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Abstract: Pregnant women with diabetes often present impaired fetal growth, which is less com-
mon if maternal diabetes is well-controlled. However, developing strategies to estimate fetal body
composition beyond fetal growth that could better predict metabolic complications later in life is
essential. This study aimed to evaluate subcutaneous fat tissue (femur and humerus) in fetuses
with normal growth among pregnant women with well-controlled diabetes using a reproducible
3D-ultrasound tool and offline TUI (Tomographic Ultrasound Imaging) analysis. Additionally, three
artificial intelligence classifier models were trained and validated to assess the clinical utility of
the fetal subcutaneous fat measurement. A significantly larger subcutaneous fat area was found in
three-femur and two-humerus selected segments of fetuses from women with diabetes compared to
the healthy pregnant control group. The full classifier model that includes subcutaneous fat measure,
gestational age, fetal weight, fetal abdominal circumference, maternal body mass index, and fetal
weight percentile as variables, showed the best performance, with a detection rate of 70%, consid-
ering a false positive rate of 10%, and a positive predictive value of 82%. These findings provide
valuable insights into the impact of maternal diabetes on fetal subcutaneous fat tissue as a variable
independent of fetal growth.

Keywords: diabetes and pregnancy; ultrasound evaluation; fetal subcutaneous fat mass

1. Introduction

Abnormal fetal growth is linked to higher rates of perinatal morbidity and mortality
and an increased risk of metabolic diseases later in life, including diabetes, hypertension,
obesity, metabolic syndrome, and dyslipidemia [1,2]. In pregnant women, pre-existing dia-
betes and inadequate metabolic control can negatively impact embryogenesis during early
gestation and significantly influence growth and body composition later in pregnancy [3].
Poor glucose control in pregnancies complicated by diabetes, whether insulin-dependent
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or gestational, often results in identifiable characteristics such as selective macrosomia (ex-
cessive fetal growth) and organomegaly (enlargement of organs) [4]. Furthermore, diabetic
pregnant women with complications such as preeclampsia or pre-existing vascular disease
may experience reduced uterine flow and morphological changes in the placenta, which
affect nutrient exchange, leading to intrauterine growth restriction [5].

Maternal hyperglycemia induces fetal hyperglycemia, stimulating pancreatic activ-
ity resulting in hypertrophy, hyperplasia, and increased insulin secretion. Insulin is the
primary anabolic hormone for fetal growth and development, contributing to macroso-
mia and organomegaly [1,3,6,7]. Current evidence suggests that maintaining reasonable
glycemic control in pregnant women with diabetes can disrupt the cycle of hyperglycemia
and hyperinsulinemia, thus preventing complications associated with abnormal fetal
growth [8,9]. However, it remains uncertain whether poor metabolic control in the latter
half of pregnancy exclusively impairs fetal growth [10].

Changes in fetal body composition have implications for both the life period within the
uterus and after birth, leading to alterations in metabolism and inflammation, increasing
the fetus’s vulnerability to higher morbidity and long-term consequences [11,12]. As a
result, evaluating fetal body composition provides numerous advantages over conventional
methods used to assess fetal growth. Previous studies have investigated fat levels in
fetuses of diabetic mothers, revealing elevated subcutaneous or abdominal fat areas [13–15].
However, these techniques for evaluating fat are impractical for routine clinical use due
to their limited reproducibility attributed to operator bias involved in manually selecting
the ultrasound plane for measurement [16–19]. Consequently, ongoing research aims to
develop innovative tools capable of detecting changes in fetal body composition, enabling
early and comprehensive assessments of growth disorders, and ultimately enhancing
clinical management and perinatal outcomes.

Artificial intelligence (AI) has shown some benefits in clinical research. These tools
in obstetrics have been used to incorporate data and images in machine learning models
to predict preterm birth, birth weight, preeclampsia, mortality, hypertensive disorders,
and postpartum depression and placental abnormalities, offering a reduction in inter- and
intraoperator variability, time reduction in procedures, and improving overall diagnostic
performance [20–22].

The present study evaluated subcutaneous fat tissue in fetuses with normal growth
among pregnant women with well-controlled maternal diabetes using a more reproducible
3D-ultrasound tool and offline TUI (Tomographic Ultrasound Imaging) analysis [23]. Ad-
ditionally, three artificial intelligence (AI) classifier models were trained and validated to
assess the impact of maternal diabetes on subcutaneous fat mass in fetuses, identifying the
offspring of a diabetic mother.

2. Materials and Methods
2.1. Ethics Statement

This study was conducted as part of the ongoing OBESO (Biochemical and Epigenetic
Origins of Overweight and Obesity) perinatal cohort at the Instituto Nacional de Perina-
tologia (INPer) in Mexico City, which aims to investigate the association between obesity,
maternal metabolic profile, and their predictive roles in fetal body composition, obesity,
and neurodevelopment during infancy. The project was approved by the Ethics and Re-
search Internal Review Board (2016-1-568/2017-2-79). Enrolled women were provided with
detailed information regarding the risks and benefits of the study, and their participation
was voluntary. Informed consent was obtained from all recruited participants.

