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Abstract: Background: Surgical intervention is a critical tool to address adult spinal deformity (ASD).
Given the evolution of spinal surgical techniques, we sought to characterize developments in ASD cor-
rection and barriers impacting clinical outcomes. Methods: We conducted a literature review utilizing
PubMed, Embase, Web of Science, and Google Scholar to examine advances in ASD surgical correc-
tion and ongoing challenges from patient and clinician perspectives. ASD procedures were examined
across pre-, intra-, and post-operative phases. Results: Several factors influence the effectiveness of
ASD correction. Standardized radiographic parameters and three-dimensional modeling have been
used to guide operative planning. Complex minimally invasive procedures, targeted corrections,
and staged procedures can tailor surgical approaches while minimizing operative time. Further,
improvements in osteotomy technique, intraoperative navigation, and enhanced hardware have
increased patient safety. However, challenges remain. Variability in patient selection and deformity
undercorrection have resulted in heterogenous clinical responses. Surgical complications, including
blood loss, infection, hardware failure, proximal junction kyphosis/failure, and pseudarthroses, pose
barriers. Although minimally invasive approaches are being utilized more often, clinical validation is
needed. Conclusions: The growing prevalence of ASD requires surgical solutions that can lead to
sustained symptom resolution. Leveraging computational and imaging advances will be necessary
as we seek to provide comprehensive treatment plans for patients.
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1. Introduction

As the global population continues to age, with a demographic transformation toward
older age strata, there has been a corresponding increase in pathology involving the
spinal column [1]. A major disease category affecting this patient population is adult
spinal deformity (ASD), with a prevalence of up to about 70% in elderly patients [2].
ASD encompasses a heterogenous group of abnormalities affecting the thoraco-lumbar
spinal column, which include diseases with acute onset (post-traumatic spinal deformity),
exacerbation of pre-existing conditions (progressive adolescent idiopathic scoliosis in
adulthood), or progressive conditions secondary to degenerative changes (de novo scoliosis
and focal/global deformity from multi-level disc disease) [3–5]. The economic burden and
aggregate disability from spinal deformities have led to the development of a spectrum of
medical and surgical interventions to improve symptoms and quality of life [6,7].

Various non-operative methods are first-line treatments for ASD, including physical
therapy, aerobic exercise, pharmacotherapy (non-steroidal anti-inflammatories, selective
serotonin reuptake inhibitors, and anticonvulsants), and injections (steroid, trigger-point,
and nerve root block). Procedural interventions available for ASD have evolved over the
past few decades and are utilized when patients experience intractable pain, significant
physical disability, neurological symptoms, or progression of abnormal spinal curvature
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with unsuccessful non-operative management [4,8]. Surgical options are broadly catego-
rized into six subtypes which attempt to achieve correction based on the extent of deformity:
decompression, decompression and posterior fusion with limited instrumentation, decom-
pression and posterior fusion with lumbar curve instrumentation, decompression and
anterior/posterior fusion, fusion with thoracic instrumentation, and osteotomies [8]. Man-
agement algorithms have combined spinal characteristics (e.g., fixed versus flexible spine)
with radiographic parameters, such as pelvic tilt, to guide the choice of an appropriate
surgical option. Across these approaches, surgical planning, instrumentation, and tech-
niques have evolved, incorporating advances such as minimally invasive surgery (MIS)
to help reduce morbidity associated with open spinal correction [9]. However, there re-
main challenges in both open and minimally invasive techniques, such as appropriate
patient identification, selection of surgical approaches, post-operative complications, and
limitations to the degree of achievable correction [10,11].

Given the critical role of surgical options for ASD, we sought to characterize advances
in surgical techniques for deformity correction and targets for improvement. Through a
comprehensive review across four databases (PubMed, Embase, Web of Science, and Google
Scholar), we focus on developments in pre-operative planning, open surgical procedures,
and minimally invasive protocols (Figure 1A). Further, we review contributors to morbidity
after deformity correction and ongoing challenges with integrating new spinal approaches
(Figure 1B).
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Figure 1. (A) Advances in surgical approaches for adult spinal deformity correction. (B) Ongoing
barriers and challenges impacting adult spinal deformity procedures and clinical outcomes.

