampen the transcriptional
and enzymatic activities associated with the aggressiveness of GBM and reduce the expression of
GBM-associated NF-κB p65 (RelA) and TNFα inflammatory genes expression.

Keywords: glioblastoma; gene expression genes; tumor necrosis factor; survival analysis; celecoxib;
temozolomide

1. Introduction

High-grade gliomas constitute the majority of malignant brain tumors and are known
to develop from mutant glial or glial progenitor cells [1]. The most prevalent and deadly
primary brain tumor, glioblastoma (GBM), accounts for 50% of all gliomas [2,3]. Because
the overall survival, tumor cell invasion, and therapeutic response for GBM are so dismal,
molecular variables likely play a crucial role in the available therapy options [4]. Genome-
scale gene expression profiling enables the molecular analysis of intratumor variability,
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revealing molecular signatures reflecting underlying pathogenic mechanisms and molec-
ular traits that may be related to survival [5]. The evolutionarily conserved transcription
factors known as nuclear factor kappa B (NF-κB p65 (RelA)) proteins coordinate several
important biological processes, including immunity, inflammation, cell death, and survival.
An evolutionarily conserved Rel homology domain is shared by the five mammalian family
members RelA (p65), RelB, c-Rel, NFKB1 (p105/p50), and NFKB2 (p100/p52), which pro-
mote DNA binding and dimerization with other NF-κB subunits [6,7]. It has been suggested
that targeting NF-κB p65 (RelA) increases survival by promoting a tumor microenviron-
ment (TME) that is less immunosuppressive and more receptive to immunomodulation.
Tumor necrosis factor-alpha (TNFα) and the accompanying receptor superfamily have been
linked to the development of GBM, according to a prior study [8]. The pro-inflammatory
cytokine TNFα is linked to both pro- and anti-apoptotic responses through its signaling
pathways [9]. Interestingly, constitutively produced TNFα promotes glioma cell invasion
and motility by activating NF-κB p65 (RelA) [10]. Radiation therapy, chemotherapy, and
surgical resection are the current therapeutic treatments that are most commonly used to
treat GBM. However, the basic characteristic of GBM shows that cells typically invade the
brain parenchyma. Additionally, one characteristic of GBM cells is their chemoresistance to
TMZ. To combat the spread and invasion of tumor cells in GBM, more effective curative
regimens are urgently needed. The prognosis for patients receiving the current standard
of care is still quite dismal, with a five-year overall survival rate below 5% [11]. Unfortu-
nately, clinical trials investigating immunotherapies have shown limited success in GBM
patients [12]. Additionally, it has been shown that dysregulation of NF-κB signaling in
human GBM enhances glioma cell survival, proliferation, and chemoresistance. [13]. In this
regard, therapeutically disabling NF-κB p65 (RelA) expression and enzyme functioning
seems like a better approach to disrupting the NF-κB p65 (RelA) inflammatory signaling
cascade by preventing the spread and invasion of tumor cells. According to multiple inves-
tigations, celecoxib suppresses the development of tumor cells by interacting with several
Cyclooxygenase-independent (COX) targets [14]. To treat recurrent malignant gliomas,
celecoxib-based treatment therapies are in clinical trial phase I and phase II studies, and
it has been determined that such combinations are safe [15,16]. Here, we hypothesized
that celecoxib-mediated antineoplastic responses in GBM may prevent NF-κB p65 (RelA)
activation due to its various roles in GBM. Celecoxib is a nonsteroidal anti-inflammatory
drug (NSAID) and a selective inhibitor of cyclooxygenase-2 (COX-2). COX-2 is involved in
the production of pro-inflammatory prostaglandins. Prostaglandins can activate the NF-κB
pathway. Celecoxib inhibits COX-2 and prostaglandin synthesis. It could interfere with
NF-κB activation downstream of COX-2 [13].

In this investigation, a comparative study of the mRNA expression of NF-κB p65
(RelA) and TNFα in both 33 brain tumor samples and TCGA datasets has revealed that
the transcriptional activity of these genes is significantly higher in tumor samples than
in normal samples. NF-κB p65 (RelA) and TNF-α were discovered to be significantly
expressed in tumor samples of various cancers through pan-cancer expression analysis.
This was followed by an investigation of these genes’ expression in the TCGA GBM datasets,
and clinical biopsies of GBM patients confirmed the high expression of these respective
genes. Additionally, functional enrichment analysis and immune infiltration were also
carried out. After investigating the cytotoxic effects of TMZ and celecoxib in a GBM SF-767
cell line, the gene expression level of candidate genes was analyzed in a dose-dependent
manner for both drugs to study their anti-inflammatory potential. Celecoxib’s impact on
tumor cell invasion in glioblastoma by regulating NF-κB activation and mRNA expression
has not been the subject of any studies to date. The aim of this study was to assess the
celecoxib effect on invasive characteristics of the human glioblastoma cell line SF-767 by
modifying the NF-κB cascade and NF-κB p65 (RelA) transcriptional levels. Our research
findings provided evidence that the antineoplastic activity of celecoxib is mediated via
NF-κB p65 (RelA) signaling suppression in glioblastoma. The current investigation can
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act as a springboard to examine the effects of radiation, TMZ, and celecoxib combination
therapy in GBM patients.