2.2. Study Population

Sixty singleton pregnant women were conveniently selected during their third-trimester
ultrasound appointments from January to December 2019. Thirty of these women had
well-controlled diabetes, including sixteen with pregestational (type 2) diabetes without pre-
existing vascular disease and fourteen with gestational diabetes. The other thirty women
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were selected as healthy controls, matched by gestational age. The control group underwent
an oral glucose tolerance test between 24 and– 28 weeks of gestation to rule out diabetes.
Patients used as controls were paired for gestational age, fetal gender, BMI classification
(underweight, normal weight, overweight), and weight gain at the time of the study
(adequate, insufficient, or excessive) [24]. The diabetic participants maintained good
glycemic control throughout pregnancy based on the guidelines set by the American
Diabetes Association, which included fasting capillary glycemia ≤ 95 mg/dL and one-
hour postprandial capillary glycemia ≤ 140 mg/dL in at least 80% of measurements, with
glycosylated hemoglobin HbA1c levels below 6.0% [25]. Women were enrolled after 31
weeks of gestation, as determined by the last menstrual period and confirmed by the first-
trimester ultrasound. Participants with chronic or pregnancy-induced high blood pressure,
type 1 diabetes, diabetes with vasculopathy, and intrauterine fetal growth alterations
were excluded from the study. All enrolled women received routine prenatal care at
INPer, and relevant clinical data were extracted from their medical records. Women with
diabetes received medical nutrition therapy provided by a dietitian, and in some cases,
pharmacological treatment with metformin was necessary to achieve adequate metabolic
control. The Department of Endocrinology at INPer adjusted the metformin dosage to
maintain optimal glycemic standards. Maternal anthropometric measurements, including
pre-gestational weight, height, and body mass index, were obtained from the medical
records. All patients included were followed up to pregnancy ended to collect perinatal
outcomes. No sample size calculation was performed beforehand, but the statistical
power was calculated for all variables with significant differences to verify that it was
greater than 80%.

2.3. Fetometry

Fetometry was performed using a Voluson E8 (GE Healthcare, Chicago, IL, USA) 3D
ultrasound with a volumetric transducer (4–8 MHz). Measurements such as biparietal
diameter, head circumference, abdominal circumference, and femoral length were taken to
estimate fetal weight using the Hadlock 2 formula. Weight percentiles were calculated based
on gestational age, according to the Hadlock reference values, preloaded in the ultrasound
machine; all fetuses included were weighed between the 10th and 90th percentile. The
ultrasound examination involved acquiring a 3D volume scan with a 30◦ sweep angle
and an acquisition time of 10 s. To ensure accuracy, the transducer was placed as close as
possible to the extremity without applying pressure and with minimal fetal and maternal
movement. The arm and thigh closest to the mother’s abdominal wall were selected
for measurement.

2.4. Assessment of Fat Mass Area

Volumetry was performed on the arm and thigh (humerus/femur) anterior to the
maternal abdominal wall, placing the transducer as close as possible to the limb without
exerting pressure in the absence of fetal and maternal movement. The volumetry transducer
was selected (4–8 MHz), and the initial settings were the same as used in the 2D evaluation;
only contrast and zoom were increased in order to see the complete structure in 70 to 80%
of the screen, the focus was placed in the area of interest and the gains to optimize the
image. A volume acquisition angle of 80◦ was selected, and the limb was centered correctly.
The quality of the images depended on the exposure speed; a rotational scan was selected
in a sagittal Z plane with an acquisition time of 10 s [26].

In the offline evaluation, the ViewPoint program, GE Healthcare, was used; select the
“explore submenu”, and then the acquired file was chosen. The sagittal plane of the bone
was displayed as the main screen, and the proximal epiphysis lateralized to the left. A
Sepia filter was applied in the image to delineate the lean and fat mass contours. In the TUI
(Tomographic Ultrasound Imaging) tool, three tomographic slices were programmed, and
the diaphysis was centered to have the center, 1 to the right and 1 to the left [26].
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The fat mass area was determined by subtracting the central area representing lean
mass, consisting of bone and muscle, from the total area obtained in the image. At least
two measurements were taken for each tomographic plane, and the average of these
observations was used for analysis. Three planes of the humerus/femur were utilized: the
union of the proximal third with the middle, the middle of the bone, and the union of the
distal third with the middle third (Figure 1). The acquisition of images and the subsequent
offline analysis were performed by three ultrasound experts specialized in maternal–fetal
medicine, who followed a standardized technique. Prior to the study, the technique was
standardized among these three operators. The inter- and intra-observer variability was
calculated using the intraclass correlation coefficient, yielding a value greater than 0.90 for
all three selected planes.
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Figure 1. Offline Tomographic Ultrasound Imaging analysis. (A) Sagittal plane of the fetal femur.
(B) Axial plane selected, fat area obtained by subtracting the lean tissue area (muscle and bone) from
the total area (covering the total area).

2.5. Statistical Analysis

Statistical analysis was performed using IBM® SPSS® Statistics, version 20, and de-
scriptive statistics were employed to characterize the general population. The paired t-test
and Wilcoxon rank test were used to assess differences based on data normality and the
requirement for non-parametric tests, respectively. Statistical significance was considered
for p < 0.05.