A critical lens toward ASD surgery will help ensure continued development of safer,
inclusive, and more effective treatment options.

2. Advances in Surgical Approaches
2.1. Radiological Parameters and Scoring Systems

The development of quantifiable pre-operative parameters from plain film and com-
puted tomography (CT) imaging has enabled patient risk stratification and identification of
targets for deformity correction. Using whole spine posterior–anterior and lateral views,
several parameters can be calculated: regional metrics (Cobb’s angles for cervical lordosis
(CL), thoracic kyphosis (TK), thoracolumbar kyphosis, and lumbar lordosis (LL)), sagittal
spinopelvic metrics (sagittal vertical axis (SVA), pelvic incidence (PI), pelvic tilt (PT), sacral
slope (SS), and T1 pelvic angle), and coronal metrics (Cobb’s angles for scoliotic curves and
coronal balance) [12,13] (Figure 2).
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Figure 2. Radiographic metrics used to determine severity of spinal deformity and target degree of
correction in (A) coronal, (B) sagittal, and (C) pelvic views. CL: cervical lordosis, HRL: horizontal
reference line, LL: lumbar lordosis, PI: pelvic incidence, PT: pelvic tilt, SS: sacral slope, SVA: sagittal
vertical axis, TK: thoracic kyphosis, VRL: vertical reference line. * Coronal balance. Adapted from
Smith et al., Journal of Neurosurgery (2019). All illustrations performed by author HI.

Several of these parameters have been integrated, such as mismatch between PI and
LL, to create the validated Scoliosis Research Society (SRS)-Schwab classification scheme to
guide treatment decisions (Figure 3).

This system incorporates both coronal and sagittal deformity modifiers, focusing on
spinopelvic metrics to capture alignment. SRS-Schwab classification has demonstrated ro-
bust reliability across institutions, with a PI-LL mismatch of <10◦, SVA < 4 cm, and PT < 20◦

predictive of positive clinical outcomes, reduced disability, and improved health-related
quality of life scores [14–16]. Subsequent iterations with new scoring systems like the
Global Alignment and Proportion (GAP) score have sought to better predict post-operative
mechanical complications and risk of revision surgery, which are aspects that the SRS-
Schwab system does not address [17]. Radiographic targets continue to be optimized as we
better understand how comorbidities and demographic variables such as age modify clas-
sification systems. For example, previous analysis of post-operative disability across age
and SRS-Schwab strata demonstrated age-adjusted spinopelvic parameters, with younger
patients requiring more aggressive deformity correction for symptom improvement [18,19].
GAP score adjustment using body mass index and bone density has further shown better
predictive performance compared to unadjusted GAP scores [20]. While additional scoring
systems continue to be explored, quantitative classification has enabled greater identifica-
tion and standardization of surgical approaches that account for the mechanics underlying
ASD, targets for alignment, and technique selection.
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Figure 3. Scoliosis Research Society-Schwab classification scheme to guide treatment decisions
for adult spinal deformity. LL: lumbar lordosis, PI: pelvic incidence, PT: pelvic tilt, SVA: sagittal
vertical axis.

2.2. Pre-Operative Modeling

The accessibility of computational workflows has led to the development of pre-
operative tools that can better predict intra-operative challenges and post-operative com-
plications. Three-dimensional reconstruction, both in virtual and physical space, has
facilitated pre-operative visualization (Figure 4).
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CT reconstruction captures bony changes such as facet defects or osteophyte com-
plexes with high fidelity, while enabling precise calculations on pedicle diameter and
spinal angles [21]. To capture spine anatomy in upright weight-bearing positions, low-dose
stereoradiography has also been introduced. This technology generates three-dimensional
reconstructions of bony structures from two-dimensional images while minimizing radia-
tion [22]. Stereoradiography has shown high accuracy in spinal measurements versus CT
reconstruction, especially in evaluating scoliotic curvature and sagittal parameters [23–26].
Although proof of concept has been established, the clinical utility and impact of stere-
oradiography continues to be investigated. Physical spine models printed from virtual
three-dimensional reconstructions have also been shown to improve operative planning,
especially in cases with complex or anomalous anatomy [27]. Three-dimensional printing
has further enabled the creation of patient-specific hardware guides, thus im proving screw
placement accuracy and reducing surgical time [28,29].