2. Materials and Methods
2.1. Bioinformatics Analysis

The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases,
a data collection and analysis repository on cancer [17], are accessible at https://portal.
gdc.cancer.gov (accessed on 19 March 2022). The databases were used to ascertain the
expression levels of NF-κB p65 (RelA) and TNFα in high-grade glioma (DNA and mRNA)
by using the following criteria: p-value = 0.05, fold change 2, and top 10% gene rank for all
data types. Using the TCGA and GTEx datasets and the integration of the c-Bioconductors
R packages (Bioconductor version 3.17 software packages) with servers, i.e., the GEPIA
platform GEPIA2 2019 Release notes (http://gepia.cancer-pku.cn/ (accessed on 19 March
2022)), gene expression profiles of several cancer types and pairs of normal samples were
created [18]. By examining 9736 tumors and 8587 normal RNA sequencing samples, which
were gathered from the TCGA and GTEx programs, the GEPIA web server GEPIA2 (2019
release note) (http://gepia.cancer-pku.cn (accessed on 19 March 2022)) was used to obtain
the gene expression profile of NF-κB p65 (RelA) and TNFα among the majority of cancer
types. Then, by contrasting it to 207 normal samples and 163 tumors from TCGA and GTEx,
it was possible to assess the pattern of NF-B p65 (RelA) and TNFα expression in GBM.
Furthermore, we examined the relationship between overall survival (OS) for GBM patients
and the differential expression of NF-κB p65 (RelA) and TNFα in pan cancer analysis.
p < 0.05 was regarded as statistically significant for the survival curve. The expression
of NF-κB-p65 (RelA) and TNFα in GBM was utilized to create the overall survival (OS)
curves; patients with a high level of expression (>median expression value) and patients
with a low level of expression (<median expression value) were defined. The Kaplan–Meier
(KM) method was used to evaluate overall survival using a log-rank test (statistically
significant: p-value < 0.05) and to determine the hazards ratio (HR) with a 95% confidence
interval [19]. In order to validate patient survival statistics, through UALCAN, we also
ascertained the amounts of NF-κB p65 (RelA) and TNFα gene expression in GBM and
also determined the functionality of genes that affected the patients’ survival times. We
examined the NF-κB-p65 (RelA) and TNFα association profiles in healthy brain tissue and
GBM samples using the UALCAN database (http://ualcan.path.uab.edu (accessed on 19
March 2022)). We discovered a connection between candidate gene expression levels and
the grade of GBM tumors. Kaplan–Meier survival analysis was employed by UALCAN
and provides survival curves, log-rank p-values, and HRs with 95% confidence intervals.
The statistical significance for the survival curve was set at p < 0.05 [20]. TPM normalization
for gene expression analysis was utilized by GEPIA and UALCAN [21,22] and adjusted
by gene expression values by accounting for the total number of reads and the transcript
length, allowing for accurate comparisons of gene expression levels across samples [23,24].
GeneMANIA was used in this study to analyze the networks and roles of the NF-κB p65
(RelA) and TNF α proteins. Through the GeneMANIA network, we accessed NF-κB p65
(RelA) and TNFα interactive genes [25]. Following that, functional studies of these genes
were performed using FunRich and Metascape [26]. The expression levels of NF-κB p65
(RelA) and TNFα in GBM were measured using TIMER, and the relationship between these
expression levels and immune infiltration levels in GBM was assessed [27].

2.2. Ethics Statement

The study was carried out in accordance with the Declaration of Helsinki, and it was
approved by the Capital University of Science and Technology (CUST), Islamabad, Pakistan
(Ref: BI and BS/ERC/19-2 and 23 September 2019). All the patients gave their verbal and
written agreement to the use of their data for research purposes. The biopsy samples
of 33 patients with glioblastoma (23 men, 10 women, median age 50 ± 13 years) who
underwent brain surgery between January 2018 and December 2021 were obtained from
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various surgery departments of public sector tertiary care hospitals in Pakistan. None of the
study subjects had received any radiotherapy or chemotherapy prior to sample collection.

Tissue Samples

The samples were initially obtained from patients primarily from the affected brain
regions, specifically the frontal and temporal sites of the primary tumor, through surgical
resections. The collection of tumor tissue samples was conducted by considering variations
in cellularity and the presence of necrotic areas in patients with glioblastoma multiforme
(GBM). Tumor-associated normal tissues (TANT) were typically obtained from the region
adjacent to the tumor mass [28,29]. The minimum weight required for processing, as
per internal guidelines, includes 125 mg of tumor tissue and 50 mg of adjacent normal
tissue. Volumetric measurement was utilized to assess the size of GBM tumor samples.
The tissue specimens were sectioned into small fragments (approximately 1–2 mm3 in size)
through the utilization of a sterile scalpel. These fragments were subsequently subjected to
preservation techniques involving formalin fixation and later paraffin embedding (FFPE)
for the purpose of histopathological examination and immunohistochemistry. Additionally,
the tissue fragments were appropriately stored at ultra-low temperatures (−80 ◦C) in order
to maintain the integrity of nucleic acids and proteins and prevent degradation [30,31].

2.3. Quantitative qRT-PCR Analysis

In order to reduce degradation by ubiquitous DNases and RNases, bio specimens
of glioblastoma designated for genomic analysis were microdissected and kept in the
nucleic acid stabilizing reagent RNA later (Sigma-Aldrich, Cat No. R0901, Saint Louis, MI,
USA). Specimens were immediately frozen in liquid nitrogen after ablation and stored at
−80 ◦C until RNA extraction. Total RNA was extracted using the TriZol reagent (Thermo
Fisher Scientific, Cat No, 15596018, Carlsbad, CA, USA). Superscript II reverse transcriptase
(Invitrogen, Paisley, UK) was used to create cDNA with the cDNA synthesis kit (Thermo
Fisher Scientific, Cat No. K1622, Vilnius, Lithuania), and the SYBR® Green Master Mix kit
(Maxima SYBR Green/ROX qPCR Master Mix (2×) (Thermo Fisher Scientific Cat No. K0221
Cat# K0221, Vilnius, Lithuania) was utilized for qPCR to amplify the particular products of
PCR of all three genes presented in this work (Thermo Scientific, Carlsbad, CA, USA). Using
a Nano Drop One spectrophotometer from Thermo Fisher Scientific, the purity of each RNA
sample was determined. Reactions for each sample were performed in triplicate using a
PCR protocol. Following 3 min of initial denaturation at 95 ◦C, the cycling conditions were
40 cycles consisting of denaturation at 95 ◦C for 10 s followed by annealing and extension
at 60 ◦C for 30 s. The results were presented as CT values, defined as the threshold PCR
cycle number at which an amplified product was first detected. The average CT value was
calculated for both NF-κB p65 (RelA) and TNFα, and the ∆CT value was determined as
the mean of the triplicate CT values. The 2−∆∆CT method was used to analyze the relative
changes in gene expression [32,33]. The primers used for TNFα were (Forward Primer
CCTCTCTCTAATCAGCCCTCTG and Reverse Primer GAGGACCTGGGAGTAGATGAG)
and for NF-κB p65 (RelA) (Forward Primer AGGCAAGGAATAATGCTGTCCTG and
Reverse Primer ATCATTCTCTAGTGTCTGGTTGG), and for β–actin (Forward Primer
CATGTACGTTGCTATCCAGGC and Reverse Primer CTCCTTAATGTCACGCACGAT) [34,35].

