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Abstract: Background and aim: The presence of mechanical dyssynchrony on echocardiography is
associated with reverse remodelling and decreased mortality after cardiac resynchronization therapy
(CRT). Contrarily, myocardial scar reduces the effect of CRT. This study investigated how well a
combined assessment of different markers of mechanical dyssynchrony and scarring identifies CRT
responders. Methods: In a prospective multicentre study of 170 CRT recipients, septal flash (SF),
apical rocking (ApRock), systolic stretch index (SSI), and lateral-to-septal (LW-S) work differences
were assessed using echocardiography. Myocardial scarring was quantified using cardiac magnetic
resonance imaging (CMR) or excluded based on a coronary angiogram and clinical history. The
primary endpoint was a CRT response, defined as a ≥15% reduction in LV end-systolic volume
12 months after implantation. The secondary endpoint was time-to-death. Results: The combined
assessment of mechanical dyssynchrony and septal scarring showed AUCs ranging between 0.81
(95%CI: 0.74–0.88) and 0.86 (95%CI: 0.79–0.91) for predicting a CRT response, without significant
differences between the markers, but significantly higher than mechanical dyssynchrony alone. QRS
morphology, QRS duration, and LV ejection fraction were not superior in their prediction. Predictive
power was similar in the subgroups of patients with ischemic cardiomyopathy. The combined
assessments significantly predicted all-cause mortality at 44 ± 13 months after CRT with a hazard
ratio ranging from 0.28 (95%CI: 0.12–0.67) to 0.20 (95%CI: 0.08–0.49). Conclusions: The combined
assessment of mechanical dyssynchrony and septal scarring identified CRT responders with high
predictive power. Both visual and quantitative markers were highly feasible and demonstrated
similar results. This work demonstrates the value of imaging LV mechanics and scarring in CRT
candidates, which can already be achieved in a clinical routine.

Keywords: apical rocking; cardiac resynchronization therapy; dyssynchrony; myocardial scar;
myocardial work; reverse remodelling; septal flash; systolic stretch index
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1. Introduction

Cardiac resynchronization therapy (CRT) is indicated in patients with symptomatic
heart failure, reduced left ventricular (LV) ejection fraction (LVEF ≤ 35%), and a wide QRS
(≥130 ms), preferably with a left bundle branch block (LBBB) morphology. Despite tech-
nical improvements and accumulating experience, the non-response rate to CRT remains
high (circa 30–40%) [1]. On the other hand, patients who would benefit from CRT are
denied therapy by current selection criteria [2]. More than a decade ago, the assessment
of mechanical dyssynchrony using echocardiography was proposed to improve patient
selection for CRT. However, its use has been refuted due to disappointing results from one
observational and two randomized studies [3–5]. The proposed parameters were neither
sensitive nor specific enough to reduce non-response [4] and lead to unnecessary pacing
and increased mortality in patients [5].

Since then, a better understanding of the pathophysiology has led to the identification
of motion patterns that truly reflect a curable substrate for CRT [6–11]. Among those,
both visual markers such as septal flash (SF) and apical rocking (ApRock), as well as
quantitative markers such as the systolic stretch index (SSI) and lateral-to-septal (LW-S)
work difference, have demonstrated to be specific, easy to use, outperforming QRS duration
and morphology, and to be associated with favourable long-term survival after CRT [9,11–13].

In contrast, both the extent and location of myocardial scar influence myocardial
motion patterns and have a negative impact on CRT outcome [11,14]. Recent studies have
therefore tried to integrate the assessment of scar with mechanical dyssynchrony—either
LW-S work difference [11] or SF/ApRock [15]. However, a direct comparison between
the performance of different parameters of mechanical dyssynchrony and the impact of
integrating information on myocardial scarring on their prediction of CRT response has
not yet been performed.

The present prospective multicentre study investigated the impact of myocardial
scarring on the prediction of a CRT response using an echocardiographic evaluation of me-
chanical dyssynchrony. Cardiac magnetic resonance imaging (CMR) with late gadolinium
enhancement (LGE) was used to assess myocardial scarring. The primary endpoint was
volumetric reverse remodelling at 12 months follow-up. The secondary endpoint was long-
term survival. The combined approach of integrating information of myocardial scarring
with mechanical dyssynchrony was: (I) compared among both visual (SF/ApRock) and
quantitative (SSI/LW-S work difference) markers, (II) evaluated for its additive predictive
value over those markers alone, and (III) tested for its added value over LV ejection fraction,
QRS duration and morphology.