Large clinical ASD patient datasets have further generated predictive models built
on machine and deep learning architectures. One example where these computational
methods have been applied is to evaluate the risk of perioperative blood transfusions
following ASD surgery [30,31]. Post hoc analysis has identified salient variables associated
with increased transfusion risk, including operative time, hematocrit, and patient weight.
Machine learning models have also been developed to attempt prediction of major com-
plications like proximal junctional kyphosis (PJK), proximal junctional failure (PJF), and
pseudarthroses [32–34]. Certain important features have emerged, including patient age,
lower/upper vertebral locations, implant types utilized, and pre-operative radiological
parameters. Predicting the risk of complications before entering the operating room can
improve pre-operative counseling while helping to minimize morbidity associated with
deformity correction.

2.3. Minimally Invasive Surgery

Surgical techniques for ASD correction have also advanced, with MIS approaches
that leverage endoscopic tools being utilized with greater frequency. MIS aims to preserve
anatomy, reduce morbidity, and accelerate patient return to function with smaller incisions,
all features of great interest for deformity correction [35,36]. MIS has been applied to several
lumbar spinal approaches, such as lateral lumbar interbody fusion (LLIF), oblique lumbar
interbody fusion (OLIF), transforaminal lumbar interbody fusion (TLIF), posterior lumbar
interbody fusion (PLIF), and anterior lumbar interbody fusion (ALIF) (Figure 5), as well as
techniques such as anterior longitudinal ligament (ALL) release, percutaneous screws, and
prone/lateral positioning [37–40].

To improve correction of sagittal and spinopelvic parameters in ASD, circumferential
MIS (cMIS) was developed, which combines anterior column support (e.g., LLIF/OLIF)
with percutaneous posterior instrumentation [41,42]. While radiographic correction data
from cMIS approaches remain heterogenous, cMIS appears to correct sagittal imbalance
even in cases of severe ASD [43,44]. Clinical outcomes are similarly variable, with studies
reporting unchanged to improved patient outcomes following cMIS versus open proce-
dures. In several studies, at one year post-operatively, patients who received cMIS had
similar disability scores and spinopelvic parameters compared to patients where open
correction was performed, with no difference in complication rates [45–47]. However, in
one study with longer follow-up intervals, patients who received cMIS had a significantly
lower incidence of major complications like PJK/PJF, pseudarthroses, and hardware fail-
ure [48]. Given the variability in documented radiographic and clinical correction with
MIS techniques, patient selection algorithms, like the minimally invasive spine deformity
surgery 2 (MISDEF2) protocol, have been developed to identify patients who can benefit
from an MIS approach [49]. MISDEF2 combines deformity characteristics (fixed versus
flexible) and radiographic parameters (PI-LL mismatch, SVA, PT, and coronal Cobb angle)
to place patients into four classes to guide the selection of spinal implants and MIS versus
open techniques.



J. Clin. Med. 2023, 12, 6386 6 of 20

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 6 of 23 
 

 

improve pre-operative counseling while helping to minimize morbidity associated with 

deformity correction. 

2.3. Minimally Invasive Surgery 

Surgical techniques for ASD correction have also advanced, with MIS approaches 

that leverage endoscopic tools being utilized with greater frequency. MIS aims to preserve 

anatomy, reduce morbidity, and accelerate patient return to function with smaller inci-

sions, all features of great interest for deformity correction [35,36]. MIS has been applied 

to several lumbar spinal approaches, such as lateral lumbar interbody fusion (LLIF), 

oblique lumbar interbody fusion (OLIF), transforaminal lumbar interbody fusion (TLIF), 

posterior lumbar interbody fusion (PLIF), and anterior lumbar interbody fusion (ALIF) 

(Figure 5), as well as techniques such as anterior longitudinal ligament (ALL) release, per-

cutaneous screws, and prone/lateral positioning [37–40].  

 

Figure 5. Application of minimally invasive techniques to lumbar spinal approaches. ALIF: anterior 

lumbar interbody fusion, LLIF: lateral lumbar interbody fusion, OLIF: oblique lumbar interbody 

fusion, PLIF: posterior lumbar interbody fusion, TLIF: transforaminal lumbar interbody fusion. 

