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Abstract: Kristen rat sarcoma (KRAS) gene is one of the most common mutated oncogenes in solid
tumors. Yet, KRAS inhibitors did not follow suit with the development of targeted therapy, for the
structure of KRAS has been considered as being implausible to target for decades. Chemotherapy
was the initial recommended therapy for KRAS-mutant cancer patients, which was then replaced by
or combined with immunotherapy. KRAS G12C inhibitors became the most recent breakthrough in
targeted therapy, with Sotorasib being approved by the Food and Drug Administration (FDA) based
on its significant efficacy in multiple clinical studies. However, the subtypes of the KRAS mutations
are complex, and the development of inhibitors targeting non-G12C subtypes is still at a relatively
early stage. In addition, the monotherapy of KRAS inhibitors has accumulated possible resistance,
acquiring the exploration of combination therapies or next-generation KRAS inhibitors. Thus, other
non-target, conventional therapies have also been considered as being promising. Here in this review,
we went through the characteristics of KRAS mutations in cancer patients, and the prognostic effect
that it poses on different therapies and advanced therapeutic strategy, as well as cutting-edge research
on the mechanisms of drug resistance, tumor development, and the immune microenvironment.

Keywords: KRAS mutations; therapeutic strategy; drug resistance; oncogenic mechanisms;
immune microenvironment

1. Introduction

Kirsten rat sarcoma (KRAS) gene is one of the most common mutated oncogenes in
numerous cancer types, such as non-small cell lung cancer (NSCLC), colorectal cancer
(CRC), and pancreatic ductal adenocarcinoma (PDAC) [1]. It is a member of the rat sarcoma
(RAS) viral oncogene family, and was first found in 1982 on the short arm of chromosome
12 in human lung cancer cells [2]. With KRAS lacking classical drug binding sites, the
development of an inhibitor targeting KRAS mutations is extremely challenging, resulting
in no breakthrough in KRAS-targeted therapy for a long time. Traditionally, chemotherapy
has been used for patients with KRAS-mutant lung cancer and other solid tumors. With
the development of immunotherapy in recent years, strategies have also been gradually
developed for the combination of immunotherapy and chemotherapy for patients with
KRAS mutations. The year of 2021 saw a breakthrough in KRAS-targeted drugs, with
Sotorasib being approved for clinical use in patients with NSCLC and other solid tumors
with KRAS G12C mutations [3]. Adagrasib, another KRAS G12C inhibitor, also showed
promising results in a phase-2 clinical trial of NSCLC patients in 2022 [4]. As research
targeting the immune microenvironment of tumors has flourished, KRAS-related studies
have also emerged. This review intends to summarize the characteristics of KRAS mutations
in solid tumors, update the latest clinical therapeutic strategies, and discuss the mechanisms
of drug resistance and tumor development, as well as the immune microenvironment.
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2. Molecular Biological Functions of KRAS

The protein that KRAS encodes is a membrane-bound regulatory protein (G protein)
that acts by binding guanosine triphosphatases (GTPases) [5]. It usually acts as the switch al-
tering its GTP-bound active state and GDP-bound inactive state, with a resynthesis half-life
of ~24 h [6–9]. Guanine nucleotide exchange factor (GEF), such as son of sevenless isoform 1
(SOS1) protein, functions to promote the active form of KRAS during this switch [10,11].
Such an alteration causes conformational changes of KRAS binding Raf proteins, activating
downstream effectors that are in charge of cellular growth, differentiation, and survival.
The deactivation of GTPase caused by oncogenic mutation accumulates the KRAS-GDP
state, initiating downstream pathways such as mitogen-activated protein kinase (MAPK)
pathway and phosphoinositide 3-kinase (PI3K) pathway) [12,13]. In the MAPK pathway,
activated KRAS-GTP causes a rapid increase in the number of serine/threonine-specific
protein kinase (RAF) within cells localizing to the plasma membrane, leading to conforma-
tional change. The then activated RAF further binds to mitogen-activated protein kinase
1/2 (MEK1/2), activating extracellular regulated protein kinases 1/2 (ERK1/2) via phos-
phorylation [14]. In the PI3K pathway, KRAS GTP binds to the p110s site of PI3K, leading
to PI3K activation, which converts the phosphatidylinositol 4, 5-diphos-phate (PIP2) to
phosphatidylinositol 3,4,5-triphosphate (PIP3). PIP3 promotes the phosphorylation of
serine/threonine-protein kinase (AKT) by phosphoinositide-dependent kinase 1 (PDK1),
activating the mammalian target of rapamycin (mTOR) pathway [15]. Activated down-
stream signaling pathways regulate cell proliferation, differentiation, migration, and other
cellular life activities [14,16].

3. KRAS Mutations in Cancers
3.1. Frequencies and Types of KRAS Mutations

According to The Cancer Genome Atlas (TCGA) database, KRAS mutations are present
in approximately 11.6% of all carcinomas, the mutation rates and subtypes of which vary
widely between tumors. KRAS mutations are most common in PDAC, with 81.72% of
patients presenting KRAS mutations. CRC had the second highest KRAS mutation fre-
quency, with a mutation frequency of 37.97%. KRAS mutations are present in approximately
21.20% of patients with NSCLC. In addition, KRAS mutations are mainly found in choloan-
giocarcinoma, uterine endometrial carcinoma, testicular germ cell cancer, and cervical
squamous cell carcinoma, with a mutation frequency of about 12.7%, 14.1%, 11.7%, and
4.3%, respectively. KRAS mutations mainly contain 21 missense mutations, with G12D
(29.19%), G12V (22.97%), and G12C (13.43%) being the most common. Studies from the
TCGA database suggest that the prevalence of KRAS mutations in PDAC is the highest
(over 80%) of all gene mutations, with G12D being the most common subtype; and that
in CRC, KRAS G12D, and G12V are the two most common mutant subtypes. In all lung
cancers, KRAS mutations mainly accounted for 11.2–25.3% of all mutations, with the KRAS
G12C-type mutations accounting for 2.8–15% [17]. Specifically in NSCLC, KRAS G12C is
the most common mutant subtype, accounting for roughly 45% of all KRAS mutations,
followed by G12V and G12D [18]. Apart from the common tumor types, the landscape of
the KRAS mutation in rare tumors is investigated, with an overall mutation rate of 8.7%;
and G12D and G12V, along with G13D, are the most common subtypes [19]. The KRAS
mutation frequency and subtype proportion in common cancers are summarized in Table 1.
Mutations in KRAS, different mutant subtypes of KRAS, and other genetic co-alterations
with the KRAS mutation may all have an impact on the clinicopathological features and
prognoses of cancer patients.
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Table 1. KRAS mutation rate and subtype proportion in common cancers.

Cancer Type
KRAS Mutation

N of Samples Rate (%) Top 3 Subtypes
(Proportion of All KRAS Mutations, %)

Pan-cancer 87,606 11.60 G12D (29.19) G12V (22.97) G12C (13.43)

Pancreatic adenocarcinoma 990 81.72 G12D (40.20) G12V (31.96) G12R (17.10)

Colorectal carcinoma 3853 37.97 G12D (28.04) G12V (18.50) G13D (18.10)

Non-small cell lung cancer 4584 21.20 G12C (45.42) G12V (15.78) G12D (13.03)

Data acquired from cBioPortal.org. G12: codon 12 encoding glycine; G13: codon 13 encoding glycine.