2.6. Classifier Models

Data analysis comprised two stages: (A) Feature Selection, during which relevant
variables were identified using a 70-30% bootstrapping technique, and (B) Classifiers
Training and Validation, which involved training and evaluating three Linear Discriminant
Analysis with Shrinkage models via a cross-validation process. Each model accounted for
a different group of features. For the classification task, control and diabetes case data were
labeled with 0 and 1, respectively.

(A) Feature Selection

The Least Absolute Shrinkage Selector Operator (LASSO) is a regularized version of
linear regression that assigns zero weight to non-relevant features and, therefore, serves as
a feature selector.
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An optimal LASSO model was trained using 70% of the class-stratified data in each
bootstrapping iteration. The remaining 30% was discarded as this stage focused on deter-
mining the variables that contributed the most relevant information (Figure 2a). Optimal
LASSO models were obtained using Python’s sci-kit-learn library. This process was re-
peated across ten blocks, each comprising five bootstrapping iterations (Figure 2b).
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Figure 2. Classifier model development process, variable selection, training, and validation.

Features were selected based on variables that did not register any non-zero-weight
counts of LASSO (Figure 2c). These were grouped according to variable nature: biometric,
free fat-mass, and fat-mass. The average weight of the features is displayed in bar plots
(Figure 2e).

(B) Classifier Training and Validation

The classifier utilized was the Linear Discriminant Analysis, which employed a shrink-
age approach with Ledoit–Wolf parameter optimization. Three models were trained, and
each included a different combination of feature groups: biometric + free fat mass, biometric
+ fat mass, and biometric + free fat mass + fat mass (Figure 2g). Classification performances
were assessed using a class-stratified 10-fold cross-validation technique (Figure 2f). Fi-
nally, the mean and standard deviation of the Area under the ROC (AUROC), Detection
Rate adjusted with False Positive Rate percentage, and Screen Positive Rate are reported
(Figure 2h).
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Three artificial intelligence classifier models were trained and validated to assess
the clinical utility of fetal subcutaneous fat measurement. Model 1, referred to as “full”,
included the following variables: subcutaneous fat measured by ultrasound, gestational age,
fetal weight (ultrasound), fetal abdominal circumference, maternal BMI, and fetal weight
percentile (ultrasound). Model 2, named “ft fat”, exclusively incorporated measurements
of subcutaneous fat in the fetal arm and thigh. Model 3, termed “ft no fat”, was similar to
model 1 but excluded the subcutaneous fat measure. For each of the proposed models, the
detection rate (DR) was calculated considering a false positive rate (FPR) = 5, 10, 15, 20%,
Area Under the Curve (AUC), and Positive Predictive Value (PPV).

To ensure the interpretability of the classifier models and verify that differences were
attributed to the set of features used rather than the classifier itself, Regularized Linear
Discriminant Analysis (Shrinkage-LDA) was employed. Model training and validation
were conducted using Python 3.8 software with the scikit-learn machine learning library.
The data were divided using an 8-way cross-validation strategy, with 70% used for training
and 30% for validation. The strategy aimed to maintain a similar number of items per class
in both training and validation sets (Figure 2).

3. Results
3.1. Characteristics of the Study Population

Baseline characteristics were similar between the study groups (Table 1). However,
mothers with diabetes showed higher pre-gestational weight and pre-gestational BMI than
mothers in the control group (p = 0.034 and 0.046, respectively). No significant difference
was found between the study groups in biparietal diameter, head circumference, abdominal
circumference, femoral length, ratio between male and female fetuses, as well as gestational
age at birth. All newborns were evaluated by neonatologists from the institute staff, weight
was measured, and somatometry was performed; all had a diagnosis of “normal weight for
gestational age,” according to local reference values.

Table 1. Clinical characteristics of the population.

Control
n = 30

Diabetes
n = 30 p Value

Maternal age
(Years, mean ± SD) 30.76 ± 6.4 32.9 ± 7.13 0.247

Gestational age
(Weeks, mean ± SD) 34.63 ± 1.7 34.61 ± 1.71 0.609

Pre-gestational maternal weight
(kg, ± SD) 69.69 ± 9.7 77.87 ± 15.38 0.034 *

Pre-gestational BMI
(kg/m2, mean ± SD) 28.33 ± 3.99 31.00 ± 5.20 0.046 *

Parity
(Median, minimum, and
maximum range)

2 (1–5) 2 (1–6) 0.432

Fetal weight by ultrasound
(Grams, mean ± SD) 2447 ± 397 2533 ± 459 0.198

Biparietal diameter (cm) 8.60 8.65 0.322
Cephalic circumference (cm) 30.97 31.26 0.134
Abdominal circumference (cm) 30.57 30.96 0.091
Femoral length (cm) 7.21 6.57 0.074
Newborn weight
(Grams, mean ± SD) 3257 ± 298 3389 ± 389 0.233

Gestational age at birth
(Weeks, median) 39.1 (37.3–40.1) 38.5 (36.6–39.4) 0.191

Male/female proportion 15/15 15/15 0.478
SD: standard deviation; BMI: body mass index. Student’s t-test. * p < 0.05.
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In the group of pregnant diabetic patients, all received counseling from a clinical nutri-
tionist and were assigned a nutritional plan according to their weight, physical activity, and
weeks of gestation. Twenty patients (66%) received treatment with metformin (adjusting
the dose to achieve the goals of glycemic control), and five (16%) received subcutaneous
insulin treatment (adjusting the dose to achieve the goals of glycemic control).