Adapted from Mobbs et al., Journal of Spine Surgery (2015). All illustrations performed by author HI. 

To improve correction of sagittal and spinopelvic parameters in ASD, circumferential 

MIS (cMIS) was developed, which combines anterior column support (e.g., LLIF/OLIF) 

with percutaneous posterior instrumentation [41,42]. While radiographic correction data 

from cMIS approaches remain heterogenous, cMIS appears to correct sagittal imbalance 

even in cases of severe ASD [43,44]. Clinical outcomes are similarly variable, with studies 

reporting unchanged to improved patient outcomes following cMIS versus open proce-

dures. In several studies, at one year post-operatively, patients who received cMIS had 

similar disability scores and spinopelvic parameters compared to patients where open 

correction was performed, with no difference in complication rates [45–47]. However, in 

Figure 5. Application of minimally invasive techniques to lumbar spinal approaches. ALIF: anterior
lumbar interbody fusion, LLIF: lateral lumbar interbody fusion, OLIF: oblique lumbar interbody
fusion, PLIF: posterior lumbar interbody fusion, TLIF: transforaminal lumbar interbody fusion.
Adapted from Mobbs et al., Journal of Spine Surgery (2015). All illustrations performed by author HI.

2.4. Limited Fusions and Staged Procedures

Evolving surgical instrumentation and techniques have also enabled more targeted
surgical correction, especially in cases of mild to moderate spinal deformity. In patients with
small spinal radiographic changes and good sagittal balance, short fusions limited to the
region of deformity showed fewer perioperative complications like hardware failure [50,51].
Applying a minimum necessary approach to deformity instrumentation can also be seen
in the development of staged correction procedures [52–55]. These approaches generally
utilize two stages: first, anterior column support is performed, after which the patient’s
symptoms and degree of spinal correction are assessed before deciding whether to proceed
with posterior instrumentation. Staged procedures minimize time under anesthesia for
each individual procedure while offering a dynamic assessment of symptom improvement
as correction is taking place [55]. While one study employing a staged approach demon-
strated significantly lower rates of hardware failure compared to un-staged open deformity
correction, another study showed no significant difference in staged versus un-staged cMIS
procedures [56,57]. Additional work is needed to characterize the clinical benefit in specific
patient populations while identifying potential logistical challenges in implementing such
procedures.

2.5. Osteotomy

In cases of severe ASD, osteotomies are an important method for correction. While
the first osteotomies were performed many decades ago, improvements in intra-operative
tools and techniques have advanced their therapeutic benefit. The extent of an osteotomy is
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defined by six anatomic grades ranging from least aggressive (grade 1) to most aggressive
(grade 6) based on the structures being removed (Table 1) [58].

Table 1. Classification system for osteotomies and corresponding anatomic regions removed.

Anatomic Regions Resected

Grade 1 Partial facet joint (inferior facet and joint capsule)
Grade 2 Complete facet joint (superior and inferior facets with ligamentum flavum removal)

Grade 3 Pedicle and partial body (posterior vertebral body partial wedge resection and
posterior vertebral elements)

Grade 4 Pedicle, partial body, and disc (posterior vertebral body wider wedge resection,
posterior vertebral elements, and portion of >1 endplate and intervertebral disc)

Grade 5 Complete vertebra and both adjacent discs
Grade 6 Multiple vertebrae and discs

Although a higher-grade osteotomy involving complete vertebrae and discs may be
required for extensive deformity correction, larger resections increasingly destabilize the
spine and risk significant post-operative complications. Three major types of osteotomies
are performed: posterior column (Smith-Peterson osteotomy [SPO] and Ponte osteotomy),
pedicle subtraction osteotomy (PSO), and vertebral column resection (VSR) [59–62]. Poste-
rior column osteotomies involve the facet joints, lamina, and posterior ligaments, while
PSO and VSR are considered three-column osteotomies that involve bone resection, making
these more technically challenging. Recently, PSO and VSR have been declining in use
due to their high complication rate and significant morbidity [63–65]. Despite this, for
selected cases when extensive correction is required, advances in intra-operative navigation
have improved the safety of three-column osteotomies. Three-dimensional pre-operative
planning or intra-operative navigation using CT-based methods or O-Arm guidance can
enhance accuracy in bone cuts, while providing real-time anatomic feedback of surround-
ing structures to reduce complications [66–69]. Optimizing navigation during osteotomies
is, therefore, an important step toward improving safety for patients when surgical options
are limited.