3.2. Clinicopathological Characteristics of KRAS Mutations

KRAS mutations are associated with specific clinicopathological features in different
tumors. In CRC, A study of left-sided, microsatellite stable CRC found that the proportion
of KRAS-mutant patients is higher in the lung-metastatic cohort, while it is lower in the
liver-metastatic cohort [20]. Another study of metastatic CRC showed that the regression of
the KRAS mutation was associated with a better prognosis and oligo-metastatic status [21].
In NSCLC, KRAS mutations are seen in about 30% of lung adenocarcinomas and 5% of
squamous lung cancers, in 26% of Westerners and 11% of Asians, and also in 30% of smokers
and 10% of nonsmokers [22]. A study of lung adenocarcinoma patients found that KRAS
mutations were significantly associated with older age (>45 years old) at diagnosis [23].
In addition, liver metastases and brain metastases occurred more frequently in NSCLC
patients with KRAS mutations than in wild-type [24]. KRAS mutation was also found to be
a biomarker of lower differentiation in neuroendocrine tumors (NETs).

3.3. Prognostic Value of KRAS Mutations

Numerous studies have shown that KRAS mutations can have an impact on the
prognoses of cancer patients, although the results of different studies are somewhat contra-
dictory regarding their specific impacts. Most of the current studies show an association
with poor prognosis, and that subtypes and co-mutations may also have an impact.

3.3.1. Overall Impact of KRAS Mutations on Prognosis

In PDAC, more studies tend to consider KRAS mutations as a predictor of poor
prognosis. A study including 39 PDAC patients found that patients with KRAS mutations,
specifically the subtype of G12D, had a significantly worse overall survival (OS) and
disease-free survival (DFS) [25]. A study based on 110 PDAC patients reported that those
with KRAS mutations have significantly shorter PFS and OS (5.3/6.9 months (p = 0.044) vs.
11.8/19.9 months (p = 0.037), respectively) [26]. Another study detecting the circulating cell-
free tumor-DNA (cft-DNA) of 29 PDAC patients showed that the survival of patients with
detectable plasma KRAS mutations pre-treatment was significantly worse (16.8 months
vs. not reached, p < 0.031) [27]. A study comparing PDAC patients treated with surgery
to chemotherapy showed that the detectable plasma KRAS mutation is an independent
predictor of early recurrence after surgery, while not showing a significant difference in
PFS after chemotherapy [28].

KRAS mutations have also been reported to have a negative impact on patients with
colorectal cancer. A study of hepatic arterial infusion (HAI) pump therapy in unresectable
colorectal liver metastases showed that patients with KRAS mutations had worse responses
to HAI chemotherapy, compared with wild-type patients [29]. A study of epidermal growth
factor receptor (EGFR) inhibitors combined with third-line chemotherapy in metastatic
CRC patients found that the RAS mutation was an independent predictor for shorter
PFS [30]. A retrospective study based on locally advanced rectal cancer patients treated
with neoadjuvant chemoradiation therapy (nCRT) and proctectomy showed that KRAS
mutations were not associated with a pathologic complete response (pCR), yet they were

cBioPortal.org
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independently related to a worse prognosis [31]. Another study of stage IV CRC patients
found a shorter OS for patients with KRAS mutations versus wild-type status (p = 0.004) [32].
A study using the National Cancer Database reported that KRAS mutations presented a
worse OS than the KRAS wild-type in metastatic CRC patients under the age 70, while no
significant association was detected above the age of 70 [33].

In the study of NSCLC, the prognostic impact of KRAS mutations is controversial. A
retrospective study of Durvalumab in patients with unresectable stage III NSCLC showed
that patients with KRAS mutations had a better median PFS than EGFR and BRAF genetic
mutations (not reached vs. 8.1 months vs. 7.8 months, p = 0.02) [34]. A study of immune
checkpoint inhibitors (ICIs) in lung cancer patients with brain metastasis showed that KRAS
mutations may drive a better efficacy of immunotherapy [35]. Despite these optimistic
results, some reported that KRAS mutations might not have a significant impact on the
prognoses of NSCLC patients. A multicenter cohort study of 1017 lung cancer patients of
immunotherapy showed that the KRAS mutations had no significant impact on the response
to ICIs in NSCLC patients [36]. Another meta-analysis regarding NSCLC patients concurred
that no statistical OS improvement in KRAS mutant or KRAS wild-type patients [37].
A study of abemaciclib (a selective small-molecule CDK 4/6 inhibitor) combined with
pembrolizumab in stage IV NSCLC patients showed that KRAS-mutant patients presented
a better efficacy, yet a greater toxicity [38]. A study of stage IV lung adenocarcinoma
patients treated with pembrolizumab as first-line monotherapy showed that KRAS has
no prognostic impact on such treatment [39]. Another study of ICIs treating NSCLC
patients with high programmed death ligand 1 (PD-L1) expression showed that the KRAS
mutation status had no significant impact on the efficacy or safety of ICIs, though with
a non-significant trend of worse survival in patients with KRAS G12C mutations [40]. A
real-world study with 150 lung adenocarcinoma patients reported no significant difference
in the PFS, OS, as well as first-line chemotherapy response among patients with or without
KRAS mutations [41]. In conclusion, KRAS mutations may not have a significant impact
on the prognosis of NSCLC patients.

3.3.2. Impacts of Different KRAS Mutation Subtypes on Prognosis

Different KRAS mutant subtypes may also present different impacts on prognosis.
In NSCLC, a single-center cohort study of non-squamous NSCLC patients with KRAS
mutations reported that patients with KRAS G12C mutations had a higher response rate
(53.8% versus 8.3%, p = 0.030) and a longer PFS (4.8 months versus 2.1 months, p = 0.028)
than those with mutations of other KRAS subtypes [42]. Such a finding might be contro-
versial, considering that another real-world study based on 1039 NSCLC patients found
no significant difference in treatment with ICI between patients with the KRAS wild type,
G12C mutant, and other KRAS subtype mutations [43]. In CRC, a retrospective study
comparing KRAS G12C mutations to other KRAS mutations in metastatic CRC patients
treated with first-line chemotherapy plus bevacizumab showed that KRAS G12C had a
significantly worse response rate (RR) than other subtypes (p = 0.017), while no difference
in PFS (p = 0.76) and OS (p = 0.56) was observed [44]. A study of 419 CRC patients with
unresectable liver metastases showed that the KRAS A146 mutations had a high tumor
burden (TMB) and a worse OS compared with the G12 subtypes (median OS 10.7 months
vs. 26.4 months; p = 0.003) [45].

3.3.3. Impact of KRAS Co-Alterations on Prognosis

The presence of genetic co-mutations in patients with KRAS mutations has also been
reported in studies. According to current studies related to lung cancer patients with KRAS
mutations, the most common co-mutated gene is tumor protein p53 gene (TP53), which
accounts for about 39–42% of patients with KRAS mutations, followed by serine/threonine
kinase 11 gene (STK11), accounting for about 20–30%, and kelch-like ECH associated protein
1 gene (KEAP1), accounting for about 13–27% [46,47]. In addition, there are co-mutated
genes such as ATM serine/threonine kinase gene (ATM), MNNG HOS Transforming gene
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(MET), and erb-b2 receptor tyrosine kinase 2 gene (ERBB2), which account for more than
10% of patients with KRAS mutated lung cancer [46].