3.2. Association between Maternal Diabetes and Fetal Subcutaneous Fat Tissue

The mean fat area (in square centimeters, cm2) obtained from six measurements
(three from the humerus and three from the femur) was compared between the study
groups. A significantly larger fat area was observed in the three selected femur segments
of fetuses from women with diabetes than in the control group. These segments included
the junction of the proximal third and middle third (p = 0.024), the middle third (p = 0.026),
and the junction of the distal third and middle third (p = 0.005) (Table 2 and Figure 3). In
the humerus, an increase in fat area was detected at the junction of the proximal third
and middle third (p = 0.045), as well as at the junction of the distal third and middle third
(p = 0.023) in fetuses from pregnant women with diabetes, in comparison to healthy controls
(Table 2 and Figure 3). When women with pregestational diabetes and gestational diabetes
were analyzed separately, no differences were found in the segments evaluated in the fetal
arm or thigh (Table 3).

Table 2. Fat area in three axial planes of the femur and humerus among the study groups.

Control
(cm2, Mean ± SD)

n = 30

Diabetes
(cm2, Mean ± SD)

n = 30
p Value

FEMUR
Proximal third-middle union 8.9 ± 2.0 10.1 ± 2.0 0.024 *
Middle 7.8 ± 1.7 9.0 ± 2.0 0.026 *
Distal third-middle 7.3 ± 1.7 8.8 ± 1.8 0.005 **
HUMERUS
Proximal third-middle union 5.4 ± 1.6 6.1 ± 1.4 0.045 *
Middle 5.1 ± 1.4 5.8 ± 1.8 0.069
Distal third-middle 4.7 ± 1.2 5.3 ± 1.2 0.023 *

SD: standard deviation; Paired student’s t-test. * p < 0.05, ** p < 0.01.

Table 3. Fat area in three axial planes of the femur and humerus among women with pregestational
and gestational diabetes.

Pregestational
Diabetes

(cm2, Mean ± SD)
n = 16

Gestational Diabetes
(cm2, Mean ± SD)

n = 14
p Value

FEMUR
Proximal third-middle union 9.9 ± 1.6 10.2 ± 1.8 0.34
Middle 8.7 ± 2.1 9.3 ± 2.4 0.42
Distal third-middle 7.9 ± 1.9 8.6 ± 2.1 0.06
HUMERUS
Proximal third-middle union 5.9 ± 1.8 6.4 ± 1.8 0.35
Middle 5.6 ± 1.2 5.4 ± 1.9 0.69
Distal third-middle 5.1 ± 1.5 5.6 ± 1.4 0.23

SD: standard deviation; Paired student’s t-test.

3.3. Classifier Models between Fetal Subcutaneous Fat Tissue and Ultrasonographic Tools

Analysis using classifier models to identify whether a patient belonged to the “gesta-
tional diabetes” group showed that model 1, which included all the “full model” variables,
had a detection rate of 70% considering a false positive rate of 10%, with a positive predic-
tive value of 82%, and an area under the curve of 0.88. Model 2, “ft fat,” had a DR of 38%,
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considering a false positive rate of 10%, with a PPV of 67% and an AUC of 0.71. Model 3,
“ft non-fat,” had a DR of 45%, considering an FPR of 10%, with a PPV of 68% and an AUC
of 0.68. The performance of the different models calculated with false positive rates of 5, 10,
15, and 20% are shown in Table 4.
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Table 4. Performance of the three proposed models: “full model”, “ft-fat”, and “ft-no fat”.

DR at FPR AUC PPV

Model 0.05 0.10 0.15 0.2

Full model 0.704
(0.214)

0.704
(0.214)

0.738
(0.204)

0.778
(0.182)

0.881
(0.100)

0.823
(0.188)

Ft-fat 0.385
(0.292)

0.385
(0.292)

0.468
(0.279)

0.573
(0.255)

0.719
(0.143)

0.676
(0.190)

Ft no-fat 0.458
(0.269)

0.458
(0.269)

0.501
(0.284)

0.591
(0.269)

0.746
(0.156)

0.682
(0.205)

DR: detection rate; FPR: false positive rate; AUC: area under curve; PPV: positive predictive value. Full model:
subcutaneous fat measured by ultrasound, gestational age, fetal weight (ultrasound), fetal abdominal circumfer-
ence, maternal BMI, and fetal weight percentile (ultrasound); Ft-fat: exclusively incorporated measurements of
subcutaneous fat in the fetal arm and thigh; Ft no-fat: excluded the subcutaneous fat measure.

