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Abstract: The present research aims to evaluate the feasibility of a deep-learning model in iden-
tifying bulbar conjunctival injection grading. Methods: We collected 1401 color anterior segment
photographs demonstrating the cornea and bulbar conjunctival. The ground truth was bulbar conjunc-
tival injection scores labeled by human ophthalmologists. Two convolutional neural network-based
models were constructed and trained. Accuracy, precision, recall, F1-score, Kappa, and the area
under the curve (AUC) were calculated to evaluate the efficiency of the deep learning models. The
micro-average and macro-average AUC values for model grading bulbar conjunctival injection were
0.98 and 0.98, respectively. The deep learning model achieved a high accuracy of 87.12%, a precision
of 87.13%, a recall of 87.12%, an F1-score of 87.07%, and Cohen’s Kappa of 0.8153. The deep learning
model demonstrated excellent performance in evaluating the severity of bulbar conjunctival injection,
and it has the potential to help evaluate ocular surface diseases and determine disease progression
and recovery.

Keywords: deep learning; bulbar conjunctival injection; artificial intelligence; automated approach

1. Introduction

The bulbar conjunctival injection is a common clinical indicator of ocular diseases. It
appears in various forms of ocular irritation, infection, and inflammation [1]. The grading
of bulbar conjunctival injection is tightly associated with the diagnosis, severity assessment,
and rehabilitation of ocular diseases. The grading of bulbar conjunctival injection is
commonly based on the degree of redness, the area involved, and whether or not it is
focal or diffused [2]. Various standardized grading scales have been applied to evaluate
the severity of bulbar conjunctival injection, including the McMonnies/Chapman-Davies
scale, the Cornea and Contact Lens Research Unit grading scale, and the Institute for Eye
Research scale and the validated bulbar conjunctival injection scales [3–6]. These grading
systems depend on subjective judgment, the main limitation of which is the inter-grader
and intra-grader variability that reduces evaluation accuracy.

Considering these limitations, objective bulbar conjunctival injection assessment tools
have been developed to solve problems [7,8]. Park et al., used contrast-limited adaptive
histogram equalization to enhance the blood vessel and segmented the vessel with a certain
threshold for scoring [9]. Most studies utilized digital edge detection and color extrac-
tion [10–13]. Wolffsohn’s studies determined the amount of red-channel activity relative
to total channel activity to grade ocular redness [10,14]. Amparo’s teams applied a more
comprehensive algorithm to read the RGB value on pre-treated conjunctiva photographs
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digitally, convert them to HSV space, and calculate the redness score [15]. These methods
require image pre-processing, and the result might be affected by background color and
other redness other than conjunctive injection.

With the rapid development of deep learning, a convolutional neural network-based
artificial intelligence has been quickly introduced into the field of ophthalmological image
analysis, including diabetic retinopathy [16], age-related macular degeneration [17], glau-
coma [18], and dry eye [19,20]. A convolutional neural network could conduct classification
directly from photographs by training the algorithm with labeled images. The neural net-
work could extract features layer by layer automatically rather than recognize prespecified
features. Currently, few studies have focused on conjunctival injection classification with
the convolutional neural network. The primary aim of the present research was to evaluate
the feasibility and accuracy of a convolutional neural network-based deep learning model
in grading bulbar conjunctival injection.

2. Materials and Methods
2.1. Subjects and Dataset

This study was conducted following the Declaration of Helsinki, and the protocol was
approved by the institutional review board of the Peking University Third Hospital. The
individual information for each image was removed for privacy, and the image could not
be linked to an individual patient.

We retrospectively collected 1401 color anterior segment photographs from 1179 patients
between March 2019 and 2020 in the Department of Ophthalmology of Peking University
Third Hospital. All of the photographs were captured in a standardized method by the same
examiner using a digital slit lamp camera system consisting of a BX-900 Eyecap system
(Haag-Streit, Koeniz, Switzerland) and a Canon EOS 40D (Canon Inc., Tokyo, Japan).
Simultaneously the upper and lower eyelid was slightly opened manually to expose the
conjunctiva better. We applied 10× magnification and focused on the conjunctiva with
diffused light during photography. The photograph should contain the entire temporal and
nasal conjunctiva and the cornea in the middle of the image. The color anterior segment
photographs were taken in the clinic to assess different ocular surface diseases, including
dry eye, conjunctivitis, keratitis, etc. We excluded images from patients with severe ocular
trauma, ocular surface surgeries, and diseases influencing the observation of conjunctiva,
including severe ptosis and large conjunctiva tumor or unclear images.