2.4. ELISA

Prior to protein extraction, high-grade glioma biopsy samples were placed in sterile
containers, frozen, and kept at −80 ◦C. The supernatants were slowly defrosted on ice. A
total of 100 µL of supernatant was measured using 96-well enzyme-linked immunosorbent
assays (ELISA). Protein-specific ELISA kits (Abcam Elisa kits USA) were used to measure
the levels of the genes TNFα and NF-κB p65 (RelA) in accordance with the manufacturer’s
instructions. The known concentrations of TNFα and NF-κB p65 (RelA) were added
to the ELISA plate. The OD values obtained from the standards were used to plot a
calibration curve, which interpolates protein concentrations based on their OD values.
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Blank correction was used to correct background noise, and OD values were obtained for
each well of the ELISA plate at 450 nm as per the guidelines. Sample processing involved
homogenization of glioblastoma tissue samples, extracting proteins of interest, incubation,
washing, detection, and substrate addition. The specific details of the ELISA test procedure
were followed by the specific kit and manufacturer’s instructions (Abcam Elisa Kits, Boston,
MA, USA). Cytokine levels were assessed using the appropriate ELISA MAXTM Deluxe Set
in accordance with the manufacturer’s guidelines (TNFα ELISA Kit, Cat. No. (ab181421),
NF-κB p65 (RelA) ELISA Kit, Cat No. (ab176648)). The specific binding optical density at
450 nm was determined by a spectrophotometer [36].

Statistics

The results of the RT-PCR and ELISA data are expressed as the mean ± SD from at
least three independent experiments for statistical analysis and were analyzed by GraphPad
Prism 9 (Prism 9.5.0) software. The chi-square test and the two-tailed Student’s t-test were
used to compare the two groups’ statistical significance. The D’Agostino and Pearson tests
were used for the normality assessment.

In vitro study of NF-κB p65 (RelA) and TNFα in the SF-767 human glioblastoma
cell line.

2.5. Cell Line and Culture Conditions

Human glioma cell line SF-767 was cultivated as monolayers in 75 cm2 tissue culture
flasks in Iscove’s Modified Dulbecco’s Medium (IMDM), supplemented with 10% fetal
bovine serum (FBS), 1% glutamine, 100 IU/mL penicillin, and 100 µg /mL streptomycin
combination. Cell cultures were subcultured three times weekly and kept at 37 ◦C in a
humidified 5% CO2 environment. Utilizing cell cultures at low passages, each assay using
glioma cell lines was carried out separately in triplicate.

2.6. MTT Cellular Proliferation Assay

The antiproliferative impact of the therapy was assessed using the MTT assay (Roche
Diagnostic GmbH, Basel, Switzerland). The yellow tetrazolium salt MTT [3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl tetrazolium bromide] can only be broken down into purple formazan
crystals by metabolically active cells. Three repetitions of 10,000 cells/well in 200 µL
medium were used to seed the 96-well culture plates. Approximately 10 µL of MTT
reagents were added to each well following each treatment, and the plates were then
incubated at 37 ◦C for 4 h. A spectrophotometer set at λ = 595 nm was used to measure
the optical density (OD) after the cells had been lysed with 100 µL of solubilization buffer.
Results are given as percentages compared to the control. The mean values acquired from
the cell viability studies were statistically compared using the Student’s t-test in Microsoft
Excel with one-tailed distributions. The analysis of variance (ANOVA) and t-test were used
to examine the significance of differences between the study groups. Statistics were judged
significant for values with p < 0.05. Results are presented as the mean standard deviation
(SD) for all data. Each study was carried out in triplicate.

2.7. Quantitative Expression Analysis by qRT-PCR

To isolate total RNA, SF-767 cell line cells were treated with 50 µM, 100 µM, and
150 µM TMZ and celecoxib for 48 h in six-well plates. Trizol was used to extract the
total RNA from SF-767 cell line cultures that had undergone control and stress. Using a
nanodrop spectrophotometer, the RNA quantity was calculated at 260 nm absorbance. The
RNA was cleaned in 1 mL of ethanol before being dissolved in 50 µM of water treated
with 0.1% Diethyl Pyrocarbonate (DEPC) and stored at −80 ◦C until usage. According to
the instructions provided by the manufacturer, 1 µL of RNA was reverse transcribed into
cDNA using the RevertAidTM first-strand synthesis kit (Thermo Scientific, Cat No. K1622).
As previously mentioned, the sequences of the forward and reverse primers (0.5 µM each)
employed in the current study are listed below. The final reaction volume of 20 µL received
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the addition of the template cDNA (2 µL). qRT-PCR was carried out using a StepOne
Plus thermocycler from Applied Biosystems and SYBER Green PCR Master Mix from
Thermofisher (catalogue number K0221). Selected genes (NF-κB p65 (RelA) and TNFα) had
their transcriptome expressions adjusted to the internal control GAPDH gene. All real-time
PCR assays were carried out in triplicate, and the results were presented as the mean of
three independent experiments to detect any significant differences between cells treated
with TMZ, celecoxib, and untreated control cells. The results of each experiment, presented
as the mean standard deviation, were carried out at least three times. Statistical evaluations
were performed using GraphPad Prism 9 (Prism 9.5.0) software (GraphPad Software Inc.,
La Jolla, CA, USA). Data analysis employed one-way analysis of variance (ANOVA). The
significance criterion for differences between means was set at p < 0.05.

3. Results
3.1. Expression Levels of NF-κB p65 (RelA) and TNFα in Different Cancer Types

We found significant differences in the NF-κB p65 (RelA) and TNFα gene expression
profiles between tumor and matched normal tissues using the TCGA database, which
contained total unique analyses of about 163 tumor and 207 normal tissue samples. Con-
trary to normal tissues, higher levels of NF-κB p65 (RelA) expression were found in the
following cancer types: CHOL, cholangiocarcinoma; ESCA, esophageal carcinoma; DLBC,
lymphoid neoplasm diffuse large B-cell lymphoma; GBM, glioblastoma; HNSC, head and
neck squamous cell carcinoma; KRIC, kidney renal clear cell carcinoma LGG, brain lower
grade glioma; LIHC, liver hepatocellular carcinoma; MESO, mesothelioma; OV, ovarian
serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; TGCT, testicular germ cell
tumors; SARC, sarcoma; STAD, stomach adenocarcinoma; THYM, thymoma; and THCA,
thyroid carcinoma; conversely, lower levels of NF-κB p65 (RelA) expression were found
in the following cancer types: ACC, adrenocortical carcinoma; BLCA, bladder urothelial
carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma;
and COAD, colon adenocarcinoma (Figure 1a).