Several features that coexist with KRAS mutations also have an impact on the progno-
sis of patients. In a retrospective study of 587 resected PDAC patients, the co-mutation of
TP53 and KRAS G12D is shown to be an independent predictor of better OS and recurrence-
free survival (RFS) [48]. In a study of HER2-mutant advanced gastric cancer patients treated
with trastuzumab, KRAS mutation was found to be a predictor of insufficient efficacy and
poor prognosis [49]. As for NSCLC, a study of 50 EGFR T790M-mutant NSCLC patients
found that patients with TP53 R237C or KRAS G12V mutations cannot benefit from subse-
quent osimertinib treatment [50]. Another study of 946 patients reported that concomitant
KRAS mutation and copy number gain (copy number ≥2) was a predictor of worse sur-
vival [51]. KRAS/STK11 co-mutations was reported to have a worse survival among all
KRAS-mutant metastatic lung adenocarcinoma patients [18]. In a study of NSCLC patients
treated with immunotherapy, patients with TP53/KRAS co-mutation were found to have a
significantly longer PFS (5.8 vs. 2.6 months, p = 0.005) [52]. Another study of advanced lung
adenocarcinoma showed that patients with KRAS mutations of all gene mutations had the
best response to immunotherapy [53]. However, co-mutations may alter such efficacy, such
as KRAS-mutant patients with STK11 or KEAP1, as co-mutations have a poorer prognosis
for immunotherapy than KRAS wild-type lung adenocarcinoma patients [54].

Except from co-mutations, a High src homology region 2 domain-containing phos-
phatase 2 (SHP2) expression was reported to be a predictor of a better survival rate and
a better efficacy of immunotherapy in a study of 61 KRAS-mutant advanced NSCLC pa-
tients [55]. A low expression level of serum deprivation protein response (SDPR) was
found to be suppressing the immune system, independently correlated with a shorter OS in
KRAS-mutant NSCLC patients [56]. Furthermore, a study based on 25 PDAC patients after
R0/R1-resection showed that KRAS mutations combining a high carbohydrate antigen 19-9
(CA 19-9) level is a better predictor than individual markers, with an impact on early relapse
and poorer OS, compared to those with KRAS wild-type or a low CA 19-9 level [57]. A high
expression of both tyrosine phosphatase PTPN2 and LAMA3/AC245041.2 was found to be
significantly related to the poor prognosis of KRAS-mutant patients with PDAC [58,59].

4. Therapeutic Strategies in KRAS-Mutant Cancers

The high incidence of KRAS makes it one of the most attractive and challenging
therapeutic targets. Traditionally, patients with KRAS-mutant solid tumors were treated
with chemotherapy, and the standard of care for patients with KRAS-mutant solid tumors
is chemotherapy. In CRC, the median PFS of KRAS-mutant patients is 11.6 months, sig-
nificantly worse than patients with wild-type KRAS [60]. Albuminpaclitaxel combined
with gemcitabine is a first-line chemotherapy regimen that has been widely applied to
pancreatic cancer, but most patients rapidly develop drug resistance after several courses
of treatment [61]. The average OS of NSCLC patients with KRAS mutations treated with
chemotherapy is less than 2 years [22]. The efficacy of conventionally applied chemotherapy
for patients with KRAS mutations is limited and needs to be improved.

Since the development of immunotherapy, treatment options for patients with KRAS
mutations have gradually entered the era of immunotherapy. In addition, many stud-
ies have explored the indirectly targeted therapy of upstream and downstream KRAS
pathways, and recently, there has been a breakthrough in the directly targeted therapy of
KRAS. The immunotherapeutic agents and targeted therapeutic agents currently under
research, and their effects on the upstream and downstream pathways of KRAS can be seen
in Figure 1.
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Figure 1. Signaling Pathways Related to KRAS Mutations, and Potential Treatment Strategies. * KRAS
switches between a guanosine diphosphate (GDP)-bound inactive state and a guanosine triphosphate
(GTP)-bound active state. Normally, KRAS is bound to GDP and remains inactive. Activation through
receptor tyrosine kinases (RTKs) leads to the activation of the guanine nucleotide exchange factor
(GEF) family, which subsequently triggers the exchange between GDP and GTP. GTP-bound active
KRAS transduces downstream signals, including mitogen-activated protein kinase (MAPK) pathway
and the phosphoinositide 3-kinase (PI3K) pathway, which are responsible for cell proliferation, cell
cycle regulation, cell survival, and cell differentiation. The treatment approaches of KRAS mutant
patients include therapies targeting KRAS, and factors involved in the KRAS mutation pathways,
such as RTKs, SHP2, PI3K pathway elements, MAPK pathway elements, and CDK4/6. ICIs are
also included, considering the potential effect on KRAS mutant patients. This figure was created
using Figdraw.

4.1. Immunotherapy in KRAS-Mutant Cancers

With the application of monoclonal antibodies targeting programmed death 1 (PD-1)
and its primary ligand PD-L1, the treatment paradigm for most advanced solid tumors has
been fundamentally altered. Further studies have also been conducted in KRAS mutant
tumors, and data shows that KRAS mutations may reshape the tumor immune microen-
vironment [62]. An analyzer powered by artificial intelligence based on hematoxylin and
eosin showed that KRAS mutations were mostly found in the inflamed subtype of the
immune microenvironment [63]. A study based on 202 patients of lung adenocarcinoma
found that tumor-infiltrating lymphocytes (TILs) were relatively abundant in more than
60% of cases, TTF1 positivity was found in 78.7% of cases, and PD-L1 positivity was found
in 25.2% of cases [64]. The mechanisms of KRAS mutations regulating the immune mi-
croenvironment may include the secretion of neutrophil chemokines, the downregulation
of major histocompatibility complex I (MHC I), the induction of regulatory T (Treg) cells,
and the upregulation of PD-L1 [65]. These results all suggest that patients with KRAS
mutations may benefit from immunotherapy.
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In recent years, immunotherapy has shown advantages in treating patients with KRAS
mutations, especially in NSCLC. A single-center, retrospective cohort study using ICIs
as a first-line treatment for KRAS-mutant advanced NSCLC patients reported a median
PFS of 16.2 months and a median OS of 31.3 months [66]. A meta-analysis of randomized
controlled trials (RCTs) comparing anti-PD-(L)1 with chemo-monotherapy for advanced
KRAS-mutant NSCLC showed that patients treated with first- or second-line anti-PD-(L)1
with or without chemotherapy had longer OS and PFS than chemotherapy alone [67].
A study based on 44 NSCLC patients with high PD-L1 expression showed that patients
with KRAS G12C mutations have a significantly longer PFS when treated with anti-PD-1
immunotherapy [68]. A meta-analysis discussing the efficacy of immunotherapy in NSCLC
patients with genetic mutations showed that ICIs significantly prolonged the OS of patients
with KRAS mutations [69].

