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Abstract: The function of the kidney is tightly linked to the function of the heart. Dysfunction/disease
of the kidney may initiate, accentuate, or precipitate of the cardiac dysfunction/disease and vice
versa, contributing to a negative spiral. Further, the reciprocal association between the heart and
the kidney may occur on top of other entities, usually diabetes, hypertension, and atherosclerosis,
simultaneously affecting the two organs. Chronic kidney disease (CKD) can influence cardiac
function through altered hemodynamics and salt and water retention, leading to venous congestion
and therefore, not surprisingly, to heart failure (HF). Management of HF in CKD is challenging due
to several factors, including complex interplays between these two conditions, the effect of kidney
dysfunction on the metabolism of HF medications, the effect of HF medications on kidney function,
and the high risk for anemia and hyperkalemia. As a result, in most HF trials, patients with severe
renal impairment (i.e., eGFR 30 mL/min/1.73 m2 or less) are excluded. The present review discusses
the epidemiology, pathophysiology, and current medical management in patients with HF developing
in the context of CKD.

Keywords: chronic kidney disease; heart failure; β-blockers; renin-angiotensin aldosterone system
inhibitors; angiotensin receptor/neprilysin inhibitor; sodium glucose cotransporter 2 inhibitor

1. Introduction

Patients with chronic kidney disease (CKD) frequently suffer from heart failure
(HF) [1,2]. Management of HF in CKD patients is challenging since several of the routinely
used HF medications may further impair renal function or necessitate dosage modifica-
tions [3]. Importantly, despite the high prevalence of HF in CKD, and especially in advanced
CKD (stages 4–5, kidney replacement therapy) [4], advanced CKD patients are excluded or
belittled in most major randomized trials that have shaped the management of HF [5,6].
In this manuscript, following a brief review of epidemiological data and pathogenesis,
the advantages, disadvantages, and restrictions of the several pharmaceutical approaches
as they apply to the management of HF in patients with underlying CKD are discussed.
Unavoidably, several statements in this review are based on pathophysiology and opinion
due to the lack of relevant evidence, as previously mentioned.
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2. Definitions
2.1. Chronic Kidney Disease

According to the National Kidney Foundation Kidney Disease Outcomes Quality
Initiative (K/DOQI) guideline, serum creatinine alone must not be used to diagnose CKD
since it is not a sensitive marker of glomerular filtration rate (GFR). Assessment for CKD
includes measuring estimated GFR (eGFR), urinalysis, and albuminuria quantification [7]
(Figure 1). An eGFR less than 60 mL/min/1.73 m2 body surface area (BSA) is indicative of
CKD, even when evidence of kidney damage such as albuminuria is absent. In patients
with eGFR 60 mL/min/1.73 m2 or more, kidney damage reflected by the occurrence
of albuminuria (30 mg or more albumin/gr creatinine) must be documented before the
diagnosis of CKD can be made. A decrease in eGFR or damage of the kidney must be
present for more than 3 months for the diagnosis of CKD [8].
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Figure 1. Stages of chronic kidney disease (CKD) according to KDIGO 2012 Clinical Practice Guideline
for the Evaluation and Management of Chronic Kidney Disease and cardiovascular mortality risk [7].
CKD can be diagnosed if glomerular filtration rate (GFR) is less than 60 mL/min per 1.73 m2 or
albuminuria is greater than 30 mg/24 h, both persisting for more than 3 months. Categories are
defined by GFR and albuminuria measures (e.g., CKD category G3A3). Green, low risk; yellow,
increased risk; orange, high risk; red, very high risk.