4. Discussion
4.1. Main Findings

The most striking finding was the significantly larger fat area observed in specific
segments of fetuses from mothers with diabetes, regardless of adequate glycemic control
compared to the control group. This suggests that maternal diabetes should directly impact
the accumulation of subcutaneous fat in certain fetal segments.

4.2. Comparison with Existing Literature

This finding is consistent with a prior investigation conducted by Larciprete et al.,
who utilized ultrasound examinations to illustrate an increase in fetal subcutaneous fat in
pregnancies affected by gestational diabetes [27]. However, our study diverges from that
research since we exclusively enrolled women with well-controlled diabetes and fetuses of
normal weight. In a related study, De Santis et al. in 2010 also documented variations in
subcutaneous fat levels among fetuses born to diabetic mothers, highlighting the utility
of fat assessment as a third-trimester gestational tool, irrespective of the specific maternal
diabetes treatment employed [16]. Building upon their observations, our study concen-
trated on fetal fat measurements exclusively in the third trimester without stratification by
treatment modality.

It is reasonable to assume that the rise in fetal adipose tissue is concomitant with
the increase in fetal weight, which is clinically indicative of maternal diabetes decom-
pensation [13]. Therefore, the most noteworthy discovery in our study is the absence of
disparities in estimated fetal weight or birth weight between the groups but the increased
fat area in the extremities of fetuses born to well-controlled diabetic mothers. Given the
insulin sensitivity of adipose tissue, our findings imply that alterations in fetal adipose
tissue may function as a more sensitive indicator of the ramifications of maternal metabolic
changes, even before significant shifts in fetal weight become apparent [28].

Hence, we can infer that if this cohort of pregnant women with well-controlled di-
abetes had undergone routine ultrasound assessments without the inclusion of fetal fat
measurements, their fetuses would likely have been categorized as having normal weight
and presumed to be in good health. This approach, however, would underestimate the
metabolic risk associated with changes in body composition. In 2017, Venkataraman et al.
provided additional evidence of the “thin but fat” phenotype within the Asian population.
They characterized fetuses with a disproportional increase in adipose tissue, even when
lean body mass was smaller or comparable, occurring before the biochemical diagnosis of
gestational diabetes mellitus. They introduced fetal anterior abdominal wall thickness as an
early indicator of this condition [29]. Nevertheless, it is worth noting that this measurement
can be influenced by fetal position, orientation, attitude, and the volume of amniotic fluid,
potentially reducing its reproducibility. In our study, we assessed the limbs because this
approach is not influenced by the variables mentioned earlier. Additionally, the adoption
of TUI analysis allows for precise selection of measurement planes, thereby diminishing
dependence on inter-observer variability [29,30].
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In recent years, there have been notable advancements in ultrasonography, leading to
improved resolution. This enhancement enables more precise tissue characterization and
accurate quantification of fetal fat accumulation. Additionally, a novel metric called fetal
fractional limb volume has emerged, designed to measure the volume of fetal soft tissues,
encompassing both fat mass and lean mass [31,32]. It has become evident that substantial
physiological diversity and heterogeneity exist in fetal growth velocity patterns, particularly
during the third trimester of pregnancy. Furthermore, the growth trajectory of fetal soft
tissue volume, primarily comprising fat mass, experiences acceleration in the early stages
of the third trimester. Based on these insights, it is suggested that serial assessments of fetal
fat mass and fractional limb volume in the third trimester, spaced at intervals of 2–4 weeks,
could offer valuable clinical insights. Such assessments have the potential to differentiate
between constitutionally small/large fetuses and malnourished/overnourished fetuses,
thus facilitating a deeper understanding of the “thrifty” or “drifty” phenotype, both of
which are predisposed to the development of metabolic syndrome [33]. By detecting
significant variations in fetal fat accumulation, researchers may gain fresh perspectives
into the underlying causes of altered fetal body composition observed in conditions such
as fetal growth restriction or fetal macrosomia. Further studies must be conducted to
evaluate clinical interventions to address altered fetal growth and body composition, with
the ultimate goal of primary prevention of future metabolic dysfunction [32,34].

In the forthcoming years, these novel approaches have the potential to reveal that
alterations in fetal body composition are equally, if not more, crucial than birth weight
alone in identifying newborns with an elevated risk of developing metabolic syndrome,
diabetes, heart disease, obesity, and high blood pressure later in life. To rigorously assess
this hypothesis, ongoing studies are underway to investigate the influence of changes in
fetal body composition on metabolic and neurodevelopmental outcomes in a follow-up
cohort at the age of 8 [35,36]. Furthermore, we advocate for the inclusion of comprehensive
evaluations at birth and follow-up assessments for fetuses exhibiting growth alterations,
such as intrauterine growth restriction and macrosomia. This approach is vital as these
fetuses may exhibit similar modifications as previously documented in studies focused on
body composition at birth [37,38].

The research also explored the potential of using AI-enhanced classifier models to
distinguish between patients with gestational diabetes and those without it. The “full
model” achieved a detection rate of 70% at a false positive rate of 10%, indicating a
promising ability to identify patients with gestational diabetes.