Combination strategies of immunotherapy and chemotherapy are also emerging, with
most of the studies supporting that combination therapy has a better efficacy than monother-
apy. A real-world retrospective study of 497 KRAS-mutant NSCLC patients reported that
patients had a significantly longer survival when treated with chemoimmunotherapy than
immunotherapy alone (median PFS 13.9 vs. 5.2 months, p = 0.049) [70]. According to
the phase 3 Impower 150 trial, atezolizumab plus bevacizumab and chemotherapy is
an effective first-line therapy for KRAS-mutant NSCLC patients with STK11, KEAP1, or
TP53 co-mutations [71]. A retrospective single-center study comparing PD-1 inhibitors
combined with nab-paclitaxel plus gemcitabine (AG) chemotherapy versus AG as the
first-line treatment of advanced pancreatic cancer reported that PD-1+AG could improve
the OS of patients with KRAS/TP53 co-mutations [72]. However, there also have been
studies reporting different findings. A cohort study comparing ICIs monotherapy with
chemoimmunotherapy for NSCLC patients showed a better rate of survival in KRAS-
mutant patients than wild-type patients, yet no significant difference was found between
treatment strategies in the subgroup of KRAS-mutant patients [73].

In summary, immunotherapy combined with chemotherapy appears to provide greater
clinical benefits in patients with KRAS mutations compared to immune monotherapy.
However, it is worth noting that the PD-L1 expression level plays a more dominant role
than KRAS mutations.

4.2. Direct and Indirect Inhibitors of KRAS
4.2.1. Directly Targeted Therapy

Direct targeting KRAS has long been considered difficult. As researchers have learned
more about the structure of KRAS and the complex interactions involved in the RAS
signaling protein family, they have been able to break through the perception that KRAS
targets are “undruggable”, developing direct inhibitors of KRAS targets in recent years [74].
Drugs directly targeting KRAS have recently emerged with promising results. Sotorasib
(AMG510) is currently the only FDA-approved tyrosine kinase inhibitor (TKI) targeting
KRAS G12C [3]. In the CodeBreaK 100 phase 2 single-arm trial, Sotorasib had an ORR
of 37% and a median PFS of 6.7 months [75]. Adagrasib (MRTX849) performs well in the
KRYSTAL-1 phase 1 and phase 2 trials, and it is expected to be the next approved drug
targeting KRAS G12C [4,76]. ASP2453, a novel KRAS G12C inhibitor, showed antitumor
efficacy in the preclinical models of KRAS G12C mutant cancers [77]. The latest clinical
studies of all KRAS inhibitors are presented in Table 2.
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Table 2. Clinical Trials of KRAS G12C-Targeted Therapy on KRAS Mutant Tumors.

Drug Name Treatment Strategy Stage Patient
Characteristics

Number
of

Patients

Initiation
Year

NCT
Number

Sotorasib
(AMG 510)

Monotherapy Phase 2
Advanced NSCLC
with KRAS G12C

mutations
116 2021 NCT04625647

Monotherapy Phase 1–2
Advanced solid

tumors with KRAS
G12C mutations

793 2018 NCT03600883

Monotherapy Phase 2

Stage IV NSCLC with
KRAS G12C

mutations without
prior treatment

170 2022 NCT04933695

Monotherapy Phase 2

Stage Ib-IIIA
resectable NSCLC
with KRAS G12C

mutations

25 2022 NCT05400577

Monotherapy Phase 2
Stage III unresectable
NSCLC with KRAS

G12C mutations
43 2022 NCT05398094

Monotherapy Phase 1
Advanced solid

tumors with KRAS
G12C mutations

12 2020 NCT04380753

Monotherapy Phase 2
Stage III unresectable
NSCLC with KRAS

G12C mutations
43 2022 NCT05398094

Monotherapy (VS Docetaxel) Phase 3
Advanced NSCLC
with KRAS G12C

mutations
345 2020 NCT04303780

Combined with Tarloxotinib
(pan-ERBB inhibitor) Phase 1–2

Advanced NSCLC
with KRAS G12C

mutations
30 2022 NCT05313009

Combined with BBP-398
(SHP2 inhibitor) Phase 1

Advanced solid
tumors with KRAS

G12C mutations
85 2022 NCT05480865

Combined with VS-6766
(RAF/MEK inhibitor) Phase 1–2

Advanced NSCLC
with KRAS G12C

mutations
53 2022 NCT05074810

Combined with targeted
therapy, chemotherapy, or

immunotherapy
Phase 1–2

Advanced Solid
tumors with KRAS

G12C mutations
1054 2019 NCT04185883

Combined targeted therapy,
chemotherapy, or
immunotherapy

Phase 1–2
Advanced solid

tumors with KRAS
G12C mutations

1054 2019 NCT04185883

Combined with
Panitumumab (anti-EGFR
mAb) vs. Trifluridine and
Tipiracil (chemotherapy) +
Regorafenib (multi-kinase

inhibitor *)

Phase 3
Advanced CRC with

KRAS G12C
mutations

153 2022 NCT05198934

Combined with MVASI
(antiangiogenic drug) Phase 1–2

Advanced NSCLC
with KRAS G12C

mutations and Brain
metastasis

43 2022 NCT05180422

Combined with Cisplatin or
Carboplatin and Pemetrexed

(chemotherapy)
Phase 2

Stage IIA-IIIB
resectable

non-squamous
NSCLC with KRAS

G12C mutations

27 2022 NCT05118854
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Table 2. Cont.

Drug Name Treatment Strategy Stage Patient
Characteristics

Number
of

Patients

Initiation
Year

NCT
Number

Adagrasib
(MRTX849)

MRTX monotherapy or
combined with

Pembrolizumab (anti-PD-1
ICI)/Cetuximab (anti-EGFR

IgG1 mAb)/Afatinib
(EGFR TKI)

Phase 1–2

Advanced or
metastatic cancer
with KRAS G12C

mutations

740 2019 NCT03785249

Monotherapy Phase 2

Advanced or
metastatic NSCLC
with KRAS G12C

mutations

116 2022 NCT03785249

MRTX849 monotherapy or
combined with
Pembrolizumab
(anti-PD-1 ICI)

Phase 2

Advanced or
metastatic NSCLC
with KRAS G12C

mutations

250 2020 NCT04613596

Monotherapy vs. Docetaxel
(chemotherapy) Phase 3 Advanced or

metastatic NSCLC 340 2021 NCT04685135

MRTX849 combined with
Cetuximab (anti- EGFR IgG1
mAb) vs. mFOLFOX6 and
FOLFIRI (chemotherapy)

Phase 3
Advanced CRC with

KRAS G12C
mutations

420 2021 NCT04793958

Combined with VS-6766
(RAF-MEK inhibitor) Phase 1–2

Advanced NSCLC
with KRAS G12C

mutations
85 2022 NCT05375994

JAB-21822

Monotherapy Phase 1–2
Advanced solid

tumors with KRAS
G12C mutations

144 2021 NCT05009329

Monotherapy or combined
with Cetuximab (anti-EGFR

IgG1 mAb)
Phase 1–2

Advanced solid
tumors with KRAS

G12C mutations
100 2021 NCT05002270

Combined with Cetuximab
(anti-EGFR IgG1 mAb) Phase 1–2

Advanced solid
tumors with KRAS

G12C mutations
62 2022 NCT05194995

Combined with JAB-3312
(SHP2 inhibitor) Phase 1–2

Advanced solid
tumors with KRAS

G12C mutations
124 2022 NCT05288205

JDQ443

Monotherapy Phase 3
Advanced NSCLC
with KRAS G12C

mutations
360 2022 NCT05132075

Monotherapy or combined
with TNO155 (SHP2

inhibitor) or tislelizumab
(anti-PD-1 ICI) or

TNO155 + tislelizumab

Phase 1–2
Advanced solid

tumors with KRAS
G12C mutations

425 2021 NCT04699188

D3S-001 Monotherapy Phase 1
Advanced solid

tumors with KRAS
G12C mutations

98 2022 NCT05410145

GFH925 Monotherapy Phase 1–2
Advanced solid

tumors with KRAS
G12C mutations

128 2021 NCT05005234

YL-15293 Monotherapy Phase 1–2
Advanced solid

tumors with KRAS
G12C mutations

55 2021 NCT05119933
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Table 2. Cont.