It is noteworthy that many studies including patients with renal dysfunction are
based on eGFR measurements with the Cockcroft–Gault formula, an antiquated equation
evaluated in a small patient number [9]. The American National Kidney Foundation
endorses the use of the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)
or the Modification of Diet in Renal Disease (MDRD) equations, which are more precise
than the Cockcroft–Gault equation [8]. Drug dosage must usually be decreased in CKD
proportionally to the estimated reduction in the active drug clearance. In adjusting drug
dosage, patient-related factors include the severity of renal dysfunction and patients’ size,
whereas factors related to the drug include the drug fraction that is excreted unchanged in
the urine and drug therapeutic window [10].
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2.2. Acute Kidney Injury

Acute kidney injury (AKI) is classified in three stages [11]: (a) Stage 1: creatinine
increases 1.5 times or more compared with baseline or 0.3 mg/dL or more within a 48 h
period, or the urine volume decreases to less than 0.5 mL/kg for 6–12 h; (b) Stage 2: creati-
nine increases 2.0 times or more compared with baseline, or the urine volume decreases to
less than 0.5 mL/kg for 12 h or more; and (c) Stage 3: creatinine increases 3.0 times or more
compared with baseline or increases to 4.0 mg/dL or more, or renal replacement therapy
is indicated, or the urine volume decreases to less than 0.3 mL/kg for 24 h or more. Most
AKI cases settle within 7 days [12]. However, if they are sustained or relapse, the clinical
outcome is precarious. Patients in AKI stage 2–3 recuperating within one week and leaving
the hospital without renal impairment have a one-year survival of 90% or more, whereas
those who are not recovering have a 47% mortality during hospital stay, and among those
leaving the hospital, the survival at one year is approximately 77% [12].

3. Epidemiology

CKD patients often suffer from cardiovascular (CV) disease (CVD). Approximately
50% of CKD patients in stages 4 and 5 suffer from CVD [13], and CV mortality underlies
approximately 40–50% of total mortality in CKD stages 4 (advanced kidney disease) and
5 (end-stage kidney disease) [14,15]. Besides the high risk for fatal myocardial infarction
and stroke, CV death may also result from malignant arrhythmias and HF, especially
in advanced CKD. New-onset HF in CKD patients occurs in the range of 17–21% [16].
A decrease in the eGFR and/or an increase in the urine albumin-to-creatinine ratio are
accompanied by a higher risk for new onset HF [17]. HF prevalence increases with declining
renal function, reaching approximately 45% in patients undergoing dialysis, with half of
them having a reduced left ventricular (LV) ejection fraction (LVEF) [18]. The prognosis of
CKD patients with HF is poor and worsens with deteriorating renal function [19]. In most
patients, the coexistence of CKD and HF is due to common risk factors such as diabetes,
hypertension, and atherosclerosis.

4. Mechanisms of HF Development in CKD

The kidney and the heart are important for CV homeostasis. In healthy individuals,
renal hemodynamics affect cardiac hemodynamics and vice versa, and this reciprocal
interaction is finetuned by neurohormonal activity, including the natriuretic peptide system,
the renin–angiotensin aldosterone system (RAAS), and the sympathetic nervous system
(SNS) [20]. Dysfunction/disease of the kidney may precipitate dysfunction/disease of the
heart and vice versa, contributing to the development of a negative spiral. Further, the
reciprocal kidney–heart interaction often occurs on top of diseases involving both organs at
the same time, usually diabetes and hypertension, both major atherosclerosis risk factors
(Figure 2).

HF in CKD develops as result of a CKD-induced systemic low-grade inflammation,
bringing about vascular and myocardial remodeling, which in turn leads to hypertension,
atherosclerosis, vascular calcification, and vascular senescence as well as valvular calcifi-
cation and myocardial fibrosis [21]. The progression of CKD following HF development
is driven by hemodynamic, neurohormonal, and CVD-related processes [22]. Hemody-
namic processes (decreased cardiac output and increased systemic venous pressure) further
increase salt and fluid retention, augmenting systemic and renal congestion as well as
renal interstitial compression [23], thus accelerating renal dysfunction. Neurohormonal
mechanisms comprise RAAS and SNS overactivity, whereas CVD-related processes involve
multiple pathways that instigate progression of CKD, including the aggravation of systemic
and local inflammatory processes and altered immune responses [24].
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Fibrosis is a unifying pathophysiology of renal and cardiac dysfunction (Figure 3) [25,26].
Injury of an organ initiates a complex cascade of cellular and molecular processes culminating
in tissue fibrosis. Despite the fact that this fibrogenic response may be initially adaptive,
its prolongation may cause parenchymal scarring and ultimately cellular dysfunction and
organ failure [27]. Both in the kidney and the heart, fibrosis is the common denominator
of neurohormonal overactivity, inflammation, and endothelial dysfunction due to oxidative
stress [28], eventually leading to CKD, CVD, and HF.
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Finally, both CKD and HF are frequently accompanied by anemia, which is due to a
constellation of diverse factors, including relative erythropoietin deficiency, uremia-induced
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inhibitors of erythropoiesis, short erythrocyte survival, and disturbed iron homeostasis [29].
The decrease in endogenous erythropoietin together with the anemia-related reduced
oxygen transport aggravates tissue hypoxia and neurohormonal overactivity, facilitating
the further deterioration of renal and cardiac function [30].