2.6. Intraoperative Imaging and Robotic Navigation

Tools for intraoperative visualization and surgical navigation have been integrated
across a range of ASD correction procedures. Spinal endoscopy and video visualization are
instrumental for MIS approaches, enabling high-fidelity deep tissue views with smaller
incisions [70]. Randomized trials have been performed on the use of spinal endoscopy
for discectomy, demonstrating non-inferiority to open alternatives with benefits in re-
ducing intraoperative blood loss, hospital length of stay, and time to recovery [71–73].
Similar to the impetus for spinal endoscopy, miniature camera systems have been de-
veloped, which clip onto tubular retractors to allow improved operative visualization.
Three-dimensional imaging techniques have moved to the intra-operative space, such
as CT-guided and augmented reality-based placement of pedicle screws. For example,
real-time three-dimensional evaluation has helped identify mispositioned screws, lowering
the rate of revision surgery [74–77]. Robotic navigation has built on these advances, im-
proving pedicle screw placement accuracy compared to conventional approaches while
reducing image-related radiation exposure [78–80]. Further, robotic guidance has been
helpful in planning cases with difficult pedicle anatomy or if prior instrumentation has
been performed. Nevertheless, the impact of these navigation methods on surgical perfor-
mance and clinical outcomes specifically for ASD correction remains to be seen through
validated trials.

2.7. Hardware

Advances in devices and hardware available for ASD correction can make these
procedures more accessible to a broader group of patients. Osteopenia and osteoporosis,
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which tend to co-occur in patients with ASD, pose significant limitations in the successful
placement of anterior column hardware and pedicle screws [81]. Low bone density has
been associated with poor stability of implants, difficulty with implant fixation, and post-
operative hardware failure with an increased risk of revision surgery [82–84]. New pedicle
screw designs such as expandable, fenestrated cement-injectable, and conical screws, as
well as screw anchors, have the potential to improve fixation in osteoporotic bone [85–88]
(Figure 6A,B). In cases when longer spine instrumentation is required, new screws for
sacropelvic fixation have been developed to address distal screw failure and pseudarthrosis.
For example, S2-alar-iliac screws reduce soft tissue dissection, can more easily connect to
posterior instrumentation, and increase mechanical strength while reducing the rate of
reoperation [89,90]. Junctional tethers are another technique which continues to be explored
to reduce the risk of PJK/PJF [91,92] (Figure 6C). Previous studies found that weaving
tethers to dissipate stress on adjacent spinal segments was safe and showed early signs of
lowering long-term PJK risk [93,94]. Finally, posterior rod augmentation with multi-rod
configurations has been studied to reduce the risk of rod fracture by providing additional
structural support (Figure 6D).
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In small cohorts, multi-rod techniques showed lower rates of rod fracture and pseu-
darthrosis compared to standard two-rod techniques [95–97]. Device innovation will
play an integral role in tailoring deformity correction procedures for individual patient
presentations.

3. Challenges in Spinal Deformity Surgery
3.1. Patient Selection

Changing patient demographics and comorbidity rates, especially amongst those with
ASD, have increasingly made it challenging to identify appropriate surgical candidates [98].
With the mean age of de novo scoliosis at 70.5 years and degenerative hyperkyphosis at
78.3 years, there are few validated metrics that predict which patients can tolerate and
benefit from a significant surgical correction [5]. However, it remains true that patients with
more severe ASD or associated disability benefit the most from surgical correction [99]. One
proposed model combined patient demographics with features of the surgical approach
to predict the risk of intraoperative bleeding and surgical duration [100]. Another study
developed an ASD frailty index, which showed increased risk of major complications and
hospital length of stay in more frail patients [101]. Additional work is needed to better
understand how to risk stratify clinically complex or frail patients while also understanding
how pre-operative health optimization can influence clinical outcomes.
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3.2. Acute Operative Complications