2. Methods
2.1. Study Population

A total of 200 heart failure patients referred for CRT were prospectively recruited
through the cardiology departments of the University Hospitals Leuven, Belgium; Oslo
University Hospital, Norway; CHU Rennes, France; and OLV Hospital Aalst, Belgium
between August 2015 and November 2017. The patients were all-comers with an indi-
cation for CRT, according to the European Society of Cardiology guidelines, at the time
of inclusion [16]. Exclusion criteria were recent myocardial infarction or cardiac surgery
(≤12 months) and severe aortic stenosis.

2.2. Echocardiography: Conventional Parameters

Echocardiography was performed within 1 week before and 12 months after CRT
implantation, using Vivid E9 or E95 ultrasound scanners (GE Vingmed Ultrasound, Horten,
Norway). Blood pressure was measured using the brachial cuff method at the beginning
of the examination. LV volumes and LVEF were measured using the modified Simp-
son’s biplane method. Regional and global longitudinal strains (GLSs) were measured by
speckle tracking (frame rate > 60 frames/s) using the 18-segment model. All analyses were
performed offline using EchoPAC version 202 (GE Vingmed).
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2.3. Mechanical Dyssynchrony: Visual Markers
2.3.1. Septal Flash

Visual assessment of SF was performed in the apical four- and three-chamber view. SF
was defined as a rapid inward motion and shortening of the (antero-)septal wall, occurring
directly after the onset of QRS and before shortening of the lateral wall (Graphical Abstract).
Presence of SF was recorded if it was seen in either the four- or three-chamber view, or both.

2.3.2. Apical Rocking

Visual assessment of ApRock was performed in the apical four- and three-chamber
view. ApRock was defined as a systolic septal-to-lateral motion sequence of the apical
myocardium (Graphical Abstract). The laterally directed component should occur during
ejection time, i.e., before mitral valve opening. The presence of ApRock was recorded if it
was seen in either the four- or three-chamber view, or both.

2.3.3. Decision-Making for Septal Flash and Apical Rocking

Three readers in Leuven (JD, MC, JUV) performed independent visual readings of SF
and ApRock prior to CRT implantation. At the time of the reading, these observers were
blinded to all patient information. Mechanical dyssynchrony was considered present when
either SF or ApRock, or both, were observed. For further analysis, the majority opinion of
the three readers was used.

2.4. Mechanical Dyssynchrony: Quantitative Markers
2.4.1. Systolic Stretch Index

SSI was calculated from longitudinal strain traces of the four-chamber view as the sum
of the septal systolic stretch and lateral systolic pre-stretch before aortic valve closure [9]
(Graphical Abstract). Values from the basal and mid-ventricular segments were averaged
to represent respective walls. Mechanical dyssynchrony was considered present when SSI
was ≥3.1% [9].

2.4.2. Lateral-to-Septal Work Difference

Regional systolic work [17] in the septum and lateral wall was calculated as the average
work from the respective basal- and mid-ventricular segments in the apical four-chamber
view, as previously described [11] (Graphical Abstract). The difference between work in
the lateral wall and septum (LW-S work difference) was used as a measure of asymmetry
in myocardial loading. Mechanical dyssynchrony was considered present if the LW-S work
difference was ≥860 mmHg% [11]. Strain and work analyses were performed by one
observer in Oslo (JMA) blind to all patient information.

2.5. Myocardial Scarring

Prior to CRT implantation, patients were scanned with a 1.5 or 3.0 Tesla MRI unit
(Aera or Verio, Siemens Healthcare, Erlangen, Germany; Ingenia, Philips Healthcare, Best,
The Netherlands; Signa HGXT, GE Healthcare, Chicago, USA). LGE images were obtained
as previously described [18]. Scar size was quantified semi-automatically using Segment
software v2.0 R5270 [19] by an experienced observer blind to other patient data (CKL). The
origin of LGE in the septum was determined as ischemic or non-ischemic. Myocardial
scarring was assessed using a 17-segment model and reported regionally as percentage
of total amount of scarred tissue per LV wall: anterior, septal (antero-septal and septal),
inferior, and lateral (lateral and posterior). The apical cap was excluded.