5. Major Limitation of Cardiovascular Trials: The Exclusion of Patients with
Renal Disease

In most CV trials, CKD patients are excluded based on diverse criteria (e.g., serum
creatinine 1.5 mg/dL or more, 2.3 mg/dL or more, 3 mg/dL or more, or eGFR less than
30 mL/min/1.73 m2), belittling CKD patients [4,25]. CKD patients in stages 4 and 5 have
been excluded from HF trials due to worries that potential drug accumulation may cause
complications. Exclusion of CKD patients is particularly widespread in trials evaluating β-
blockers, RAAS inhibitors (RAASi), and angiotensin receptor/neprilysin inhibitors (ARNI),
limiting evidence to support or not the use of these agents in CKD patients with HF [31].
Clinical research must be promoted in patients with combined renal and cardiac diseases
to achieve evidence-based management and avoid complications [25].

6. Medical Treatment of HF in CKD

Five well-known drug categories are considered the pylons of the treatment of chronic
HF [1]. These include (1) β-blockers; (2) RAASi: angiotensin converting enzyme inhibitors
(ACEi), angiotensin receptor blockers (ARB), and mineralocorticoid receptor antagonists
(MRA); (3) ARNI: sacubitril/valsartan; (4) SGLT-2i; and (5) diuretics.

6.1. β-Blockers

β-Blockers reduce blood pressure in CKD attenuating the hyperactive SNS [32]. Car-
dioprotection with these agents has been convincingly documented [33], but they are also
extremely useful in CKD patients. Experimental studies have demonstrated renoprotection
with β-blockers, including a decrease in interstitial fibrosis after renal injury [34,35]. Further,
several studies have demonstrated prolongation of survival with β-blocker therapy in CKD
patients [36,37]. Despite these encouraging reports, β-blockers have been underused in
CKD patients [38], most likely due to worries regarding control of blood sugar, diminished
excretion from the kidneys, and systemic accumulation [39,40]. However, β-blockers can
be safely used in all stages of CKD, provided relevant dose adjustments and use of those
excreted by the liver that possess ancillary vasodilatory properties, such as carvedilol [41].
Oral clearance of the two enantiomers of nebivolol, another vasodilating β-blocker, is
reduced in CKD but is restored with hemodialysis [42]. Compared with ACEi, β-blockers
seem to be inferior regarding renoprotection [43,44]. In the African American Study of
Kidney Disease and Hypertension (AASK), ramipril proved superior to metoprolol in the
retardation of renal dysfunction and mortality reduction in CKD patients [45].

β-blockers have proved beneficial in CKD patients with HF. In a retrospective cohort
of elderly CKD patients with HF, β-blockers reduced all-cause mortality, even those with
an eGFR 30 mL/min per 1.73 m2 or less [46]. Likewise, in another observational study that
recruited HF patients with advanced CKD (eGFR 30 mL/min per 1.73 m2 or less) from
the Swedish Heart Failure Registry, β-blockers use was accompanied by lower morbidity
and mortality [47]. As neither of these studies was specifically designed to evaluate the
interaction between treatment benefit and LVEF and until a relevant large, randomized
control study is conducted, we believe that in the absence of contraindications, patients
with CKD and HF should be treated with β-blockers, preferably carvedilol. In this regard,
a randomized study in 114 dialysis patients with dilated cardiomyopathy (carvedilol group
n = 88 and placebo group n = 56) revealed significantly lower mortality and hospitalizations
among patients receiving carvedilol than among those receiving a placebo at 2 years [36].
Furthermore, the active treatment group (carvedilol) exhibited smaller cavity diameters
and higher LVEF compared to placebo.