The ground truth of bulbar conjunctival injection grading was established by three
independent ophthalmologists with more than five years of working experience. Initially,
three graders independently graded the bulbar conjunctival injection using the Cornea
and Contact Lens Research Unit scale from grade 0 to 4, as shown in Figure 1. The
Cornea and Contact Lens Research Unit scale is a 5-point bulbar conjunctival injection
photographic scale: 0, white eye; 1, very slight; 2, slight; 3, moderate; 4, severe [21]. The
order of the photographs was disrupted for two graders. After summarizing the results,
the discrepancies in the image screening and labeling were resolved by the fourth expert
ophthalmologist with more than 20 years of clinical experience.
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2.2. Model

To grade bulbar conjunctival injection (BCI), we applied ResNet34 for BCI Model for
bulbar conjunctival injection grading from 0 to 4 for each sample. With its novel residual
connection design, the ResNet model can train a deeper convolutional neural network
without worrying about vanishing and exploding gradients [22]. Therefore, a deeper
convolutional neural network model, ResNet34, was leveraged in our study for a more
complicated five-grade classification for the severity of bulbar conjunctival injection. With
more convolutional and batch normalization operations, ResNet34 can identify and locate
more complicated data features to recognize and solve intricate image problems.

We randomly allocated the images into three non-overlapping sub-datasets, a training
dataset (60%), a validation dataset (20%), and a testing dataset (20%), to develop and
evaluate the deep learning algorithm. We carried out random sampling individually to
avoid data from the same patient being allocated into the same dataset, which would cause
biased estimates in the deep learning model performance. The image in the training dataset
was applied to train the deep learning model, and the validation dataset was aimed to
tune the hyperparameter. The testing dataset evaluated the performance of the model in
grading bulbar conjunctival injection.

To train the model, the entire dataset was normalized according to the mean and
standard deviation of the pixel values in the images in the ImageNet training dataset.
Then, the original image with 3456 by 2304 pixels obtained from the digital slit lamp
camera system was padded with blank pixels and resized into a square image of 512 by
512 pixels. We also leveraged data augmentation methods to enhance and expand the
training dataset. A lateral inversion was first applied to all training images to increase
the size of the training dataset. Next, any one color jittering, random lighting via subtle
changes in image brightness and contrast of up to 10%, scaling using a randomly selected
multiplier in the range [0.8, 1.2] and cropping, rotating using a randomly selected angle
in the range [−15◦, 15◦], and shifting was applied with 50% probability when the image
was forwarded to the model training process. For training datasets with severe category
imbalance, most importantly, we used the method of category balance re-sampling to train
our models to prevent the model from favoring only specific categories, recognizing only
labels with large numbers of samples in the training dataset, and ignoring labels with small
numbers of samples.

Our study leveraged the same parameter settings for the two models described above.
All pre-trained parameters from ResNet were unfrozen and retrained, and different learning
rates from 0.0001 to 0.01 were used in different parts of the model. We used larger learning
rates for the later layers to learn high-level semantic features in the dataset, while a lower
learning rate was beneficial for maintaining the underlying feature extraction capabilities
of the model transferred from the large-scale ImageNet dataset. A mini-batch size of 8 was
used for trading off training efficiency and the limitations of the machine hardware. The
cross-entropy loss function and Adam optimizer provided by the PyTorch framework were
also employed with the default best parameters to train our models. For better training
efficiency, an early stop mechanism was used with a setting of 100 epochs.

Our deep learning models were implemented with Python 3.8 and the PyTorch 1.3 DL
framework. The training and evaluation platform was configured with two Intel Xeon
E5-2650 CPUs, four Nvidia Tesla V100 GPUs, and 128 GB of memory.

2.3. Evaluation

To evaluate the performance of our deep learning algorithm for grading bulbar con-
junctival injection, we quantitatively compared the results predicted by the deep learning
algorithm with those annotated by experienced ophthalmologists on the validation dataset.

Accuracy, precision, recall, F1-score, and Cohen’s kappa were calculated:

Accuracy =
TP + TN

TP + FP + TN + FN
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Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-score =
2TP

2TP + FP + FN

Cohen′s κappa =
p0 − pe

1− pe

pe =
a1 ∗ b1 + a2 ∗ b2 + . . . + ai ∗ bi

n ∗ n
where ai denotes the total number of labeled class i and bi is the total number of predicted
class i. P0 is the sum of the number of correctly classified samples in each class divided by
the total number of samples. True positive, TP; false positive, FP; true negative, TN; false
negative, FN.

The areas under the receiver operating characteristic curves were estimated to evaluate
the performance of models. In particular, the micro-receiver operating characteristic curves
and the areas under these curves were calculated globally by considering each example of
the label indicator matrix as a label, while the macro-receiver operating characteristic curves
and the areas under these curves were calculated for each label after its unweighted mean
was determined. Therefore, the macro metrics did not take label imbalance into account.
We generated confusion matrices to show the results of the DL model and manual labeling.

3. Results

There are 49 patients with a score of 0, 561 patients with a score of 1, 466 patients with
a score of 2, 200 patients with a score of 3, and 125 patients with a score of 4. The ROC
curves for the deep learning model grading bulbar conjunctival injection are shown in
Figure 2a. The micro-average and macro-average AUC were 0.98 and 0.98, respectively.
The AUC value for grading bulbar conjunctival injection as 0 to 4 were 0.98, 0.98, 0.98,
0.97, and 0.99. The confusion matrices comparing the performance between the bulbar
conjunctival injection grading model and the ground truth is shown in Figure 2b. The
confusion matrices summarized the count of each grade in the bulbar conjunctival injection
identified by the model or ophthalmologists. The agreement between the predicted label
and ground truth was high among all grades in conjunctival injection judgment. The
accuracy, precision, recall, F1-score, and Cohen’s kappa of the model grading bulbar
conjunctival injection and the performance of human ophthalmologists are demonstrated
in Table 1. The bulbar conjunctival injection grading model demonstrated high accuracy of
87.12%, with a precision of 87.13%, a recall of 87.12%, an F1-score of 87.07%, and Cohen’s
kappa of 0.8153. The performance metrics were superior to two ophthalmologists.