LGE-CMR was obtained in 125 of 200 patients. The main reasons for the other 75 pa-
tients not undergoing LGE-CMR were non-CMR-compatible devices (n = 42) and severely
reduced renal function (n = 11). For the remaining patients (n = 22), reasons included
claustrophobia, intracranial metal implants, and logistic causes.

In patients without LGE-CMR (75 of 200), the presence of large myocardial scarring
was excluded based on all of the following: (I) no evidence of a previous myocardial
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infarction in the medical history, laboratory values, ECG, or scintigraphy; (II) no relevant
stenosis on a recent coronary angiogram (max. 1 year prior to CRT implantation); and
(III) no history of coronary intervention (percutaneous or surgical). In 30 of 75 patients
without CMR data, scarring could not be ruled out. These patients were excluded.

2.6. Cardiac Resynchronization Therapy

Patients underwent standard implantation of a biventricular pacing system. Coronary
venography was used to optimize the placement of the LV lead in a lateral or posterolateral
vein. The device was programmed in a conventional biventricular pacing mode and
retested prior to hospital discharge.

2.7. Endpoints

Primary endpoint was CRT response, defined as a ≥15% reduction in LV end-systolic
volume at 12 months follow-up. All volumes were measured independently in three
different centres (Leuven, Oslo, and Rennes) by readers blinded to any other data (BK, PAS,
EG). Reported volumes are the averages of the three readings. Volumetric CRT response
(yes/no) was determined based on a majority decision.

Secondary endpoint was time-to-death of any cause, heart transplant, or LV assist
device implantation, with an average follow-up time of 44 ± 13 months after CRT implan-
tation (median 1543 (IQR 139–1726) days).

2.8. Statistical Analysis

Analysis was performed using SPSS Statistics 20 (IBM, Chicago, IL, USA) and MedCalc
15 (MedCalc, Ostend, Belgium). All continuous variables are expressed as mean ± standard
deviation if normally distributed, otherwise by median ± interquartile range. Normality
was assessed using the Shapiro–Wilk test. (Un-)paired sample t-tests or chi-squared tests
were used for comparison of continuous or categorical variables, respectively. Univari-
ate or multivariate linear regression analysis was used to identify predictors of reverse
remodelling. Collinearity was tested using the variance inflation factor (VIF). Receiver
operating characteristics (ROC) curves with area under the curve (AUC) values were used
to determine the discriminative ability. To combine the assessment of two or more pa-
rameters, logistic regression was used to calculate a linear combination of parameters, the
equation of which was then used for ROC curves. Nagelkerke’s R2 was reported for the
predictive value of multivariate logistic regression models. The Delong method was used
to compare ROC curves. Survival data are presented as hazard ratios (HR) (Cox regression)
and Kaplan–Meier curves with a log-rank test for comparison. Inter-rater variability was
tested using intra-class correlation (ICC) by two readers blinded to any other data (original
reader and OM). Statistical significance was set at a two-tailed probability level of p < 0.05.
Missing data were handled using pairwise deletion per parameter.

3. Results

Of the 170 included patients, 2 patients had died and 1 underwent heart transplanta-
tion, before 12 months follow-up. These three patients were considered as non-responders.
The primary endpoint of the ≥15% reduction in LV ESV was achieved in 121 patients (72%).
Among non-responders were more patients with ischaemic cardiomyopathy (Table 1). At
follow-up, LV volumes, LVEF, and GLS improved substantially in responders, in contrast
to non-responders (Table 2).
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Table 1. Baseline characteristics.

All Patients
(n = 170)

Responders
(n = 121)

Non-Responders
(n = 49)

Clinical characteristics

Age (years) 67 ± 10 67 ± 10 65 ± 11 (*)

Male (%) 71 65 83 (*)

BMI (kg/m2) 27 ± 5 26 ± 5 27 ± 5

NYHA-class 2.4 ± 0.5 2.3 ± 0.5 2.6 ± 0.5 (*)

Ischemic aetiology (%) 28 22 44 (*)

SBP (mmHg) 124 ± 21 126 ± 20 120 ± 21 (*)

DBP (mmHg) 69 ± 11 71 ± 12 69 ± 10

Medication

Beta-blocker (%) 92 90 92

ACEi/ARB (%) 94 97 90 (*)

Aldosterone antagonists (%) 43 41 46

Diuretics (%) 71 69 77

ECG criteria

QRS morphology: LBBB (%) 87 89 81 (*)