Drug Name Treatment Strategy Stage Patient
Characteristics

Number
of

Patients

Initiation
Year

NCT
Number

JNJ-
74699157 Monotherapy Phase 1

Advanced solid
tumors with KRAS

G12C mutations
10 2019 NCT04006301

GDC-6036
Monotherapy or combined

with chemotherapy,
immunotherapy, etc.

Phase 1
Advanced solid

tumors with KRAS
G12C mutations

498 2020 NCT04449874

LY3537982
Monotherapy or combined

with targeted therapy,
immunotherapy, etc.

Phase 1
Advanced solid

tumors with KRAS
G12C mutations

360 2021 NCT04956640

RMC-6236 Monotherapy (KRAS
G12X inhibitor) Phase 1

Advanced solid
tumors with KRAS

mutations
141 2022 NCT05379985

* NSCLC: non-small cell lung cancer; CRC: colorectal cancer; SHP2: Src homology2 (SH2) domain-containing
protein tyrosine phosphatase (PTPase); EGFR: epidermal growth factor receptor; MEK: mitogen-activated extra-
cellular signal-regulated kinase; IgG1: immunoglobulin G1; mAb: monoclonal antibody; ICI: immune checkpoint
inhibitor; TKI: Tyrosine kinase inhibitor.

Current clinical studies of KRAS inhibitors have shown promising results with multi-
ple agents in a variety of solid tumors. The structural features of each subtype make G12C
a breakthrough for KRAS inhibitors, but they also make it difficult for other subtypes to
benefit from KRAS G12C inhibitors. Inhibitors for other subtypes are under investigation
and are to be expected. However, most patients have previously received systemic im-
munotherapy or chemotherapy, so the evidence for their use as first-line therapy remains
to be explored. Treatment strategies in combination with other therapies are still under
investigation, yet the results are worth expecting.

4.2.2. Indirectly Targeted Therapy

Apart from drugs directly targeting KRAS, a number of indirectly targeted therapies
targeting its upstream or downstream signaling pathway have also been developed. A
study found that AZD0424 (an SRC inhibitor), when combined with MEK inhibitors (such
as trametinib), inhibits tumor growth more than MEK inhibitor monotherapy, but does
not reverse pre-existing MEK inhibitor resistance [78]. A study of KRAS G12R-mutant
pancreatic cancer patients treated with selumetinib (KOSELUGO™; ARRY-142886, an oral
MEK1/2 inhibitor) showed a median PFS of 3.0 months and a median OS of 9 months.
Expectations were not met, and this group of patients should be considered for combination
with other therapies [79]. The Traf2- and Nck-interacting protein kinase (TNIK) inhibitor
NCB-0846 was found to enhance cell death induced by the BCL-X(L) inhibitor ABT-263 in
KRAS/BRAF mutant cells, which may be a new combination treatment strategy for the
KRAS/BRAF-mutant CRC [80]. Crenolanib, a TKI targeting tyrosine kinase receptors such
as platelet-derived growth factor receptor A (PDGFRA), platelet-derived growth factor
receptor B (PDGFRB), and FMS-like tyrosine kinase-3 (FLT3), may have clinical benefit for
KRAS/BRAF-mutant CRC patients [81].

Some combination strategies have shown benefits as well. There is a retrospective
study comparing bevacizumab plus capecitabine, with capecitabine monotherapy for
KRAS-mutant metastatic CRC showing that combination therapy was better tolerated,
and also contributing a longer PFS (9.0 months vs. 7.2 months, p < 0.05) [82]. Another
study found that conventional mFOLFOX6 chemotherapy combined with cetuximab for
KRAS-mutant CRC patients showed was shown to improve efficacy, reduce the overall
incidence of adverse events (AEs), improve OS, and extend overall patient survival when
adding simvastatin [83]. A phase 1 study of binimetinib (MEK inhibitor) plus carboplatin
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and pemetrexed chemotherapy for stage-IV non-squamous NSCLC showed that the ORR
of patients with KRAS/NRAS mutations was 62.5%, while wild-type patients had an
ORR of 25% [84]. A phase 1b, multi-center study of binimetinib plus pemetrexed and
cisplatin chemotherapy, followed by the maintenance of binimetinib and pemetrexed for
advanced KRAS-mutant NSCLC, reported an ORR of 33%, a median PFS of 5.7 months,
and a median OS of 6.5 months, with no unacceptable AEs [85]. A study found that the
sequential triple therapy of anti-PD-1 ICIs sequentially after fulvestrant (anti-estrogen)
plus dacomitinib (a pan-HER inhibitor) had the potential for treating KRAS-mutant lung
cancer [86]. In pancreatic cancer, an open-label, phase 2 RCT comparing stereotactic body
radiotherapy (SBRT) plus pembrolizumab and trametinib versus SBRT plus gemcitabine
for locally recurrent pancreatic cancer post-operation reported that patients with KRAS
mutations as well as high PD-L1 expression had a median OS of 14.9 and 12.8 months,
respectively, with the major AEs being increased blood bilirubin and liver impairment [87].
The most recent clinical trials of non-KRAS-targeted therapies are presented in Table 3.

Table 3. Clinical Trials of Non-KRAS-Targeted Therapies on KRAS Mutant Tumors.

Drug
Definition Drug Name Treatment

Strategy Stage Patient
Characteristics

Number
of

Patients

Initiation
Year

NCT
Number

MEK
inhibitors

BI 3011441 Monotherapy Phase 1

Advanced,
unresectable or

metastatic
refractory solid

tumors with
NRAS/KRAS

mutations

15 2021 NCT04742556

LNP3794 Monotherapy Phase 1

Advanced or
metastatic

refractory solid
tumors with

NRAS/KRAS
mutations

15 2020 NCT05187858

RO5126766 Monotherapy Phase 1
Advanced NSCLC

with KRAS
mutations

15 2018 NCT03681483

Trametinib
Combined with
Pembrolizumab
(anti-PD-1 ICI)

Phase 1
Stage IV NSCLC

with KRAS
mutations

15 2018 NCT03299088

Ponatinib;
Trametinib

Combined with
Ponatinib

(BCR-ABL TKI)
Phase 1–2

Advanced NSCLC
with KRAS
mutations

12 2018 NCT03704688

TPX-0005;
Trametinib

Combined with
TPX-0005

(ROS1/TRK/ALK
inhibitor)

Phase 1–2

Advanced or
metastatic solid

tumors with KRAS
mutations

74 2021 NCT05071183

Trametinib;
Anlotinib

Combined with
Anlotinib

(antiangiogenic
drug)

Phase 1
Advanced NSCLC

with KRAS
mutations

30 2021 NCT04967079

Trametinib;
Hydroxy-

chloroquine

Combined with
Hydroxychloro-

quine
(chemotherapy)

Phase 2
Refractory BTC

with KRAS
mutations

30 2022 NCT04566133
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Table 3. Cont.