J. Clin. Med. 2023, 12, 6105 6 of 18

6.2. Renin–Angiotensin–Aldosterone System Inhibitors (RAASi)
6.2.1. Angiotensin Converting Enzyme Inhibitors/Angiotensin Receptor Blockers

In mild or moderate CKD, ACEi/ARB reduce blood pressure, retard eGFR decline,
attenuate proteinuria, and delay progression to CKD stages 4 or 5 [48,49]. However,
ACEi/ARB are often discontinued, especially in patients with a lower eGFR. Hyperkalemia
(potassium level 5.3 mEq/L or more), hypotension (systolic blood pressure 90 mmHg or
less), low bicarbonate level (less than 22 mmol/L), and hospitalization (usually due to AKI)
increase the risk of ACEi/ARB discontinuation [50]. Further, in advanced CKD, a recent
study demonstrated that during a follow-up of three years, the frequency of CV events
and death was similar in patients who continued vs. those who discontinued ACEi/ARB,
indicating that ACEi/ARB may not be as helpful in patients with advanced and progressive
CKD [51].

ACEi and ARB differ in their structure and mechanism(s) of action, exhibiting diverse
pharmacokinetic properties. The pharmacokinetics of ACEi are poorly characterized
owing to several factors interfering with their analysis, whereas the pharmacokinetics of
ARB vary the least with renal dysfunction [52,53]. Surprisingly, a network meta-analysis
demonstrated that ACEi is superior to ARB and other antihypertensive agents in improving
outcomes in non-dialysis CKD 3–5 patients [54].

Regarding HF management, both ACEi and ARB reduce morbidity and mortality [4,55,56].
A study that compared the effectiveness of ACEi and ARB in patients with prior myocardial
infarction (MI) reported that during a 3-year follow-up, incident clinical CV outcomes among
older patients with MI were lower with ARB compared with ACEi [57].

In summary, the choice between ACEi and ARB in patients with CKD and HF should
be individualized based on the clinical setting, availability, and healthcare provider ex-
pertise [58]. ACEi/ARB may also be used in stage 4–5 CKD, starting at a low dose and
carefully monitoring renal function and potassium levels [18].

6.2.2. Mineralocorticoid Receptor Antagonists (MRAs)

Aldosterone attaches to the mineralocorticoid receptor (MR) at the distal nephron
epithelium and augments sodium reabsorption and potassium secretion [59]. Inhibition of
the MR by an MRA decreases aldosterone-induced sodium and water reabsorption [60],
whereas MR inhibition in CV cells (e.g., cardiomyocytes and fibroblasts) as well as in those
belonging to the innate and adaptive immunity systems initiates potent beneficial processes
with anti-hypertrophic, antifibrotic, and anti-inflammatory effects, all improving cardiac
function [61].

Patients treated with ACEi or ARB may exhibit the so-called aldosterone breakthrough,
a rise in plasma aldosterone, the prevalence of which in CKD patients can reach 50% [62].
The increased aldosterone levels promote target organ damage on top of volume expansion
and hypertension. Aldosterone breakthrough is accompanied by lower plasma renin
activity (PRA), which is expressed as a rise in the aldosterone-to-renin ratio (more than
3 ng/dL per ng/mL/h) and reflects the volume expansion caused by aldosterone [63,64].
Several studies have shown that in CKD, the non-selective MRAs (spironolactone or
eplerenone), when given on top of ACEi or ARBs, reduce proteinuria but increase potassium
levels, and these agents may be beneficial in dialysis patients [65–67]. However, a small
trial in dialysis patients showed no benefit [68].