AI methods in medical care could facilitate individual pregnancy management and
improve public health, especially in low- and middle-income countries. Classifier models
are one of the methods of analysis that uses AI. Using statistical analysis methods different
from those we are conventionally accustomed to seeing in the medical literature is becoming
more common to demonstrate the association between variables. Particularly in obstetrics,
these analysis methods have been used to evaluate the risk of preeclampsia [39]. We found
no history of their use in comorbidities such as diabetes in pregnancy.

4.3. Strengths and Limitations

A weakness of our study is the limited number of included patients; however, we
assessed the statistical power of the observed differences, all of which exceeded 0.80.
Additionally, our study is limited by the exclusion of certain variables that may influence
birth weight, such as maternal weight, supplementation, and the use of medications
to manage underlying diseases. Nevertheless, existing evidence suggests that various
treatments for diabetes do not appear to impact fetal fat measurements.

On the other hand, a strength of our study lies in the comprehensive clinical man-
agement provided to all women by the Department of Endocrinology at INPer. Rigorous
glycemic control was confirmed through regular measurements of pre- and postprandial
capillary and venous blood glucose levels, along with periodic quantification of glyco-
sylated hemoglobin. The employed TUI technique offers the advantage of eliminating
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operator dependence or bias, as axial cuts are predetermined in the software, accounting
for bone edges. The software consistently maintains the same distance between axial
planes in all 3D volumes, ensuring consistency across measurements. This contrasts with
previous studies that relied on ultrasound-based subcutaneous fat tissue measurement,
where operators subjectively selected the measurement plane.

To our knowledge, no other work has utilized classifier models to assess fetal fat
measurement as a clinical contributor to diabetes. Thus, this represents the primary
strength of our research.

4.4. Clinical Interpretation

Fetal weight and the quantity of amniotic fluid are the primary clinical indicators of
poorly controlled diabetes during pregnancy. It is worth noting that fetal body composition
is also affected in pregnant women with well-controlled diabetes. Consequently, assessing
fetal fat content can be a valuable tool, offering advantages over assessing fetal weight alone.
This allows clinicians to detect early changes in body composition even before fetal weight
is impacted. Detecting such changes during the fetal period provides an opportunity to
design and implement early interventions that can positively impact the metabolic control
of pregnant women with diabetes, thereby improving perinatal outcomes.

However, establishing reference values for fetal fat is still pending to determine what
would be considered normal. Additionally, our findings raise questions about whether
the variables currently used in the ultrasonographic evaluation of fetuses from diabetic
mothers are adequate or if it is necessary to implement new and more sensitive tools to
classify fetuses more accurately at an increased risk of developing metabolic issues later in
life [40,41].

The development of a classifier model represents an innovative approach to examining
the clinical relevance of subcutaneous fat measurement in fetuses through the utilization of
artificial intelligence. In this study, we conducted training and validation of three models.
By inputting various variables into the analysis, these models can determine whether the
mother–fetus dyad belongs to the diabetic or control group. The analyses of the classifier
models indicate that the inclusion of subcutaneous fetal fat measurement via ultrasound
leads to a more precise prediction of whether the dyad belongs to the diabetic group.
Specifically, this inclusion enhances the detection capability by 10%, raising it from 0.688 to
0.781. These findings support our initial hypothesis that maternal diabetes significantly
affects fetal fat.

5. Conclusions

This study provides valuable insights into the impact of maternal diabetes on fetal
subcutaneous fat tissue. Our findings demonstrate an increase in fat accumulation in fetuses
of mothers with well-controlled diabetes. Furthermore, the application of AI-enhanced
classifier models allows us to identify the offspring of a diabetic mother. These findings
contribute to our comprehension of maternal diabetes and its potential consequences on
fetal development, even when the patient is under good glycemic control.
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and umbilical cord measurements in pregnancies complicated by gestational and type 1 diabetes mellitus: Potential application in
the fetal birth-weight estimation and prediction of the fetal macrosomia. Diabetol. Metab. Syndr. 2021, 13, 22. [CrossRef] [PubMed]

16. de Santis, M.S.; Taricco, E.; Radaelli, T.; Spada, E.; Rigano, S.; Ferrazzi, E.; Milani, S.; Cetin, I. Growth of fetal lean mass and fetal
fat mass in gestational diabetes. Ultrasound Obstet. Gynecol. 2010, 36, 328–337. [CrossRef]

17. Lingwood, B.E.; Henry, A.M.; d’Emden, M.C.; Fullerton, A.M.; Mortimer, R.H.; Colditz, P.B.; KA, L.C.; Callaway, L.K. Determi-
nants of body fat in infants of women with gestational diabetes mellitus differ with fetal sex. Diabetes Care 2011, 34, 2581–2585.
[CrossRef]

18. Elessawy, M.; Harders, C.; Kleinwechter, H.; Demandt, N.; Sheasha, G.A.; Maass, N.; Pecks, U.; Eckmann-Scholz, C. Measurement
and evaluation of fetal fat layer in the prediction of fetal macrosomia in pregnancies complicated by gestational diabetes. Arch.
Gynecol. Obstet. 2017, 296, 445–453. [CrossRef]