QRS duration (ms) 165 ± 19 166 ± 18 162 ± 19

AFib (%) 6 5 8

Paced (%) 11 7 19 (*)

Device upgrades (%) 18 11 35 (*)

ESC guideline class

Class I (%) 87 89 80

Class II (%) 13 11 20

Implanted CRT

CRT-P (%) 14 15 11

CRT-D (%) 86 85 89
ACEi = angiotensin-converting-enzyme inhibitor; ARB = angiotensin-II receptor blocker; BMI = body mass
index; CRT-P/-D: cardiac resynchronization therapy -pacemaker/-defibrillator; DBP = diastolic blood pres-
sure; ECG = electrocardiogram; ESC = European Society of Cardiology; NYHA = New York Heart Association;
SBP = systolic blood pressure. (*) = p < 0.05 vs. responders.

Table 2. Echocardiographic characteristics: volumes and systolic function.

All Patients
(n = 170)

Responders
(n = 121)

Non-Responders
(n = 49)

Pre-CRT

LVEDV (mL) 199 ± 75 192 ± 70 211 ± 85 (*)

LVESV (mL) 140 ± 62 136 ± 58 151 ± 71 (*)

LVEF (%) 31 ± 8 31 ± 7 30 ± 8

GLS (%) 9 ± 3 10 ± 4 8 ± 3 (*)
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Table 2. Cont.

All Patients
(n = 170)

Responders
(n = 121)

Non-Responders
(n = 49)

12 months follow-up

LVEDV (mL) 158 ± 70 139 ± 55 (†) 206 ± 81 (*)

LVESV (mL) 97 ± 59 79 ± 42 (†) 144 ± 69 (*)

LVEF (%) 42 ± 11 46 ± 10 (†) 33 ± 10 (*)

GLS (%) 11 ± 3 14 ± 4 (†) 8 ± 4 (*)
EDV = end-diastolic volume; EF = ejection fraction; ESV = end-systolic volume; GLS = global longitudinal strain;
LV = left ventricular; (*) = p < 0.05 vs. responders. (†) = p < 0.05 vs. Pre-CRT.

3.1. Predictive Value of Markers of Mechanical Dyssynchrony

Prior to CRT, 119 (70%) patients showed either SF or ApRock, 117 (69%) patients had an
SSI ≥ 3.1%, and 115 (68%) patients demonstrated LW-S work asymmetry ≥ 860 mmHg·%
(Table S1). These markers were observed more frequently among responders compared to
non-responders (all p < 0.0001). Regression analysis revealed a direct relation between the
presence of SF or ApRock (R = 0.51), SSI (R = 0.46), and LW-S work difference (R = 0.41) vs.
reverse remodelling (all p < 0.0001).

The AUCs were 0.73 for the presence of SF or ApRock, 0.67 for SSI, and 0.76 for LW-S
work difference (all p < 0.0001) (Figure 1). The predictive power of SF or ApRock and LW-S
work difference was not significantly different (p > 0.05), but both were higher compared to
SSI (p = 0.002 and p = 0.047, respectively).
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Figure 1. Presence of mechanical dyssynchrony, combined with septal scarring, identifies CRT
response. ROC curve displaying as predictors of CRT response. Top row: markers, not combined with
septal scarring info, (A) SF or Aprock, (B) SSI, and (C) LW-S work difference. Bottom row: markers
combined with septal scarring info, (D) SF or ApRock + septal scarring, (E) SSI + septal scarring, and
(F) LW-S work difference + septal scarring. Statistical differences between plots are indicated.
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When analysing patients with LBBB only (n = 148), the AUCs were similar and ranged
between 0.69 and 0.76 (Table S2).