The expression of NF-κB p65 (RelA) in all tumor samples and paired normal tissues
was also represented by a bar plot. The height of the bar represents the median expres-
sion of certain tumor types or normal tissue in ACC, adrenocortical carcinoma; BRCA,
breast invasive carcinoma; CHOL, DLBC, GBM, KICH, kidney chromophobe; KIRP, kidney
renal papillary cell carcinoma; LGG, LUAD, lung adenocarcinoma; OV, PCPG, pheochro-
mocytoma and paraganglioma; READ, rectum adenocarcinoma; SKCM, skin cutaneous
melanoma; TGCT, testicular germ cell tumor; and THYM, UCS, uterine carcinosarcoma
(Supplementary Figure S1).

The NF-κB p65 (RelA) sequencing data by GEPIA also revealed increased expression
in GBM transcripts per million, as demonstrated in Figure 1b. Similar to this, higher
levels of TNFα expression were seen in the following cancer types: BLCA, BRCA, CESC,
CHOL, COAD, DLBC, ESCA, GBM, HNSC, KRIP, KRIC, LAML, LGG, LIHC, MESO, OV,
PAAD, PCPG, PRAD, READ, SARC, STAD, TGCT, UCEC, and UCS, while lower levels
of TNFα expression were seen in the following cancer types (Figure 1c). Similarly, TNFα
showed differential expression among different cancers through a bar plot (Supplementary
Figure S2). Although TNFα expression was increased in a number of malignancies, it was
shown that glioblastoma had the highest amount of enhanced TNFα expression. Then,
using GEPIA, we examined the TNFα RNA sequencing data. The highest TNFα transcript
expression levels per million were seen in GBM compared to matched normal tissues
(Figure 1d). Additionally, GBM had the highest levels of NF-κB p65 (RelA) gene expression
according to the TIMER database (Figure 1e). The GBM showed differential TNFα gene
expression levels in the TIMER database (Figure 1f). These results demonstrated that the
expression of NF-κB p65 (RelA) and TNFα in GBM was much higher than in normal tissues.
As a result, it was worthwhile to investigate further the link between NF-κB p65 (RelA)
and TNFα and related genes in the network of GBM since it may have a possible diagnostic
value for GBM.
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Figure 1. Expression levels of NF-κB p65 (RelA) and TNFα in various human cancers. (a) Expression
profiles of NF-κB p65 (RelA) in tumors and paired normal tissue samples from the TCGA database in
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different cancer types. The NF-κB p65 (RelA) gene expression profiles across all tumor samples and
paired normal tissues are shown in a dot plot, and each dot represents the expression profile in one
sample. (b) Expression profiles of the NF-κB p65 (RelA) transcript (box plot); |log2FC| = 1 and
* p < 0.01 in GBM and paired normal tissues from the GEPIA database. (c) The expression of TNFα
in all tumor samples and paired normal tissues (dot plot). Each dot represents the expression of a
sample. (d) Expression profiles of TNFα transcript (box plot); |log2FC| = 1 and * p < 0.01 in GBM
and paired normal tissues from the GEPIA database. (e) Expression levels of the NF-κB p65 (RelA)
gene in different cancer types compared to corresponding normal tissues from the TIMER database.
Distributions of gene expression levels are displayed using box plots, with the statistical significance
of differential expression evaluated using the Wilcoxon test. * p < 0.05, ** p < 0.01, and *** p < 0.001.
(f) Expression levels of the TNFα gene in different cancer types compared to corresponding normal
tissues from the TIMER database by using the Wilcoxon test. * p < 0.05, ** p < 0.01, and *** p < 0.001.

3.2. NF-κB p65 (RelA), TNFα and Survival in GBM

We assessed the predictive significance of NF-κB p65 (RelA) and TNFα in cancer using
GEPIA to determine whether the expression levels of these proteins are connected to the
prognosis of cancer patients. Although NF-κB p65 (RelA) and TNFα expression levels
varied depending on the type of tumor, we found that the GBM exhibited an association
between NF-κB p65 (RelA) and TNFα expression levels and overall survival time (OS).
Furthermore, the result demonstrates that GBM with overexpression of NF-κB p65 (RelA)
had a poor OS prognosis, and low levels of NF-κB p65 (RelA) had a higher median survival
but were not statistically significant (Figure 2a). Similarly low levels of TNFα also showed
higher median survival but were not statistically significant (Figure 2b). These genes were
further investigated because of their trend towards poor survival with higher marker
expression. Thus, we used global databases to compare and investigate the connection
between these genes and GBM. NF-κB p65 (RelA) and TNFα overexpression were linked
to poor survival outcomes in GBM patients, according to data from the UALCAN database,
respectively. (Figure 2c,d), which, for the most part, coincided with the results from the
GEPIA2 databases.