19. Orsso, C.E.; Silva, M.I.B.; Gonzalez, M.C.; Rubin, D.A.; Heymsfield, S.B.; Prado, C.M.; Haqq, A.M. Assessment of body
composition in pediatric overweight and obesity: A systematic review of the reliability and validity of common techniques. Obes.
Rev. 2020, 21, e13041. [CrossRef]

20. Sarno, L.; Neola, D.; Carbone, L.; Saccone, G.; Carlea, A.; Miceli, M.; Iorio, G.G.; Mappa, I.; Rizzo, G.; Girolamo, R.D.; et al. Use of
artificial intelligence in obstetrics: Not quite ready for prime time. Am. J. Obstet Gynecol. MFM 2023, 5, 100792. [CrossRef]

21. Borboa-Olivares, H.; Rodríguez-Sibaja, M.J.; Espejel-Nuñez, A.; Flores-Pliego, A.; Mendoza-Ortega, J.; Camacho-Arroyo, I.;
González-Camarena, R.; Echeverría-Arjonilla, J.C.; Estrada-Gutierrez, G. A Novel Predictive Machine Learning Model Integrating
Cytokines in Cervical-Vaginal Mucus Increases the Prediction Rate for Preterm Birth. Int. J. Mol. Sci. 2023, 24, 13851. [CrossRef]

22. Ramakrishnan, R.; Rao, S.; He, J.R. Perinatal health predictors using artificial intelligence: A review. Womens Health 2021, 17,
17455065211046132. [CrossRef] [PubMed]

23. Markov, D. Tomographic ultrasound imaging (TUI)—Technique and methodological study. Akush. Ginekol. 2008, 47, 9–15.

https://doi.org/10.1210/en.2016-1003
https://www.ncbi.nlm.nih.gov/pubmed/26859334
https://doi.org/10.1093/nutrit/nuaa082
https://doi.org/10.1002/bdrc.21090
https://doi.org/10.1159/000371628
https://www.ncbi.nlm.nih.gov/pubmed/26045324
https://doi.org/10.1177/1479164115624681
https://www.ncbi.nlm.nih.gov/pubmed/26940821
https://doi.org/10.1056/NEJMe2100902
https://doi.org/10.2337/db08-1112
https://doi.org/10.1016/j.ecl.2019.05.001
https://doi.org/10.1001/jama.2019.4981
https://doi.org/10.1111/aogs.12291
https://doi.org/10.1016/j.biocel.2018.09.016
https://doi.org/10.1159/000439488
https://www.ncbi.nlm.nih.gov/pubmed/27088334
https://doi.org/10.1016/j.plipres.2020.101082
https://www.ncbi.nlm.nih.gov/pubmed/33383022
https://doi.org/10.1016/S0002-9378(03)00828-7
https://www.ncbi.nlm.nih.gov/pubmed/14710101
https://doi.org/10.1186/s13098-021-00634-7
https://www.ncbi.nlm.nih.gov/pubmed/33602333
https://doi.org/10.1002/uog.7575
https://doi.org/10.2337/dc11-0728
https://doi.org/10.1007/s00404-017-4433-6
https://doi.org/10.1111/obr.13041
https://doi.org/10.1016/j.ajogmf.2022.100792
https://doi.org/10.3390/ijms241813851
https://doi.org/10.1177/17455065211046132
https://www.ncbi.nlm.nih.gov/pubmed/34519596


J. Clin. Med. 2023, 12, 6485 13 of 13

24. National Academies of Sciences Engineering and Medicine. The National Academies Collection: Reports funded by National
Institutes of Health. In Weight Gain during Pregnancy: Reexamining the Guidelines; Rasmussen, K.M., Yaktine, A.L., Eds.; National
Academies Press: Washington, DC, USA, 2009.

25. American Diabetes Association. 14. Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes-2020. Diabetes
Care 2020, 43, S183–S192. [CrossRef] [PubMed]

26. Lee, W. Soft tissue assessment for fetal growth restriction. Minerva Obstet. Gynecol. 2021, 73, 442–452. [CrossRef]
27. Larciprete, G.; Valensise, H.; Vasapollo, B.; Novelli, G.P.; Parretti, E.; Altomare, F.; Di Pierro, G.; Menghini, S.; Barbati, G.; Mello,

G.; et al. Fetal subcutaneous tissue thickness (SCTT) in healthy and gestational diabetic pregnancies. Ultrasound Obstet. Gynecol.
2003, 22, 591–597. [CrossRef]

28. Toro-Ramos, T.; Paley, C.; Pi-Sunyer, F.X.; Gallagher, D. Body composition during fetal development and infancy through the age
of 5 years. Eur. J. Clin. Nutr. 2015, 69, 1279–1289. [CrossRef] [PubMed]

29. Venkataraman, H.; Ram, U.; Craik, S.; Arungunasekaran, A.; Seshadri, S.; Saravanan, P. Increased fetal adiposity prior to diagnosis
of gestational diabetes in South Asians: More evidence for the ‘thin-fat’ baby. Diabetologia 2017, 60, 399–405. [CrossRef]

30. Herath, M.P.; Beckett, J.M.; Hills, A.P.; Byrne, N.M.; Ahuja, K.D.K. Gestational Diabetes Mellitus and Infant Adiposity at Birth: A
Systematic Review and Meta-Analysis of Therapeutic Interventions. J. Clin. Med. 2021, 10, 835. [CrossRef]

31. Sacks, D.A. Fetal macrosomia and gestational diabetes: What’s the problem? Obstet. Gynecol. 1993, 81, 775–781.
32. Ikenoue, S.; Kasuga, Y.; Endo, T.; Tanaka, M.; Ochiai, D. Newer Insights Into Fetal Growth and Body Composition. Front.