The presence of SF or ApRock, SSI ≥ 3.1%, and LW-S work difference ≥ 860 mmHg·%
were significant predictors of survival at long-term follow-up (Figure 2). The mortality
rate was lower in patients where markers of mechanical dyssynchrony were present; 75%
lower with the presence of SF or ApRock, 43% lower for SSI, and 61% lower for LW-S work
difference (all, but SSI p < 0.05) (Figure 3). The echocardiographic assessment of SF or
ApRock was feasible in all patients, SSI in 165 (97%) and work analysis in 166 (96%) patients.
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Figure 2. Presence of mechanical dyssynchrony, combined with septal viability, predicts survival
without heart transplant (HTx). Kaplan–Meier curve stratified according to the presence of mechanical
dyssynchrony. Top row: markers, not combined with septal scarring info, (A) SF or ApRock, (B) SSI,
and (C) LW-S work difference. Bottom row: markers combined with septal scarring info, (D) SF or
ApRock + septal scarring, (E) SSI + septal scarring, and (F) LW-S work difference + septal scarring.
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Figure 3. Mechanical dyssynchrony presence, combined with septal viability, reduces the hazard of
death or heart transplant (HTx). Cox regression model with hazard-ratio (HR) for the presence of
SF or ApRock (light green line, row 1) + septal scarring (dark green line, row 2), SSI (light blue line,
row 3) + septal scarring (dark blue line, row 4), and LW-S work difference (red line, row 5) + septal
scarring (yellow line, row 6).

3.2. Myocardial Scarring

In multivariate linear regressions, SF or ApRock, SSI, and LW-S work difference,
together with ischemic/non-ischemic aetiology, but not QRS morphology (LBBB or non-
LBBB) nor QRS duration or LVEF, were independent predictors of volumetric change after
CRT (Table 3).

Table 3. Multivariate linear regression analysis with LV end-systolic volume-reduction as dependent
variable.

Regression Variable B 95%CI VIF p-Value

Model 1: SF or ApRock (1)

Constant 1.170

SF or ApRock −26.589 −34.790 to −18.388 1.161 <0.0001

Ischaemic aetiology 5.335 2.256 to 13.327 1.144 0.036

QRS-morphology −4.034 −14.147 to 6.078 1.048 0.432

QRS-duration −0.059 −0.236 to 0.118 1.019 0.511

LVEF −0.015 −0.459 to 0.429 1.038 0.947

Model 2: SSI (2)

Constant 0.532

SSI −2.768 −3.687 to −1.849 1.098 <0.0001

Ischaemic aetiology 12.292 4.774 to 19.810 1.037 0.002

QRS-morphology −2.151 −12.442 to 8.140 1.075 0.680

QRS-duration −0.067 −0.247 to 0.113 1.024 0.462

LVEF −0.087 −0.539 to 0.364 1.061 0.704
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Table 3. Cont.

Regression Variable B 95%CI VIF p-Value

Model 3: LW-S work difference (3)

Constant −13.891

LW-S work difference −0.013 −0.017 to −0.008 1.168 <0.0001

Ischaemic aetiology 13.267 5.622 to 20.913 1.033 0.001

QRS-morphology −1.912 −12.476 to 8.653 1.093 0.721

QRS-duration −0.102 −0.284 to 0.080 1.013 0.269

LVEF 0.457 −0.012 to 0.926 1.095 0.056
(1): Model R2 = 0.27, n = 170; (2): Model R2 = 0.26, n = 167; (3): Model R2 = 0.24, n = 166. CI: confidence interval;
VIF: variance inflation factors.

Scarring was present in 58 (34%) patients. In total, 43 patients (25%) had some degree
of scar in the anterior wall, 54 (32%) in the septum, 52 (31%) in the inferior wall, and
36 (21%) in the lateral wall. Univariate linear regression showed an inverse correlation
between the percentage of LV scarring and reverse remodelling (R = −0.43, p < 0.0001).
Multivariate linear regression, including the percentage of anterior, septal, inferior, and
lateral wall scarring, revealed that only septal scarring was a significant predictor of reverse
remodelling (Table 4). Furthermore, the absence of septal wall scarring independently
predicted a response with an AUC of 0.67 (95% CI: 0.52–0.83) (p < 0.05).

Table 4. Multivariate linear regression analysis with LV end-systolic volume-reduction as dependent
variables.

Regression Variable B VIF 95%CI p-Value

Constant −35.107

Anterior scar (%) 0.001 2.921 −0.423 to 0.425 0.999

Septal scar (%) 0.466 3.250 0.010 to 0.921 0.015

Inferior scar (%) 0.028 3.100 −0.370 to 0.426 0.889

Lateral scar (%) 0.198 2.947 −0.199 to 0.595 0.327

n = 170. R2 = 0.21. Abbreviations in Table 3.

3.3. Combining Mechanical Dyssynchrony and Septal Scarring

In multivariate linear regressions, only markers of mechanical dyssynchrony and
septal scarring remained independent predictors of reverse remodelling after CRT (Table 5)
(all p < 0.05). QRS morphology, QRS duration, and LVEF were not predictive (all p > 0.05).