3.3. PPI Network and Functional Enrichment Analyses

The NF-κB p65 (RelA) and TNFα proteins showed functional networks in PPI, which
were primarily enriched in various functions. Metascape analyzed the biological functions
of the NF-κB p65 (RelA) and TNFα interaction genes. We discovered that these genes
strongly influenced response to stimuli, metabolism, biological regulation, the immune
system, multicellular organismal processes, cellular component organization or biogenesis,
and developmental processes (Figure 3a,b). The biological functions and gene interactions
of NF-κB p65 (RelA) and TNFα were also assessed by GeneMANIA (Figure 3c,d), and the
results were quite comparable to those of Metascape. This provided evidence of the molecu-
lar processes connected to the interaction between NF-κB p65 (RelA) and TNFα genes. The
STRING database has been used to conduct protein-protein interaction enrichment analysis
for each supplied gene list (Figure 3e). The subset of proteins that physically interact with
at least one additional member of the list is found in the resulting network. The Molecular
Complex Detection (MCODE) algorithm 10 has been used to discover densely connected
network components if the network contains between 3 and 500 proteins. The MCODE
networks for the specific genes MCODE 1 p-65 RELA and MCODE 1 TNF-α have been
compiled and are displayed in (Figure 3f,g). Each MCODE component was subjected to
pathway and process enrichment analysis separately, and the three terms with the highest
p-values were kept as the functional descriptions of the associated components, as indicated
in Table 1 underneath the relevant network plots in Figure 3f,g.
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 Figure 2. Comparisons of the effects of high and low expression levels of NF-κB p65 (RelA) and

TNFα on the survival time of GBM patients using the GEPIA database. (a) Elevated expression levels
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of NF-κB p65 (RelA) were associated with poor OS; low NF-κB p65 (RelA) has a higher median
survival in GBM patients. (b) Low expression of TNFα alpha has a higher median survival in GBM
patients but is not statistically significant. The 95% CI is shown by the dotted lines in both (a,b).
(c) Effect of NF-κB p65 (RelA) expression levels in UALCAN on the survival of GBM patients.
(d) Effect of TNFα expression levels in UALCAN on the survival of GBM patients.
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Figure 3. Proteinprotein interaction and functional enrichment analysis. (a) Clustered enrichment 
ontology categories (GO and KEGG terms) across the input gene NF-κB p65 (RelA), colored by p-
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Figure 3. Proteinprotein interaction and functional enrichment analysis. (a) Clustered enrichment
ontology categories (GO and KEGG terms) across the input gene NF-κB p65 (RelA), colored by
p-values by Metascape. (b) Metascape also constructed biological processes from the histogram
of TNFα. (c–e) Gene interaction of NF-κB p65/RelA and TNFα by GeneMANIA and STRING.
(f) The main biological processes in MCODE1 of NF-B p65 (RelA) involving the interacting genes
are depicted using a cluster analysis from Metascape. In Metascape, MCODE complexes can be
recognized automatically based on their IDs. Network representation of enriched biological pathways
facilitates the connections between various biological processes. (g) Network of the enriched term
of TNFα that was entered into this system for analysis. A circle node represents each term, and the
node size is directly proportional to the number of input proteins grouped into each term. The node’s
color denotes its cluster identity. GO terms with a similarity score >0.3 are connected by an edge, and
the edge thickness represents the similarity score.

3.4. Correlation between Expression Levels and Immune Cell Infiltration Levels

We used the TIMER web server with the integration of EPIC, CELL, CIBERSORT,
and QUANTISEQ to visualize the correlation between NF-κB p65 (RelA) and TNFα gene
expression levels and immune infiltration levels in GBM. We found that the expression
levels of TNFα were positively correlated with B cells, CD8 + T cells, CD4+, monocyte,
macrophages, myeloid dendritic cells, and NK cell infiltration levels in GBM, and TNFα
was also negatively correlated with Treg cells (Figure 4a). Similarly, NF-κB p65 (RelA) was
positively correlated with CD4+, Treg cells, myeloid dendritic cells, B cells, Macrophage
M0, NK cells, and neutrophils, and NF-κB p65 (RelA) was also negatively correlated with
CD8 + T cells and Macrophage M2, as shown in Figure 4b.
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Table 1. MCODE components of NF-κB p65 (RelA) and TNFα by p-value as the functional description
of the corresponding component network plots.

MCODE GO Description Log10(P)

MCODE_1
p-65 RELA GO:1902895 Positive regulation of miRNA

transcription. −8.3

MCODE_1
p-65 RELA GO:2000630 Positive regulation of miRNA

metabolic process. −8.1

MCODE_1
p-65 RELA WP4329 miRNAs involvement in the

immune response in sepsis. −8

MCODE_1
TNFα M128 PID TNF Pathway. −21.9

MCODE_1
TNFα R-HSA-5357905 Regulation of TNFR1 signaling. −21.7

MCODE_1
TNFα R-HSA-75893 TNF signaling. −21.1

3.5. Consistency of mRNA Expression Profiling and Validation in a GBM Patient Sample

To evaluate the potential role of NF-κB p65 (RelA) and TNFα in glioblastoma, we
quantified the expression of NF-κB p65 (RelA) and TNFα in 33 GBM samples. mRNA
and protein expression of NF-κB p65 (RelA) and TNFα were significantly increased in
glioblastoma biopsy samples. We examined the gene expression of targeted genes among
glioblastoma specimen sections within the tumor and tumor-associated normal tissue (TANT).
Tumor-associated normal tissue is obtained from the vicinity of the tumor site and serves
as a comparison or control tissue for studying various aspects of tumor biology, including
gene expression, signaling pathways, and cellular interactions. In the current study, it is
obtained from the region adjacent to the tumor mass. All tissue samples were initially cut
from four regions of the specimen, but only a selection with sufficient RNA quality and
quantity was subjected to RT-PCR gene expression analysis. Normal QQ plots explain the
same distribution and indicate the univariate normality of the dataset. NF-κB p65 (RelA) and
TNFα exhibited increased expression in tumor tissue biopsy samples (Figure 5a,b). These
data are also consistent with ELISA findings, with the indication of a univariate normality
test. Each gene expression fold change FC was computed, and genes with |log2FC| > 2 and
a p-value were identified (adjusted by the false discovery rate (Figure 5c,d)).
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Figure 5. Quantification, expression, and verification of NF-κB p65 (RelA) and TNFα in glioblastoma
patients. (a,b) Elevated expression levels of the two candidate genes in biopsy tissue of glioblastoma.
Distributions of gene expression levels are displayed, with the statistical significance of differential
expression evaluated using the t-test. *** p < 0.001. The values of three biological replicates are shown,
indicating a univariate normality test. The graphs were plotted with the GraphPad Prism 9 (Prism
9.5.0) software. (c,d) An enzyme-linked immunosorbent assay validated the expression of DEGs
in glioblastoma patients with univariate normalization using the t-test. ** p < 0.01 and * p < 0.05,
respectively.