Table 1. Performance of the deep learning model grading bulbar conjunctival injection.

Accuracy Precision Recall F1-Score Cohen’s Kappa

Ophthalmology 1 0.7202 0.7671 0.7202 0.7194 0.6043
Ophthalmology 2 0.8728 0.8904 0.8728 0.8775 0.8217
Ophthalmology 3 0.7679 0.8079 0.7679 0.7695 0.6697

Model 0.8712 0.8713 0.8712 0.8707 0.8153
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Figure 2. Performance of the deep learning model grading bulbar conjunctival injection. (a). Receiver
operating characteristic curves for bulbar conjunctival injection grading (true positive rate-y axis;
false positive rate-x axis); (b). Confusion matrix for the deep-learning model and manual labelling.
The confusion matrices summarized the count of each grade in the bulbar conjunctival injection
identified by the model or ophthalmologists. The agreement between the predicted label and ground
truth was high among all grades in conjunctival injection judgment.

4. Discussion

Our study established deep learning models to grade bulbar conjunctival injection
through convolutional neural networks. The results demonstrated that the established
model performed better than some ophthalmologists. The present research shows the
possibility of applying DL models for bulbar conjunctival injection grading with color
anterior segment photography. The bulbar conjunctival injection is important in diagnosing
and evaluating ocular inflammatory and infectious diseases. Thus, it is essential to evaluate
the severity of bulbar conjunctival injection objectively. The grading scores applied in
clinical practice generally range from zero to four or five [3,5,16]. However, some images
might be better regarded with scores between two grades. Furthermore, the subjective
grading in the clinic depends on the experience and individual perceptions of each doctor,
and intra- and inter-grader inconsistencies might cause inaccuracies in grading. Hence, it
was necessary to develop an objective and continuous quantitative evaluation system.

Several studies have reported various image analysis techniques for grading bulbar
injection. Downie et al. [16] reported a method that measured bulbar conjunctival injection
objectively by calculating the percentage of pixels in the regions of interest of the images.
Some studies developed bulbar conjunctival injection image analysis software to extract
blood vessels based on thresholding [10,23,24], the percentage of red in the image [25,26],
image smoothing, and edge detection [10,27]. However, these methods require image pre-
processing, and photographs with poor sharpness and unsuitable background color might
not be appropriately identified with this technique. Recently, the convolutional neural
network-based deep learning model has been widely applied in medical image recognition.
The neural network could effectively extract the features in the images automatically to
complete various tasks, including classification, grading, and lesion recognition [16–20]. By
training the model based on a convolutional neural network with certain labeled images,
the models can automatically identify similar labels in the images effectively.

The developed model provides an accurate and automatic grading of the severity of
bulbar conjunctival injection. The model could be potentially applied in several clinical
and experimental scenarios to assess bulbar conjunctival with repeatability and reliability.
Firstly, the researcher could apply the model to enroll patients with a certain level of bulbar
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conjunctival injection rapidly in clinical trials investigating the treatment targeting dry eye,
conjunctivitis, keratitis, and uveitis. Secondly, the model facilitates a rapid evaluation of
ocular surface disease rehabilitation during the follow-up period based on bulbar conjunc-
tival injection recovery. Thirdly, the model could be applied in community-based screening
and non-professional health examinations to indicate referral. With further improvement,
the model might be embedded in mobile phone applications so that the bulbar conjunctival
evaluation could be performed with selfies anywhere and anytime in the future.

Certain limitations exist in the present research. First, the proportions of image bulbar
conjunctiva injection grades 0 and 4 were relatively low. This might cause bias in the model
identifying certain bulbar conjunctiva injection grades. Second, the model was validated
with images similar to the training dataset for photograph brightness and color. Further
external testing with images from other machines and centers should be conducted to
verify the generalization capability of the model. Third, the actual injection may not be
accurately represented in the photograph. The performance of the model may be inferior
compared with slit lamp microscope observance. The present model could only identify
bulbar conjunctival injection grading based on anterior segment photography, and the
identification of these two signs could not be directed to certain ocular diseases. Further
evidence and clinical manifestations are required to support the diagnosis of the disease.
In future investigations, we would further validate the model with an external dataset and
test the model in various ocular diseases that could improve the facility of the model.

In conclusion, this convolutional neural network-based deep learning model demon-
strated robust performance in evaluating the severity of bulbar conjunctival injection. The
performance was similar to or possibly better than some human ophthalmologists. The
present research provides the potentiality of a deep learning model to facilitate the assess-
ment of bulbar conjunctiva in diagnosing ocular surface diseases and determining disease
severity and prognosis.
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