Table 5. Multivariate linear regression analysis with LV end-systolic volume-reduction as dependent
variables.

Regression Variable B 95%CI VIF p-Value

Model 1: SF or ApRock + septal scarring (1)

Constant −6.639

SF or ApRock −25.689 −33.643 to −17.735 1.123 <0.0001

Septal scar (%) 0.315 0.072 to 0.558 1.160 0.011

QRS-morphology −3.530 −13.504 to 6.443 1.048 0.486

QRS-duration −0.036 −0.212 to 0.140 1.034 0.686

LVEF 0.065 −0.380 to 0.509 1.067 0.775
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Table 5. Cont.

Regression Variable B 95%CI VIF p-Value

Model 2: SSI + septal scarring (2)

Constant −5.405

SSI −2.694 −3.605 to −1.772 1.110 <0.0001

Septal scar 0.413 0.172 to 0.653 1.100 0.001

QRS-morphology −1.694 −11.958 to 8.570 1.076 0.745

QRS-duration −0.045 −0.226 to 0.135 1.040 0.622

LVEF −0.017 −0.473 to 0.440 1.092 0.942

Model 3: LW-S work difference + septal scarring (3)

Constant −20.610

LW-S work difference −0.013 −0.017 to −0.008 1.171 <0.0001

Septal scar 0.460 0.218 to 0.703 1.088 <0.0001

QRS-morphology −1.288 −11.789 to 9.212 1.095 0.809

QRS-duration −0.075 −0.258 to 0.107 1.031 0.417

LVEF 0.528 0.057 to 0.998 1.117 0.082
(1): Model R2 = 0.30, n = 170; (2): Model R2 = 0.27, n = 167; (3): Model R2 = 0.27, n = 166. Abbreviations in Table 3.

The AUCs for the combined assessment of the markers of mechanical dyssynchrony
and septal scarring as predictors of CRT response were 0.86 for the presence of SF or
ApRock, 0.81 for SSI, and 0.84 for LW-S work difference (all p < 0.0001) (Figure 1). While
the predictive power for CRT response of the different combined approaches did not differ
significantly among each other (p > 0.05 for all), all AUCs were significantly better than the
markers of mechanical dyssynchrony alone (p < 0.01 for all). When analysing patients with
LBBB only (n = 148), the AUCs were similar and ranged between 0.82 and 0.85 (Table S2).

The combined approaches were strong and significant predictors and the reduced risk
of death at 44 months follow-up (Figure 2). Furthermore, adding information on septal
scarring improved the mortality rate; 80% lower for SF or ApRock, 72% lower for SSI, and
74% lower for LW-S work difference (all p < 0.01) (Figure 3).

3.4. Ischemic vs. Non-Ischemic Patients

The predictive power of the combined assessments for a CRT response was similar
in the subgroups of patients with and without ischaemic aetiology of cardiomyopathy
(Table 6). AUCs ranged from 0.75 to 0.80 for patients with ischemic heart disease, while
patients with non-ischemic heart disease showed an AUC range between 0.79 and 0.87.

Table 6. Predictors of CRT responses in ischemic and non-ischemic heart disease.

AUC 95%CI Sensitivity (%) Specificity (%)

Ischemic heart disease

SF or ApRock + septal scar 0.80 0.67 to 0.93 74 91

SSI + septal scar 0.76 0.63 to 0.90 46 91

LW-S work difference + septal scar 0.75 0.59 to 0.88 47 91

Non-ischemic heart disease

SF or ApRock + septal scar 0.87 0.77 to 0.96 94 64

SSI + septal scar 0.82 0.74 to 0.90 90 63

LW-S work difference + septal scar 0.79 0.68 to 0.90 91 65
CI: confidence interval. Equations in Figure 1.
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3.5. Reproducibility

The average ICC between the three centres for assessing the presence of reverse
remodelling (delta ESV) at 12 months was 0.87 (95%CI: 0.81–0.91). Inter-rater agreement
of the tested variables was good, with ICC = 0.73 (95%CI: 0.69–0.81) for SF or ApRock,
ICC = 0.71 (95%CI: 0.62–0.78) for SSI, and ICC = 0.82 (95%CI: 0.76–0.87) for LW-S work.