In vitro expression study of NF-κB p65 (RelA) and TNFα in the SF-767 glioblas-
toma cell line after treatment with temozolomide and celecoxib.
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3.6. The Effect of Temozolomide and Celecoxib Treatment on Glioblastoma Cells

The TMZ treatment effects on the glioblastoma SF-767 cell line were evaluated for
48 h at concentrations of 10, 50, 100, 150, and 200 µM. The SF-767 cell line was exposed to
TMZ 10 µM, and following the treatment, the cells were inhibited by 33.1%. A higher TMZ
concentration (200 µM) was more lethal, resulting in 89% of the GBM cells dying following
the treatment. Similarly, after being treated for 48 h with 10 µM of celecoxib, 12.8% of the
cells died. In contrast, after being treated for 48 h with 200 µM of celecoxib, 75% of the
cells died (Figure 6a). The results showed that cell viability decreased while increasing
the concentration and duration of treatment. A higher dose of TMZ resulted in a higher
cytotoxic effect in the MTT assay, as shown in Figure 6a.
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Figure 6. Assessment of cytotoxicity by MTT proliferation assay. The inhibition ratio of GBM cells
after treatment with TMZ and celecoxib at different concentrations for 48 h. (a) Black and red
curve TMZ and celecoxib in a dose-dependent manner. Increasing the concentration of any of these
drugs makes the cytotoxic response more potent. The quantitative analysis of MTT is represented
as the mean ± SD of three independent experiments. when compared to the untreated control.
(b) Quantitative RT-PCR analysis of mRNA expression levels of the inflammatory marker NF-κB p65
(RelA) in the glioblastoma SF-767 cell line treated with TMZ at 50 µM, 100 µM, and 150 µM. The GAPDH
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gene was used as the internal control to normalize the data. IL-1B was used as stress to trigger an
inflammatory cascade. The mRNA expression of genes was computed as a fold change compared to
the control. The data are presented as the mean ± SD of the triplicate tests compared with the control
group (p ≤ 0.05 for each). **** p < 0.0001. (c) Similarly, mRNA expression levels of the inflammatory
marker TNFα in the glioblastoma SF-767 cell line treated with TMZ at 50 µM, 100 µM, and 150 µM.
**** p < 0.0001. (d) Quantitative RT-PCR analysis of mRNA expression levels of NF-κB p65 (RelA)
in the glioblastoma SF-767 cell line treated with celecoxib at 50 µM, 100 µM, and 150 µM. The
GAPDH gene was used as the internal control to normalize the data. *** p < 0.001 and **** p < 0.0001.
(e) Similarly, mRNA expression levels of TNFα in the glioblastoma SF-767 cell line treated with
celecoxib at 50 µM, 100 µM, and 150 µM. ** p < 0.01 and **** p < 0.0001.

Moreover, the expression of inflammatory biomarkers NF-κB p65 (RelA) and TNFα
was studied after treatment with temozolomide and celecoxib. A quantitative RT-PCR
analysis was performed in the SF-767 cell line treated with temozolomide at three concen-
trations (50 µM, 100 µM, and 150 µM) to assess the mRNA expression level of inflammatory
genes (NF-κB p65 (RelA) and TNFα). Pro-inflammatory genes were significantly elevated
in the stress groups after stimulation with IL-1 beta, a potent stimulator of inflammatory
responses. The cells were treated for 48 hrs. Compared to the stress group, the TMZ did not
significantly reduce the expression of NF-κB p65 (RelA) and TNFα in the glioblastoma SF-
767 cell line in a dose-dependent manner (Figure 6b,c). Furthermore, the mRNA expression
level of NF-κB p65 (RelA) and TNFα in the celecoxib-treated SF-767 cell line was studied
at a similar concentration as TMZ. Compared to the stress group, celecoxib significantly
reduced the expression of NF-κB p65 (RelA) and TNFα in the glioblastoma SF-767 cell line
in a dose-dependent manner (Figure 6d,e).

4. Discussion

Glioblastoma (GBM) is an aggressive brain tumor with a more than 90% chance of
recurrence. Determining biomarkers for GBM’s early diagnosis and prognosis is important.
The NF-κB pathway transcription factor NF-κB p65 (RelA) and its related TNFα were
found to be prospective targets in GBM by our comprehensive integrated approach through
bioinformatics and clinical sample analysis. In this study, NF-κB p65 (RelA) and TNFα were
found to be highly expressed in many tumor types, including GBM from global databases.
In vitro glioblastoma’s ability to invade and infiltrate, NF-κB p65 (RelA) and TNFα play
crucial roles, according to a wealth of evidence [37,38]. Therefore, we investigated a variety
of datasets, including the Oncomine, GEPIA, and TIMER databases, to study the relation-
ship between NF-κB p65 (RelA) and TNF-α expression in GBM. Our findings revealed
that NF-κB p65 (RelA) expression levels were comparatively higher in GBM than in other
tumors, while TNFα showed differential expression in GBM and other cancers through
bioinformatics analysis. However, in the case of GBM, various proteins and signaling
pathways are dysregulated, which could lead to NF-κB p65 (RelA) activation. TNFα is
an extremely potent NF-κB p65 (RelA) activator. In the central nervous system (CNS),
astrocytes, microglia, and certain neurons release the pro-inflammatory chemical TNFα.
TNFα may indeed exhibit its effects through two receptors, TNFα receptors 1 and 2 (TNFR1
and TNFR2, respectively) [39]. The majority of cells typically express TNFR1, although
oligodendrocytes and immune cells, particularly microglia, express TNFR2. Additionally,
it was discovered that GBM and its associated endothelial cells expressed higher levels of
TNFR1 compared to normal brain tissues and low-grade gliomas [40]. It is suggested that
TNFα may be a possible diagnostic marker for GBM in response to that NF-κB signaling
cascade. The dysregulation of numerous signaling pathways or growth factors and the
triggering of a pro-inflammatory microenvironment in gliomas may lead to the activation
of NF-κB p65 (RelA) [41,42]. High constitutive NF-κB p65 (RelA) activity is characteristic
of GBM [43].