Drug
Definition Drug Name Treatment

Strategy Stage Patient
Characteristics

Number
of

Patients

Initiation
Year

NCT
Number

MEK
inhibitors

Binimetinib;
Hydroxy-

chloroquine

Combined with
Hydroxychloro-

quine
(chemotherapy)

Phase 1
Advanced PDAC

with KRAS
mutations

39 2019 NCT04132505

Binimetinib;
Hydroxy-

chloroquine

Combined with
Hydroxychloro-

quine
(chemotherapy)

Phase 2
Advanced NSCLC

with KRAS
mutations

29 2021 NCT04735068

Binimetinib;
Hydroxy-

chloroquine

Combined with
Hydroxychloro-

quine
(chemotherapy)

Phase 2
Advanced NSCLC

with KRAS
mutations

29 2021 NCT04735068

Binimetinib;
Futibatinib

Combined with
Futibatinib (FGFR

1–4 inhibitor)
Phase 1–2

Advanced or
Metastatic Solid

Tumors with
KRAS mutations

36 2021 NCT04965818

Binimetinib;
Pemetrexed

and Cisplatin

Combined with
Pemetrexed and

Cisplatin
(chemotherapy)

Phase 1
Advanced NSCLC

with KRAS
mutations

18 2017 NCT02964689

Binimetinib;
Palbociclib;
Trifluridine

and Tipiracil
Hydrochloride

Binimetinib +
Palbociclib

(CDK4/6 Inhibitor)
vs. Trifluridine and

Tipiracil
Hydrochloride

(chemotherapy)

Phase 2
Advanced CRC
with KRAS or

NRAS mutations
101 2019 NCT03981614

Binimetinib;
Palbociclib

Combined with
Palbociclib

(CDK4/6 inhibitor)
Phase 1–2

Advanced NSCLC
with KRAS
mutations

72 2017 NCT03170206

Cobimetinib;
Hydroxy-

chloroquine;
Atezolizumab

Combined with
Hydroxychloro-

quine
(chemotherapy)

and Atezolizumab
(anti-PD-L1 ICI)

Phase 1–2
Advanced solid

tumors with KRAS
mutations

175 2020 NCT04214418

MEK
inhibitors

VS-6766;
Defactinib

Monotherapy vs,
combination

therapy of VS-6766
and Defactinib
(FAK inhibitor)

Phase 2
Recurrent NSCLC

with KRAS and
BRAF mutations

100 2020 NCT04620330

SHP2
inhibitors

HBI-2376 Monotherapy Phase 1

Advanced
malignant solid

tumors with KRAS
or EGFR mutations

42 2021 NCT05163028

RMC-4630;
LY3214996

Combined with
LY3214996

(ERK1/2 inhibitor)
Phase 1

Metastatic solid
tumors with KRAS

mutations
55 2022 NCT04916236

BBP-398 with
nivolumab

Combined with
nivolumab

(anti-PD-1 ICI)
Phase 1

Advanced NSCLC
with KRAS
mutations

45 2022 NCT05375084
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Table 3. Cont.

Drug
Definition Drug Name Treatment

Strategy Stage Patient
Characteristics

Number
of

Patients

Initiation
Year

NCT
Number

Multi-
targeting

kinase
inhibitor

Regorafenib;
Methotrexate

Combined with
Methotrexate

(chemotherapy)
Phase 2

Recurrent or
metastatic NSCLC

with KRAS
mutations

18 2018 NCT03520842

PLK1
inhibitors

Onvansertib;
Bevacizumab;

FOLFIRI

Combined with
Bevacizumab

(antiangiogenic
drug) and
(FOLFIRI:

chemotherapy)

Phase 1–2
Metastatic CRC

with KRAS
mutations

100 2019 NCT03829410

Rigosertib;
Nivolumab

Combined with
Nivolumab
(anti-PD-1
antibody)

Phase 1–2
Stage IV NSCLC

with KRAS
mutations

20 2020 NCT04263090

NSCLC: non-small cell lung cancer; CRC: colorectal cancer; BTC: biliary tract cancer; PDAC: pancreatic ductal
adenocarcinoma; MEK: mitogen-activated extracellular signal-regulated kinase; TRK: tropomyosin receptor
kinase; ALK: anaplastic lymphoma kinase; FGFR: fibroblasts growth factor receptor; FAK: focal adhesion kinase;
ERK: extracellular regulated protein kinases; CDK4/6: cyclin-dependent kinases 4/6; ICI: immune checkpoint
inhibitor; TKI: Tyrosine kinase inhibitor.

4.3. Other Unconventional Therapies

Some new progress has been made to cope with arising resistance towards conven-
tional therapies. In CRC, a mutant Hydra actinoporin-like-toxin-1 (mHALT-1) immunotoxin
was developed to treat KRAS G12V-mutant CRC patients, which showed cytotoxic effects
in KRAS-mutant CRC cells [88]. 2-methoxyestradiol (2-ME), the superoxide dismutase
inhibitor, showed synergistic effects with ABT-263 (a BCL-X(L) targeting agent) in KRAS-
mutant CRC cell lines [89]. A study found that exosomes loaded with clustered regularly
interspaced palindromic repeats (CRISPR)/Cas9 could target the KRAS G12D-mutant allele
in PDAC cells to suppress cell proliferation and tumor growth, making it a promising
treatment strategy [90]. M-LIP-CLT, a hybrid nanoplatform capable of fusing Celastrol
(CLT)-Loaded PEGylated lipids with the DC2.4 cell membrane, is an effective drug delivery
system for PDAC-targeted therapy [91]. EAD1 is a synthesized analogue of hydroxychloro-
quine (HCQ) that is found to make KRAS-mutant PDAC more sensitive to radiotherapy [92].
A study reported that cetuximab (CTX)-conjugated maleimide-polyethylene glycol-chlorin
e6 (CMPC) is an immune-stimulating antibody-photosensitizer conjugate, and it can be
used for KRAS-mutant PDAC, the mechanism of which is Fc-mediated dendritic cell phago-
cytosis and immunogenic cell death triggered by light [93]. Silvestrol (an eIF4A inhibitor)
is reported to inhibit the overexpression of ARF6 and MYC driven by KRAS mutations,
thus improving the efficacy of immunotherapy for PDAC [94].