4. Discussion

Data from this prospective, multicentre study demonstrate that combining the assess-
ment of mechanical dyssynchrony using echocardiography with information on myocardial
scarring improves the accurate identification of patients who will respond to CRT with
reverse remodelling and who have better long-term survival after CRT. Septal wall scarring
was shown to significantly affect CRT response predictions by mechanical dyssynchrony,
as well as survival. The predictive power of a combined assessment, including informa-
tion on septal scarring, was significantly stronger than that of mechanical dyssynchrony
alone—independent of using either visual (SF/ApRock) or quantitative markers (SSI or
LW-S work difference)—with no difference among the markers. Lastly, both the presence
of mechanical dyssynchrony and septal scarring were stronger predictors of CRT responses
when compared to LV ejection fraction, QRS duration, and morphology.

4.1. Influence of Myocardial Scarring on Mechanical Dyssynchrony and Response

SF, ApRock, SSI, and LW-S work differences are features specific to mechanical dyssyn-
chrony in CRT candidates, which have already been shown to predict response and long-
term survival after CRT in other prospective studies [9,11,13]. However, parameters of
mechanical dyssynchrony are affected by regional scarring. Interestingly, in our study,
lateral wall scarring was less predictive of CRT response than septal scarring. This can be
explained by the reduction in the typical LBBB-induced septal motion pattern due to the
decreased contractility of the lateral wall. The septum is thereby less stretched and SF and
ApRock are diminished [18,20]. As a result, the information on lateral scarring is carried
by the mechanical dyssynchrony parameters, and considering lateral scarring on top of an
assessment of mechanical dyssynchrony has little added value.

In the present study, scarring in the septal wall proved to be the strongest scarring
determinant of non-response after CRT, among the different LV regions, including the
lateral wall. Notably, the deformation pattern of a scarred septum can be very similar to
a remodelled and dyssynchronous septum in LBBB, which is dysfunctional but viable.
In this scenario, information on septal scarring provides an added predictive value in a
multivariate analysis as it helps to distinguish both situations [11,15]. As a result, the
prediction of a CRT response becomes more specific without loss in sensitivity (Figure 1).

Furthermore, while the predictive power of the combined assessments towards CRT
response appears similar between patients with or without ischemic heart disease, it
provided a high sensitivity in non-ischemic patients (resulting in a low number of false
negatives) and a high specificity in ischemic patients (resulting in a low number of false
positives) (Table 6).

4.2. Comparison among Different Mechanics-Based Dyssynchrony Parameters

In the past years, evidence has accumulated that mechanical dyssynchrony is the
fundamental pathophysiologic principle that leads to remodelling in conduction delays
such as LBBB and that imaging dyssynchrony can better identify patients who could benefit
from CRT. Besides the visual assessment of SF and ApRock, a multitude of quantitative
parameters has been proposed, with two promising candidates being SSI [21] and LW-S
work difference [11]. They all specifically consider the interaction between septal and
lateral wall function. The advantage of quantitative parameters is a potentially lower user
dependence, at the cost of the need for high-quality images and detailed, time-consuming
regional deformation analysis. Myocardial work has the advantage of incorporating infor-
mation on myocardial loading but requires more advanced post-processing. Our findings
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indicate that LW-S-work difference, as well as the visual analysis of SF and ApRock, have
very comparable predictive values that both outperform SSI. However, when combined
with information on septal scarring, all three approaches perform similarly well.

An important advantage of markers of mechanical dyssynchrony is their feasibility in
clinical routine; they can be easily obtained either visually or by a routine speckle-tracking-
based analysis, which is feasible in nearly all CRT candidates (≥96% of all patients in our
study). Furthermore, the inter-rater agreement in our study was high.

4.3. Clinical Implications

The present multicentric prospective study adds to the evidence that assessment of
mechanical dyssynchrony and scarring by imaging can reliably, and relatively simply,
identify CRT candidates. Furthermore, it highlights that a better understanding of the
mechanisms of dyssynchrony also allows a better clinical judgement. The presence of SF or
ApRock can be determined easily on echocardiographic apical images in nearly all patients.
SSI and LW-S work differences are based on speckle-tracking analysis, which has become
clinical routine in recent years. Scar assessment by CMR is of course an additional burden.
However, a majority of centres already perform LGE-CMR as a routine investigation prior
to CRT to avoid LV lead placement in a scar.