The impact of NF-κB p65 (RelA) and TNFα expression on the survival time of GBM
patients was then assessed utilizing the UALCAN and GEPIA databases. These results
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revealed that high NF-κB p65 (RelA) and TNFα expressions were independent predictors
of decreased OS for GBM. As in the previous studies, patients with GBM had shorter
survival times due to upregulation of NF-κB p65 (RelA) and TNFα [44]. Nevertheless,
constitutive NF-κB p65 (RelA) activation appears to promote the growth and metastasis of
tumors by a range of mechanisms, including tumor metastasis, apoptosis, cell proliferation,
angiogenesis, and metabolic reprogramming. It has been established that NF-κB p65
(RelA) stimulates the development of an inflammatory milieu that is conducive to the
establishment of cancer [45]. Activation of constitutive NF-κB p65 (RelA) promotes survival
and development in GBM.

These findings imply that these two genes can serve as a significant predictive marker
for people with GBM [46]. Additionally, we used qRT-PCR to reanalyze the NF-κB p65
(RelA) and TNFα gene expression levels and transcripts by calculating the relative fold
change in gene expression between a control sample (TANT) and experimental samples
(samples from GBM patients) through the ∆∆Ct normalizing method and discovered their
higher levels. β-actin, also known as ACTB, is a commonly used reference gene for normal-
ization in qRT-PCR. Due to its ubiquitous expression and consistent expression levels, it
has been validated in previous studies that β-actin has been extensively used as a reference
gene in numerous studies, including glioblastoma research. Its selection as a reference
gene for normalization in glioblastoma qRT-PCR experiments is based on its consistent and
reliable expression across samples [47]. It was inferred that NF-κB p65 (RelA) and TNFα
might be an early diagnostic marker for GBM patients since the expression trend of the
NF-κB p65 (RelA) and TNFα proteins was essentially compatible with the transcript [48].
The PPI network of NF-κB p65 (RelA) and TNFα by GeneMANIA has been investigated,
and the biological processes associated with NF-κB p65 (RelA) and TNFα interaction genes
were analyzed with Metascape in order to better understand why elevated expression levels
of NF-κB p65 (RelA) and TNFα are significant for the poor prognosis of GBM patients.
However, it is justified by different previous studies that NF-κB p65 (RelA) and TNFα are
biologically plausible candidates and play an important role in inflammatory processes
involved in various cancers, including GBM [49]. A poor prognosis can be associated
with elevated levels of markers including C-reactive protein (CRP) and interleukin-6 (IL-6),
which indicate systemic inflammation and link it to tumor aggressiveness and decreased
overall survival [50]. Secondly, the release of pro-inflammatory cytokines by immune cells
involved in inflammation that are linked to tumors, such as macrophages and microglia,
contributes to the development of GBM and the disease’s resistance to treatment. Inflamma-
tory mechanisms like the NF-κB pathway are activated during GBM growth and therapy.
As a result, both systemic and tumor-specific inflammation are associated with a poor
prognosis for GBM patients [51,52].

In the current study, we hypothesized that the biological functions of NF-κB p65 (RelA)
and TNFα were connected with immunological processes, resulting in poor prognosis with
elevated NF-κB p65 (RelA) and TNFα expression levels in GBM. Based on this presump-
tion, TIMER was employed to examine the correlation between NF-κB p65 (RelA) and
TNFα expression levels and immune cell infiltration levels in GBM. Numerous studies
highlight NF-κB p65 (RelA) and TNFα mediated exacerbation of inflammation in the tumor
microenvironment [53,54].

The NF-κB p65 (RelA) family of pleiotropic transcription factors is sequestered in
the cytoplasm of most normal cells by noncovalent interaction. Recent investigations
have demonstrated that various tumor cells express NF-κB p65 (RelA) constitutively acti-
vated [55]. Interestingly, in glioblastoma, TNFα induces tumor cell motility and invasion
via activating NF-κB [56]. As anticipated, TNFα increased SF-767 cell invasion because of
other metabolic stimuli due to the presence of LDL protein and receptors, which increased
the cell proliferation turnover of growing tumor cells in this study and caused NF-κB p65
(RelA) activation. SF-767 cells revealed high-affinity LDL binding and maximum binding
capacity [57]. Our results were categorically established in GBM SF-767 cells with NF-κB
p65 (RelA) overexpression and silencing as a positive modulator of NF-κB signaling by
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enhancing the translation of the p65 transcript. Temozolomide (TMZ), an oral alkylat-
ing cytostatic medication, is frequently used to treat GBM; however, over 50 percent of
individuals who use it do not experience any benefits [58].

Therefore, the SF-767 glioblastoma cell line was used for in vitro analysis in the current
study. According to the data, when the SF-767 cell line was exposed to 10 µM TMZ, the
inhibition was 33.1%. A higher concentration of TMZ (200 M) proved to be lethal in
GBM cells, resulting in 89% cell death after the treatment. Due to the heterogeneity of
the GBM tumor and its highly angiogenic and metastatic characteristics, combination
therapies are now regarded as an essential component of anticancer therapy. Cancer
monotherapy has become a rare chemotherapeutic treatment choice [59]. The standard
treatment for GBM is temozolomide therapy combined with surgery and radiation therapy,
but because this approach has minimal effect on patients’ overall survival, it is crucial
to create drugs that can maximize their advantages and prevent tumor resistance [60].
The combination of TMZ with celecoxib would be a workable strategy to treat GBM,
even though TMZ has been successful in treating GBM. Celecoxib can inhibit NF-κB p65
activation, combat the pro-inflammatory milieu, and improve therapeutic outcomes. The
synergistic effects of celecoxib and TMZ on GBM cells’ apoptosis indicate that celecoxib may
improve the effectiveness of TMZ, the current standard treatment for GBM [61]. Combining
celecoxib with conventional therapies such as radiation or chemotherapy may be able to
potentially target cancer stem cells [62]. Celecoxib additionally enhanced the effects of
glucocorticoids triggering apoptosis in GBM cells by suppressing cyclooxygenase-2 (COX-
2), which resulted in Akt-mediated activation of NF-κB and subsequent apoptosis [63,64].
Previous studies provided evidence that combining celecoxib with existing treatment
modalities, such as TMZ or glucocorticoids, can have synergistic effects in GBM cells. These
findings support the potential benefits of celecoxib as an adjunctive therapy to enhance
the effectiveness of GBM treatments currently being used. However, mounting evidence
pointing to NSAIDs’ wide variety of COX-dependent targets, such as the presence of
NF-κB, B-CATENIN, PPAR DELTA, NAG-1, and BCL-2, suggests that various molecular
pathways are implicated in the anticancer effect of these medications [65]. Understanding
the regulation of NF-κB in cancer has led to the exploration of novel therapeutic approaches.
Studies have demonstrated the inhibitory effects of celecoxib on the activation of the NF-κB
signaling pathway, which is implicated in both inflammatory responses and the progression
of tumors [13]. Celecoxib has exhibited potential anti-cancer effects in both preclinical
and clinical studies by virtue of its capacity to modulate NF-κB activity. Furthermore,
celecoxib has received approval for therapeutic use in colon carcinogenesis, rheumatoid
arthritis, and various inflammatory disorders. Studies have demonstrated its ability to
induce apoptosis and inhibit angiogenesis [66]. Celecoxib has been investigated as an
adjunct therapy for certain cancer types, including colorectal cancer and pancreatic cancer.
Prior studies have demonstrated that the utilization of celecoxib, alongside conventional
chemotherapy protocols, has the potential to augment treatment efficacy and enhance
overall patient survival rates [67,68]. The potential of celecoxib to impact crucial cellular
processes associated with tumor growth, angiogenesis, and metastasis lies in its ability to
target NF-κB.