In addition, Prochlorperazine (PCZ) is an antipsychotic drug reported to reverse the
resistance of KRAS-mutant NSCLC cells to radiotherapy [95]. MicroRNA-16 is also found
to restore the sensitivity of TKI therapy, with better performance than MEK inhibitors
in KRAS-mutant NSCLC [96]. Melatonin is found to regulate the immunosuppressive
tumor microenvironment (TME) by inhibiting the YAP/PD-L1 axis, and it may be a novel
therapy for KRAS-mutant NSCLC [97]. Luteolin and its derivative apigenin are reported
to significantly suppress the expression of PD-L1 induced by IFN-γ, leading to the better
anti-tumor activity of KRAS-mutant lung cancer, and a synergistic effect combined with
PD-1 ICIs [98]. Statins can provoke the CD8+ T-cell immune response to KRAS-mutant
tumors, and increase the sensitivity to PD-1 ICIs when combined with oxaliplatin [99].
More emerging therapies such as T-cell vaccines and adoptive T-cell therapy (ATC) are also
under research [100]. Recent clinical trials of other unconventional therapies are presented
in Table 4.
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Table 4. Clinical Trials of Other Unconventional Therapies on KRAS Mutant Tumors.

Drug Name Drug
Definition Treatment Strategy Stage Patient Char-

acteristics

Number
of

Patients

Initiation
Year

NCT
Number

TVB-2640

Fatty acid
synthase
(FASN)

inhibitor

Monotherapy Phase 2

Metastatic or
advanced

NSCLC with
KRAS

mutations

12 2019 NCT03808558

ELI-002
KRAS

therapeutic
vaccine

Monotherapy Phase 1
Solid tumors
with KRAS
mutations

18 2021 NCT04853017

REOLYSIN Reovirus

Combined with
FOLFIRI and
Bevacizumab

(chemotherapy and
antiangiogenic drug)

Phase 1

Metastatic
CRC with

KRAS
mutations

36 2010 NCT01274624

Mutant
KRAS G12V-
specific TCR
transduced
autologous

T cells

Mutant
KRAS G12V-
specific TCR
transduced
autologous

T cells

Chemotherapy prior
to combination

therapy of Mutant
KRAS G12V-specific

TCR transduced
autologous T cells and

Anti-PD-1
monoclonal antibody

Phase 1–2

Advanced
PDAC with
KRAS G12V
mutations

30 2021 NCT04146298

NSCLC: non-small cell lung cancer; CRC: colorectal cancer; PDAC: pancreatic ductal adenocarcinoma; FASN:
fatty acid synthase; TCR: T-cell receptors.

5. Advances in Drug Resistance and Oncological Mechanisms of KRAS-Mutant Cancers

Despite the significant innovation and clinical benefits in the treatment strategies
for KRAS-mutant patients, drug resistance is still inevitable regardless of the treatment
strategies. Therefore, research on drug resistance mechanisms and oncogenic mechanisms
is urgently needed to overcome existing drug resistance and to improve the outcome of
patients with KRAS mutations. This section will systematically discuss the latest research
progress on drug resistance mechanisms and oncogenic mechanisms in patients with KRAS
mutations to different therapies.

5.1. Drug Resistance of KRAS Inhibitors

The efficacy of KRAS inhibitors for treating patients with KRAS mutations varies. The
mechanisms of resistance against KRAS inhibitors mainly include primary resistance and
acquired resistance after receiving treatment. This section will elaborate on each in detail.

5.1.1. Primary Resistance

A low reliance on the KRAS pathway is the reason for primary drug resistance. Studies
of KRAS-mutated cell lines in lung and pancreatic cancers have revealed that different
cell lines have different degrees of dependence on KRAS [101]. A study of PDAC cell
lines found that a subset of cells is not dependent on KRAS mutations, but instead is
highly dependent on the PI3K-mediated MAPK pathway [102]. Studies have reported
that the PI3K pathway can be activated by signalings other than KRAS [103], and that
amplification and the overexpression of the transcriptional coactivator Yap1 can also drive
KRAS-independent PDAC tumor maintenance [104]. The deubiquitin USP21 was also
found to drive resistance to KRAS-targeted therapy in PDAC [105]. Alterations in the tumor
immune microenvironment can also lead to primary drug resistance, such as the finding that
tumor-associated macrophages can be recruited due to the effect of HDAC5 on chemokine,
mediating SMAD4-dependent and KRAS-independent PDAC tumor growth [106].
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5.1.2. Acquired Resistance

As the treatment population continues to expand, patients using KRAS inhibitors have
developed resistance to the inhibitors, limiting their efficacy [1]. This may be explained with
genetic alterations in nucleotide exchange function, adaptive mechanisms in downstream
pathways, or newly emerged KRAS G12C mutations [107].

Mutations could disrupt covalent or potentially non-covalent drug binding [108]. For
instance, clinical studies have reported on the development of the KRAS Y96D mutation in
patients resistant to MRTX849, which affects the Switch-II pocket and can lead to resistance
to all current KRAS G12C inhibitors [109]. Different KRAS secondary variants also cause
resistance to different drugs, as it has been found that the G13D, R68M, A59S, and A59T
mutations are resistant to AMG510 but sensitive to MRTX849, while the Q99L mutation
has the opposite effect [110].

The negative feedback of upstream signals (such as EGFR) or downstream mediators (such
as MEK) has also been demonstrated to attenuate the efficacy of KRAS inhibitors [111,112]. It
was found that KRAS G12C inhibition is followed by the rapid adaptive RAS pathway
feedback reactivation, driven by the RTK-mediated activation of wild-type RAS, which
could not be inhibited by specific G12C inhibitors, requiring the combined inhibition of
SHP2 to maintain its efficacy [113]. The EGFR and aurora kinase signaling pathways
have also been found to reactivate KRAS through feedback regulation and maintain drug
resistance in newly generated KRAS mutations [114].

Dysregulating FAK-YAP signaling and fibrosis formation is also found to cause attenu-
ated treatment outcomes [115]. Inducing EMT to enhance PI3K/AKT signaling and MAPK
signaling can also induce drug resistance [111,116]. The Transformation of pathology from
adenocarcinoma to squamous cell carcinoma occurs in patients of solid tumors with KRAS
mutations [108], and genetic alterations in cell cycle regulators is reported, causing cell
cycle dysregulation to attenuate the therapeutic response of KRAS inhibitor [117]. MET
amplification is found to induce resistance to KRAS inhibitors in NSCLC patients through
RAS-dependent and non-dependent pathways, which can be reversed via MET/KRAS
G12C dual inhibition [118]. HER2 has also been found to mediate resistance to KRAS
inhibitors, which can be overcome by SHP2/KRAS G12C dual inhibition [119]. The mecha-
nisms of acquired drug resistance are diverse and complex, and some studies have found
that multiple mechanisms can occur simultaneously in the same patient [108], warranting
further exploration.

5.2. Drug Resistances of Other Therapies

Apart from targeted therapies, patients with KRAS mutations also shown resistance
to immunotherapy and radiotherapy. A possible mechanism is that KRAS mutations may
promote an immunosuppressive TME of CRC through the inhibition of IRF2 and the re-
cruitment of myeloid-derived suppressor cells (MDSCs) [120]. Another study showed that
KRAS-G12D mutations initiate the primary resistance of immunotherapy in NSCLC by sup-
pressing the PD-L1 level via the P70S6K/PI3K/AKT axis, and reducing CXCL10/CXCL11
levels via the down-regulation of high mobility group protein A2 (HMGA2) level [121].
STK11/LKB1 mutations have been found to cause primary resistance to PD-1/PD-L1 in-
hibitors in patients with KRAS-mutated lung adenocarcinoma [122]. KRAS mutations may
also cause resistance to radiotherapy through the upregulation of NRF2-53BP1-mediated
non-homologous end-joining repair [123].