ASD corrections are often large, surgically complex procedures that involve multiple
entry points, spinal manipulation, and instrumentation. As a result, these procedures carry
a high risk of acute intra- and post-operative complications, such as cardiac (myocardial
infarction and cardiac arrest), pulmonary (pneumonia and pulmonary embolism), vascular
(deep vein thromboses), neurologic (cauda equina and nerve root injury), and infectious
(sepsis, superficial infection, and thrombophlebitis) etiologies [102,103]. Surgical site in-
fections are one category that can result in significant morbidity and mortality. For ASD
procedures, surgical site infections have been reported in up to 10% of cases, with risk
factors for infection including prior history of a site infection and elevated body mass
index [104–107]. A systems-based approach that incorporates patient comorbidity opti-
mization, timely administration of antibiotics, surgical sterile technique, and post-operative
wound care has been shown to reduce the incidence of surgical site infections [108].

Blood loss associated with ASD surgery is another source of complications. Increased
exposure to blood products and large fluid shifts can lead to transfusion-associated re-
actions and severe coagulopathies that can result in multi-organ sequelae [109]. Several
strategies have been investigated to mitigate blood loss during ASD surgery. Intra-operative
use of antifibrinolytics like tranexamic acid has been shown to reduce the need and vol-
umes of post-operative transfusions [110–112]. Patient positioning has also been explored
to decrease bleeding risk by reducing intra-abdominal pressure, but efficacy has been
variable. Positions include Trendelenburg for lower thoracic/lumbar spine procedures,
reverse-Trendelenburg for cervical spine procedures, Jackson table/Wilson frame with
free suspension of the abdomen, and jackknife positions [113–115]. Other areas that have
been explored to minimize blood loss include bipolar electrocautery and topical hemostatic
agents like bone wax [116,117]. To monitor patient coagulation status more accurately,
viscoelastic point-of-care methods are also being tested, with initial data demonstrating a
reduction in total blood products administered [118,119].

Dual surgeon approaches, which are utilized in other surgical specialties, may also
play an instrumental role in helping to reduce the incidence of operative complications [120].
The cognitively and physically demanding nature of ASD corrections may benefit from
collaboration within the operating room. Compared to single-surgeon spinal cases, dual-
surgeon cases have been shown to decrease blood loss and operative time [121–124].
Supporting operating room and staffing workflows that facilitate dual-surgeon cases in
the setting of certain complex or high-risk ASD procedures may, therefore, prove to be a
beneficial strategy.

3.3. Undercorrection

Although undercorrection of ASD occurs with a relatively low frequency, it is associ-
ated with poor health-related quality-of-life outcomes [125]. ASD undercorrection is often a
result of targeting sagittal alignment parameters without accounting for patient age. Across
sagittal parameters, such as PT, PI-LL mismatch, LL-TK mismatch, and SVA, younger
patients were found to have lower radiographic thresholds at which significant disability
and poor health-related quality of life were reported compared to older patients [19]. As
a result, a more aggressive degree of deformity correction is likely required in younger
populations to improve functional outcomes [125]. Individualized pre-operative planning
and age-specific radiological assessment are, therefore, needed to account for age-related
changes across the musculoskeletal system.

3.4. Hardware Failure

An integral component of ASD surgery is the instrumentation and hardware required
to achieve deformity correction. The estimated rate of hardware failure is variable, rang-
ing up to about 50% in some cohorts [126]. Several factors influence the likelihood of
failure, including patient factors such as age, bone density, and comorbidities, as well
as aspects of the procedure itself such as complexity of the correction and numbers of
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spinal levels fused [127–129]. Sources of hardware failure are variable, with rod fracture,
painful/prominent implants, screw breakage, and screw loosening being some of the most
frequently reported [103]. In particular, rod fractures have been subjected to intensive
investigation, given the frequent need for revision surgery and significant deleterious con-
sequences on patient recovery. This is especially seen when aggressive sagittal parameter
correction is performed, as procedures like PSO are associated with the highest incidence
of rod fractures [103]. Multi-rod configurations and customizable rods with greater angular
bending may help ensure the utilized hardware remains stable across the lifespan [97,130].