Endocrinol. 2021, 12, 708767. [CrossRef] [PubMed]
33. Sato, N.; Miyasaka, N. Heterogeneity in fetal growth velocity. Sci. Rep. 2019, 9, 11304. [CrossRef] [PubMed]
34. Ikenoue, S.; Akiba, Y.; Endo, T.; Kasuga, Y.; Yakubo, K.; Ishii, R.; Tanaka, M.; Ochiai, D. Defining the Normal Growth Curve of

Fetal Fractional Limb Volume in a Japanese Population. J. Clin. Med. 2021, 10, 485. [CrossRef] [PubMed]
35. Uthaya, S.; Bell, J.; Modi, N. Adipose tissue magnetic resonance imaging in the newborn. Horm. Res. 2004, 62 (Suppl. 3), 143–148.

[CrossRef] [PubMed]
36. De Lucia Rolfe, E.; Modi, N.; Uthaya, S.; Hughes, I.A.; Dunger, D.B.; Acerini, C.; Stolk, R.P.; Ong, K.K. Ultrasound estimates of

visceral and subcutaneous-abdominal adipose tissues in infancy. J. Obes. 2013, 2013, 951954. [CrossRef]
37. Lobelo, F. Fetal programming and risk of metabolic syndrome: Prevention efforts for high-risk populations. Pediatrics 2005, 116,

519. [CrossRef]
38. Lee, W.; Balasubramaniam, M.; Deter, R.L.; Hassan, S.S.; Gotsch, F.; Kusanovic, J.P.; Gonçalves, L.F.; Romero, R. Fractional

limb volume--a soft tissue parameter of fetal body composition: Validation, technical considerations and normal ranges during
pregnancy. Ultrasound Obstet. Gynecol. 2009, 33, 427–440. [CrossRef] [PubMed]

39. Garcés, M.F.; Sanchez, E.; Cardona, L.F.; Simanca, E.L.; González, I.; Leal, L.G.; Mora, J.A.; Bedoya, A.; Alzate, J.P.; Sánchez, Á.Y.;
et al. Maternal Serum Meteorin Levels and the Risk of Preeclampsia. PLoS ONE 2015, 10, e0131013. [CrossRef] [PubMed]

40. Monteiro, L.J.; Norman, J.E.; Rice, G.E.; Illanes, S.E. Fetal programming and gestational diabetes mellitus. Placenta 2016, 48 (Suppl.
1), S54–S60. [CrossRef]

41. Rinaudo, P.; Wang, E. Fetal programming and metabolic syndrome. Annu. Rev. Physiol. 2012, 74, 107–130. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2337/dc20-S014
https://www.ncbi.nlm.nih.gov/pubmed/31862757
https://doi.org/10.23736/S2724-606X.21.04829-6
https://doi.org/10.1002/uog.926
https://doi.org/10.1038/ejcn.2015.117
https://www.ncbi.nlm.nih.gov/pubmed/26242725
https://doi.org/10.1007/s00125-016-4166-2
https://doi.org/10.3390/jcm10040835
https://doi.org/10.3389/fendo.2021.708767
https://www.ncbi.nlm.nih.gov/pubmed/34367074
https://doi.org/10.1038/s41598-019-47839-5
https://www.ncbi.nlm.nih.gov/pubmed/31383931
https://doi.org/10.3390/jcm10030485
https://www.ncbi.nlm.nih.gov/pubmed/33572882
https://doi.org/10.1159/000080517
https://www.ncbi.nlm.nih.gov/pubmed/15539817
https://doi.org/10.1155/2013/951954
https://doi.org/10.1542/peds.2005-0832
https://doi.org/10.1002/uog.6319
https://www.ncbi.nlm.nih.gov/pubmed/19253340
https://doi.org/10.1371/journal.pone.0131013
https://www.ncbi.nlm.nih.gov/pubmed/26121675
https://doi.org/10.1016/j.placenta.2015.11.015
https://doi.org/10.1146/annurev-physiol-020911-153245

	Introduction 
	Materials and Methods 
	Ethics Statement 
	Study Population 
	Fetometry 
	Assessment of Fat Mass Area 
	Statistical Analysis 
	Classifier Models 

	Results 
	Characteristics of the Study Population 
	Association between Maternal Diabetes and Fetal Subcutaneous Fat Tissue 
	Classifier Models between Fetal Subcutaneous Fat Tissue and Ultrasonographic Tools 

	Discussion 
	Main Findings 
	Comparison with Existing Literature 
	Strengths and Limitations 
	Clinical Interpretation 

	Conclusions 
	References