Moreover, the investigation of NF-κB regulation and its modulation in specific can-
cer types has provided insights into potential therapeutic strategies beyond traditional
chemotherapy. Targeted therapies aimed at inhibiting NF-κB signaling have been explored
as a means to overcome drug resistance and improve treatment outcomes in cancers such
as lymphoma, multiple myeloma, and breast cancer [69,70]. These studies highlight the po-
tential clinical significance of targeting NF-κB in specific cancer contexts. Further research
is needed to establish celecoxib’s clinical efficacy, determine optimal treatment strategies,
and identify biomarkers for personalized patient selection. In this study, we offer evidence
that celecoxib inhibits NF-κB activation while inhibiting the development of GBM cells.
The effectiveness of TMZ and COX-2 inhibitors in treating GBM in vivo and in vitro has
been demonstrated in earlier research, but the underlying molecular mechanism has not



J. Clin. Med. 2023, 12, 6683 17 of 21

been clarified [71]. However, it has recently been found that the NSAIDs indomethacin and
flurbiprofen suppress the growth of glioma cells [72,73]. Celecoxib, a medication used to
treat inflammation, is now also used to treat cancer. There is growing evidence that, despite
being a selective inhibitor of COX-2, it exerts anti-tumor effects on cancer cells that do not
contain the COX-2 enzyme. In order to determine if celecoxib alone or in conjunction with
other drugs is beneficial in treating glioblastoma, several researchers are now engaged
in Phase II clinical studies [13]. Celecoxib and temozolomide were also used to treat a
rat orthotropic glioma model, proving that both medications work well together to treat
gliomas [15]. Our research supports the in vitro findings, but mounting evidence points to
NSAIDs’ wide spectrum of COX-independent targets, such as NF-κB p65 (RelA) and TNFα,
indicating that a number of molecular pathways may be involved in the inhibit-neoplastic
action of these drugs. In the present research, we provide evidence that celecoxib sup-
presses the growth of GBM cells by inhibiting NF-κB activation and its signaling pathway.
Additionally, individuals with glioblastoma receiving temozolomide, dexamethasone, and
cranial radiation therapy for peritumoral brain edema could take celecoxib without any
danger [74]. Celecoxib use has increased due to these trials, offering a desirable anti-glioma
treatment plan. However, previous studies also highlighted some of the side effects and
limitations of celecoxib use. Including cardiovascular risks, gastrointestinal effects, re-
nal complications, allergic reactions, and drug interactions [75,76]. Additionally, a recent
study revealed some inconsistencies regarding COX-2 inhibitors and GBM invasion, and
contraindications regarding COX-2 inhibitors and GBM invasion have been reported [73].
To manage potential adverse effects and ensure patient wellbeing, adequate monitoring,
an appropriate dose, and regular follow-up are important [77,78]. The study’s findings
could be strengthened by considering the potential influence of age, gender, ethnicity, and
environmental factors on the effects of COX-2 inhibitors in glioblastoma. These factors may
contribute to variations in treatment response and outcomes, and exploring their impact
could provide valuable insights for personalized medicine approaches.

In summary, our findings showed that celecoxib exhibits inhibitory effects on NF-κB
activation, which is associated with inflammation, and it also hampers proliferation and
triggers apoptosis in GBM cells. These findings highlight the potential of celecoxib as a
therapeutic agent in the treatment of GBM.

5. Conclusions

The expression profile of NF-κB p65 (RelA) and TNFα in GBM patients was studied
using the TCGA database and biopsy samples from glioblastoma patients who underwent
surgery. We found high expression of these genes in GBM patients. NF-κB is a ubiquitous
transcription factor that regulates the response to a diverse range of stimuli. Our research
contributes to the individualized prognostic management of glioblastoma patients and
provides evidence for targeting NF-κB and TNF family members. With over 90 percent
of recurrent glioblastoma responding poorly to a second line of chemotherapy, acquired
resistance to chemotherapy is a severe consequence of temozolomide therapy. This study
explored the inhibitory effect of celecoxib on decreasing the expression of NF-κB p65
(RelA) and TNFα in the GBM cell line in comparison with TMZ. Our findings imply that
celecoxib reduces the expression of Nfkb linked to suppression of COX2, hence reducing
the proliferation of glioblastoma. Temozolomide therapy has a greater effect on cell viability.
In the future, if these drugs are used in combination, they may show a synergistic effect
by decreasing cellular proliferation and cell viability by celecoxib and temozolomide,
respectively, against the SF-767.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm12206683/s1, Figure S1: The expression of NF-κB p65 in
all tumor samples and paired normal tissues (bar plot). The height of bar represents the median
expression of certain tumor type or normal tissue in ACC, BRCA, CHOL, DLBC, GBM, KICH, KIRP,
LGG, LUAD, OV, PCPG, READ, SKCM, TGCT, THYM and UCS; Figure S2: The expression of TNFα
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in all tumor samples and paired normal tissues (bar plot). The height of bar represents the median
expression of certain tumor type or normal tissue same as all cancer mentioned in NF-κB p65 (RelA).
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