3.5. Proximal Junctional Kyphosis and Failure

PJK and PJF, which refer to the development of abnormal kyphotic curvature at the
uppermost instrumented vertebrae, are challenging complications of ASD surgery. The
incidence of PJK/PJF varies and has been reported to be between 20 and 40% in most
studies, depending on the patient population and extent of deformity correction [131].
A majority of patients with PJK have clinically significant signs within 18 months after
surgery, though the time course can differ based on the rate of kyphosis progression or
vertebral body structural failure [132]. While there is a lack of consensus regarding which
patients with PJK should undergo surgery, patients with significant pain, neurological
findings, or ongoing disability are considered for revision surgeries [133,134]. Several
risk factors for PJK have been identified, including older age, large sagittal parameter
abnormalities, low bone density, fusion to the sacrum/pelvis, and overcorrection of lumbar
lordosis [131,134–136].

A consideration when evaluating PJK is selection of patient populations who can
benefit from a revision operation. As radiographic findings may not completely correlate
with patient symptoms, classification schemes have been developed to help establish
consensus on treating PJK. The Boachie-Adjei system breaks PJK down into type of failure
(e.g., ligamentous, bone, and implant–bone interface), degree of kyphosis, and presence of
spondylolisthesis (Table 2) [137,138].

Table 2. The Boachie-Adjei classification system for proximal junctional kyphosis.

Category Description

Type
Type 1 Disc and ligamentous failure
Type 2 Bone failure
Type 3 Implant/bone failure

Grade
Grade A Proximal junction increase of 10◦–19◦

Grade B Proximal junction increase of 20◦–29◦

Grade C Proximal junction increase ≥30◦

Spondylo-
listhesis

PJF-N No spondylolisthesis present above the
uppermost instrumented vertebra

PJF-S Spondylolisthesis present above the uppermost
instrumented vertebra

However, this system does not provide correlation with symptoms or guide treatment
decisions. The Hart-International Spine Study Group scale built on this by grading PJK
on six criteria: neurological deficits, pain, issues with instrumentation, degree of kypho-
sis, fracture/movement of upper instrumented vertebrae, and level of PJK involvement
(Table 3) [139].

This scoring system has been validated against health-related quality of life scores,
overall pain, and likelihood of revision surgery, establishing a threshold at which patients
should be considered for revision [140,141].
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Table 3. The Hart-International Spine Study Group scale for proximal junctional kyphosis. PLC:
posterior ligamentous complex, UIV: uppermost instrumented vertebra, VAS: visual analog scale.

Characteristic Severity Score

Neurological Deficit
None 0

Radicular Pain 2
Myelopathy or Motor Deficit 4

Focal Pain
None 0

VAS ≤ 4 1
VAS ≥ 5 3

Instrumentation Problem

None 0
Partial Fixation Loss 1

Prominence 1
Complete Fixation Loss 2

Change In Kyphosis

0–10◦ 0
10◦–20◦ 1

>20◦ 2
PLC Failure 2

UIV Changes

None 0
Compression Fracture 1
Burst/Chance Fracture 2

Translation 3

Level of UV
Thoracolumbar Junction 0

Upper Thoracic 1

Given the high incidence of PJK/PJF, several augmentation strategies for posterior
instrumentation have been explored. Prophylactic teriparatide has been examined to
improve bone mineral density in patients prior to deformity correction. In a prospective
study, patients who received teriparatide had significantly increased bone mineral content
with an almost 70% reduction in bone failure PJK compared to untreated patients at two
years post-surgery [142]. Vertebral body cement augmentation is another tool that has been
studied in both cadaveric models and patients. Studies showed that cement augmentation
reduced junctional fractures in spinal models following long instrumentation and led
to significant clinical reduction in incidence of PJK [143–145]. As previously mentioned,
tethers, which are woven through the proximal junction of the deformity, have also been
explored, with early data demonstrating low rates of symptomatic PJK and need for revision
surgery [91–94]. The use of spinal hooks versus pedicle screws at upper instrumented sites
has been explored, as more rigid anchor types have been associated with the development
of PJK. Hooks were shown to significantly reduce the incidence of PJK compared to
pedicle screws and were thought to better accommodate the dynamic post-operative forces
placed on an instrumented spine [146–149]. Utilizing age-adjusted spinopelvic alignment
goals further prevented overcorrection and stress placed on junctional sites [150]. Finally,
modification of surgical techniques by preserving posterior tension bands while using fewer
implants and more flexible materials may reduce the likelihood of PJK progression [131].