4.4. Limitations

In a substantial number of patients, LGE-CMR is not feasible due to, e.g., severely
reduced renal function or a previously implanted device. Wider use of renal-saving contrast
agents and CMR-compatible devices will be helpful. The use of nuclear scintigraphy as
an alternative option for assessing scarring is limited due to its high cost and patients’
exposure to ionizing radiation [22].

Ruling out myocardial scarring based on patient history and coronary angiogram has
the limitation of disregarding (particularly) scarring of non-ischemic origin, which can also
affect the CRT response [22].

Myocardial work analysis is currently only available from one vendor. Future devel-
opments could expand this methodology to other vendors.

Data on the LV lead position were not available and may have provided additional
insights.

Even though evidence on the clinical use of mechanical dyssynchrony as a CRT
indicator has already been demonstrated in multiple (observational) trials, solid evidence
from randomized controlled trials is needed if imaging-based selection criteria are to be
included as guideline indications [23].

5. Conclusions

The present study shows that readings of mechanical dyssynchrony—combined
with an assessment of septal scarring—prior to CRT implantation have an added pre-
dictive value regarding reverse remodelling and long-term survival, compared to me-
chanical dyssynchrony alone. Patients with the presence of mechanical dyssynchrony on
echocardiography—shown by either SF, ApRock, high SSI, and high LW-S work difference—
are most likely to respond and survive in the long term after CRT. However, when septal
scarring is present on CMR, this likelihood is reduced. This work adds to the building
evidence on the value of imaging LV mechanics and scarring in CRT candidates, which can
already be achieved in clinical routine.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm12186108/s1, Table S1: Frequency of mechanical dyssynchrony
before CRT in all study groups; Table S2: Predictors of CRT responses in only those patients with
LBBB; Video S1: Echocardiographic four-chamber views of a patient with presence of septal flash
and apical rocking prior to CRT implantation. This video corresponds to Case 1. The patient had
an LVEF < 35%, LBBB on ECG, and a QRS of 153 ms. No scarring was observed on CMR-LGE.
Left panel: status prior to CRT implantation. Note the rapid inward motion of the septum early in
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systole, followed by the septal-to-lateral rocking motion of the apex. The patient was predicted to
be a responder. Right panel: status after 12 months follow-up. Note the resynchronized contraction,
with improved LV systolic function and reduced volumes. The patient became a responder; Video S2:
Echocardiographic four-chamber views of a patient with absence of septal flash and apical rocking
prior to CRT implantation. This video corresponds to Case 2. The patient had an LVEF < 35%, LBBB
on ECG, and a QRS of 164 ms. No scarring was observed on CMR-LGE. Left panel: status prior
to CRT implantation. Note that no septal flash nor apical rocking is observed. The patient was
predicted to be a non-responder. Right panel: status after 12 months follow-up. Note that the LV
systolic function and volumes appear unchanged. The patient became a non-responder; Video S3:
Echocardiographic four-chamber views of a patient with presence of septal flash and apical rocking
prior to CRT implantation. This video corresponds to Case 3. The patient had an LVEF < 35%, LBBB on
ECG, and a QRS of 160 ms. Septal scarring was observed on CMR-LGE, in the mid- and apical regions
of the septum. Left panel: status prior to CRT implantation. No systolic shortening can be seen in the
mid- and apical regions of the septum. Note that the basal septum still shows a septal flash, and that
apical rocking can be seen in the apex. The patient was predicted to be a non-responder. Right panel:
status after 12 months follow-up. Note that the LV systolic function and volumes appear unchanged.
The patient became a non-responder; Video S4: Echocardiographic four-chamber views of a patient
with presence of septal flash and apical rocking prior to CRT implantation. This video corresponds to
Case 4. The patient had an LVEF < 35%, LBBB on ECG, and a QRS of 160 ms. Inferior wall scarring
was observed on CMR-LGE. Left panel: status prior to CRT implantation. Note the septal flash
and apical rocking. The patient was predicted to be a responder. The patient was predicted to be a
responder. Right panel: status after 12 months follow-up. Note the resynchronized contraction, with
improved LV systolic function, and reduced volumes. The patient became a responder.
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ApRock apical rocking
CMR cardiac magnetic resonance imaging
CRT cardiac resynchronization therapy
GLS global longitudinal strain
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LBBB left bundle branch block
LGE late gadolinium enhancement
LV left ventricular
LVEF left ventricular ejection fraction
LW-S lateral-to-septal
SF septal flash
SSI systolic stretch index
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