5.3. Oncological Mechanisms of KRAS-Mutant Cancers

In addition to the development of more targeted agents to reverse existing drug resistance,
preclinical studies in many other directions offer the possibility of future therapeutic directions
as well. These studies may provide ideas for further improving patient outcomes, and
delaying or overcoming drug resistance. We organized the corresponding research progress
into two aspects: tumor cell characterization and immune microenvironment remodeling.
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5.3.1. Tumor Proliferation, Survival, and Migration

In PDAC and CRC, a study based on the samples of seven PDAC patients found
that blocking RAS downstream signaling and epigenetic pathways could synergistically
increase the anti-proliferative activity of KRAS mutant PDAC cells [124]. A study found that
PDAC cells regulate pH and glycolysis to increase carbonic anhydrase 9 (CA9) expression
by stabilizing hypoxia inducible factor (HIF) 1-Alpha (HIF1A) and HIF2A during hypoxia;
thus, the disruption of this pathway may slow the growth of PDAC xenograft tumors in
mice, becoming a potential target pathway for pancreatic cancer [125]. A study based on
public databases found that the inhibition of tensin 4 (TNS4) may be effective in treating
patients with cetuximab-refractory CRC, including activated KRAS mutations [126].

In lung cancer, a study found that KRAS mutations could promote the cell growth of
lung cancer cells with SLC3A2-NRG1 (S-N) fusion. An elevation of Ras/Raf/MEK/ERK
and ERBB/PI3K/Akt/mTOR pathways through disintegrin and metalloproteinase 17
(ADAM17)-mediated neuregulin 1 (NRG1) shedding was observed, indicating potential
vulnerability to MEK1/2 and/or ADAM17 inhibitors in patients with concurrent KRAS
mutation and S-N fusion [127]. A study based on cell experiments found that the simul-
taneous inhibition of activated Cdc42-associated kinase (ACK1) and AKT inhibited the
growth and migration of KRAS-mutant NSCLC cells, providing the premise for the clinical
translation of ACK1 and AKT inhibitors either as monotherapy or with rational combina-
tion [128]. GRP78 haploinsufficiency is reported to inhibit KRAS G12D-mediated tumor
progression and prolong survival, and it is a potential therapeutic target for KRAS-mutant
lung cancer [129]. It has also been found that regenerating family member (REG4) is highly
expressed in KRAS-mutant lung adenocarcinoma, and that silencing REG4 can inhibit
cancer cell proliferation and genesis, making it a potential therapeutic target [130]. A
study finds that the inhibition of phosphoglucomutase 3 (PGM3) reduces the growth of
KRAS/LKB1 co-mutant lung tumors in both in vitro and in vivo settings, suggesting the
potential for PGM3 targeted therapy in the KRAS-mutant population [131].

There are also some pan-cancer studies focusing on the oncogenic mechanism of
KRAS mutations. KRAS-mutant cancer cells can produce exosomes that are enriched in
Survivin, to promote cancer cell survival and resistance to therapy [132]. PTPN2 is reported
to regulate the activation of KRAS mutations, as well as the proliferation and survival of
cancer cells, making it a potential therapeutic target for KRAS-mutant cancers [58].

5.3.2. The Immune Microenvironment

In PDAC and CRC, a study found that resistance to anti-KRAS therapy may be
driven by deubiquitinase USP21, which promotes KRAS-independent tumor growth by
regulating MARK3-induced macrophagocytosis, and thus, USP21 may serve as a new
target for the treatment of pancreatic cancer [105]. A study of 272 patients with metastatic
CRC found statistically significant differences in neutrophil/lymphocyte ratio (p = 0.042),
and systemic inflammation indices (p = 0.004) between the KRAS mutant group and the
wild-type group [133]. A study based on 17,909 CRC patients found that rare KRAS
mutation subtypes such as A59T were correlated with predictive immunotherapy response
biomarkers [134]. The inhibition of ERK signaling was found to assist in reducing PD-L1
expression through autophagy in intrahepatic cholangiocarcinoma (iCCA), indicating that
ERK-targeted therapy may be combined with anti-PD-(L)1 immunotherapy for KRAS-
mutant iCCA [135]. Equipping cetuximab on the surface of NK cells may solve the problem
of cetuximab resistance in KRAS-mutant CRC [136].

In NSCLC, PD-L1 expression was found to be induced in KRAS G12V-mutant NSCLC
and promote immune escape through the transforming growth factor (TGF)-β/EMT signal-
ing pathway [137]. The correlation between low serum deprivation protein response (low
SDPR) and immunosuppression in KRAS-mutant NSCLC was found, making low SDPR
a possible prognostic factor for worse prognosis in KRAS-mutant NSCLC [56]. Th17 is
found to cause resistance to MEK inhibitor combined with PD-L1 inhibitor therapy in lung
cancer patients with KRAS/p53 mutations [138]. It was found that TRIM58 was positively



J. Clin. Med. 2023, 12, 709 17 of 24

correlated with an abundance of M2 macrophages and resting mast cells in KRAS-mutant
lung adenocarcinoma, and negatively correlated with an abundance of follicular helper T
cells [139]. According to TCGA database, the PD-L1 protein expression level and immune
cell infiltration are significantly decreased in the KRAS G12D/TP53 mutant group. Such
co-mutation drives immunosuppression and may be a negative predictive biomarker for
anti-PD-(L)1 ICIs in patients with lung adenocarcinoma [140].

In the research regarding all solid tumors, the KRAS mutation is reportedly immuno-
genic for CD4+ T cells and is a potential target for T-cell receptor (TCR)-based immunother-
apy [141]. A study found that regulating ROS or inhibiting fibroblasts growth factor
receptor 1 (FGFR1) signaling could abrogate the immunosuppression mediated by PD-L1,
improving the efficacy of immunotherapy in KRAS-mutant cancers [142].

6. Conclusions and Future Perspectives

As mentioned above, immunotherapy is currently used mainly in the real world for
patients with KRAS-mutant solid tumors. Clinical studies are gradually phased into target
therapies, and more preclinical studies are considering other therapies such as T-cell vac-
cines. Sotorasib is the only FDA-approved KRAS G12C inhibitor, and has shown satisfying
results in real-world studies. Immunotherapy alone or combined with chemotherapy has
been proven to be effective in treating patients with KRAS mutations as well.

However, more KRAS inhibitors targeting non-G12C subtypes are yet to be invented,
and the acquired resistance of KRAS G12C inhibitors may reduce their efficacy. Co-
mutations have the potential of interfering with the binding of KRAS inhibitors and their
receptors, which is now the most acknowledged resistance mechanism. More research
regarding the restoration of the sensitivity of targeted therapy is needed, and the immune
microenvironment of KRAS-mutant tumors is worth exploring. In conclusion, the future
of solid tumors with KRAS mutations is promising in terms of developing therapeutic
strategies and overcoming drug resistance.
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