3.6. Pseudarthrosis

Pseudarthrosis refers to the failure of bone fusion after ASD correction and is an-
other complication associated with significant cost and morbidity. Across ASD, the rate
of pseudarthrosis is approximately 6% and accounts for a large portion of revision surg-
eries [151,152]. The risk factors for incomplete fusion are similar to those for PJK/PJF,
including older age, underlying comorbidities, smoking, large thoracic kyphotic angles,
and long construct lengths [151,153]. Even in situations when revision surgeries are per-
formed, the rate of recurrent pseudarthrosis is high, affecting up to 50% of patients [154].
Various graft and biological materials have been under investigation to improve bone heal-
ing and drive hardware integration, but additional clinical data are needed to characterize
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their impact on long-term fusion [155]. Further, for high-risk patients, computational mod-
els that leverage patient and surgical variables might help guide pre-operative counseling
and planning [34].

3.7. Minimally Invasive Approaches

While MIS approaches have expanded the options available for patients with ASD,
there are limitations to performing minimally invasive techniques in those who require
aggressive deformity correction. Initial applications of MIS for ASD showed challenges in
the correction of sagittal parameters in patients, with open procedures achieving a greater
degree of correction [36,156,157]. The development of more complex MIS approaches, like
cMIS which can reach sagittal planes, have addressed some of these concerns, as previously
mentioned. However, the efficacy of MIS or rate of conversion to open procedures in
patients with certain severe deformities or large fusion masses remains to be seen. Further,
MIS techniques carry new training requirements and start-up cost considerations [158].
As improvements in medical devices and hardware drive the growth in MIS approaches,
clinical trial data comparing these approaches to open techniques will be critical to ensure
appropriate procedure selection for patients with a particular ASD.

4. Future Directions

Surgical approaches for ASD have seen remarkable evolution driven by an expanding
patient population and rapid operative advances. As innovation in health technology and
data science becomes more accessible, these techniques can be leveraged to improve ASD
correction outcomes. For pre-operative assessment, three-dimensional motion analysis
paired with traditional radiographic parameters may offer more nuanced views on spinal
mechanics and regions where correction is required [159]. These forms of imaging can
further translate to precision hardware such as patient-specific rods that can lower the
risk of rod fracture and hardware failure [160]. Advanced imaging also has several intra-
operative applications, including real-time modeling and simulations through augmented
reality to ensure safe and effective hardware placement [161,162]. Additionally, ASD patient
identification and risk stratification can benefit from more powerful machine and deep
learning architectures, which enable clustering that is independent of current descriptive
categories. As computational classification schemes can more accurately reflect patient
phenotype, these technologies can guide the development of management algorithms that
incorporate patient health status and comorbidities, which can facilitate more tailored
surgical approaches [163,164]. Across all of these domains, striking close partnerships
between academics and industry sponsors, as well as clinicians delivering non-operative
management, will be critical to improve the array of solutions available.

5. Conclusions

The growing global prevalence of ASD has necessitated effective surgical options that
can address patient symptoms and deliver long-term correction. Several advances have
fueled the growth of deformity surgery, such as standardized pre-operative evaluation
metrics, three-dimensional spinal modeling, complex minimally invasive approaches,
targeted and staged corrections, safer osteotomies, intraoperative navigation, and advanced
hardware. For continued growth of ASD surgical options, several challenges will be
important to address, including appropriate patient selection, ensuring adequate age-
specific correction, improving minimally invasive approaches for severe deformities, and
reducing significant operative complications such as infections, blood loss, hardware
failure, PJK/PJF, and pseudarthroses. With the significant positive impact ASD surgery can
have on reducing disability and improving quality of life, comprehensive outcome data,
validated clinical trials, and continued innovation will be integral to advance these spinal
interventions.
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