Several studies, including the Randomized Aldactone Evaluation Study (RALES) [69],
the Comparison Of Outcomes In Patients In New York Heart Association (NYHA) Class II
Heart Failure When Treated With Eplerenone Or Placebo In Addition To Standard Heart
Failure Medicines (EMPHASIS-HF) [70], and the Treatment of Preserved Cardiac Function
Heart Failure With an Aldosterone Antagonist (TOPCAT) [71], have demonstrated that non-
selective MRAs are effective in the treatment of HF despite an increase in the potassium
levels and in the risk of incident hyperkalemia. A secondary analysis of RALES that
investigated the efficacy of spironolactone in patients with severe HF and reduced kidney
function reported that spironolactone was associated with a reduction in all-cause mortality
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and hospital stays for HF regardless of baseline kidney function [72]. In the same study,
worsening kidney function increased mortality in the placebo but not in the aldosterone
group, whereas the risk of hyperkalemia was higher in patients of the aldosterone group
and especially those with worse kidney function or worsening kidney function. Thus,
non-selective MRAs may be a useful treatment option for patients with reduced kidney
function and advanced HF, but careful monitoring of electrolytes is necessary to prevent
adverse events.

Finerenone, a novel selective MRA, possesses chemical and physical properties pro-
viding balanced renal and cardiac drug delivery [73]. Finerenone exhibited significant
renoprotective and cardioprotective effects in two recent clinical trials that recruited patients
with CKD and type 2 diabetes mellitus (T2DM). The Finerenone in Reducing Kidney Failure
and Disease Progression in Diabetic Kidney Disease (FIDELIO-DKD) study, which recruited
patients with T2DM and either CKD in stage 2 to 4 and moderate albuminuria or CKD in
stage 1 and 2 with severe albuminuria, reported that finerenone retarded CKD progression
and improved outcomes [74]. Similar were the findings in the Finerenone in Reducing Car-
diovascular Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial [75].
It is noteworthy that the patients of both studies had a high risk of hyperkalemia (coexis-
tence of T2DM, RAASi treatment, and advanced CKD in some patients), as indicated by the
high incidence of hyperkalemia in the relevant placebo groups. Nevertheless, despite the
higher incidence of hyperkalemia in the finerenone than in the placebo group, treatment
interruption due to hyperkalemia was infrequent, and no death related to hyperkalemia
was reported [76]. In conclusion, finerenone provides robust renoprotection and safety
across the spectrum of CKD in T2DM [77] and can be used as an early treatment to slow
CKD progression in T2DM patients and most likely in those without. Regarding HF, al-
though finerenone has demonstrated consistent anti-inflammatory/anti-fibrotic effect and
beneficial actions on cardiac hypertrophy, diastolic dysfunction, and LV systolic dysfunc-
tion in experimental models, relevant clinical studies evaluating the effect of finerenone
in HF are lacking [78]. However, in a meta-analysis of three trials with 1520 HF patients,
finerenone improved several biochemical indicators, including biomarkers of cardiac and
renal function [79].

In summary, the non-steroidal MRAs (spironolactone and eplerenone) are currently
the agents of choice in CKD patients with HF, although finerenone is a very promising
agent with attractive properties. However, there is lack of evidence regarding the safety
and efficacy of MRA in patients with eGFR 30 mL/min/1.73 m2 or less.

6.3. Sacubitril-Valsartan

Sacubitril/valsartan attenuates the neurohormonal overactivity in HF by inhibiting
both the neutral endopeptidase neprilysin (sacubitril) and the angiotensin II type 1 receptors
(valsartan), therefore improving the neurohormonal balance more than RASi [80].

Sacubitril/valsartan has proved beneficial in CKD patients. In the United Kingdom
Heart and Renal Protection-III (UK HARP-III) trial (n = 414; eGFR: 20 to 60 mL/min/1.73 m2;
follow-up: 12 months), although sacubitril/valsartan and irbesartan had similar effects
on renal function and albuminuria, sacubitril/valsartan proved superior to irbesartan in
lowering blood pressure and cardiac biomarkers [81]. Further, sacubitril/valsartan has an
important role in the treatment of patients with HF, as demonstrated in the Prospective
Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity
in Heart Failure (PARADIGM-HF) [82] and the Prospective Comparison of ARNI With
ARB Global Outcomes in HF With Preserved Ejection Fraction (PARAGON-HF) [83] trials.

Sacubitril/valsartan is beneficial in patients with coexistent CKD and HF. A meta-
analysis of three randomized control trials (RCTs) with 3460 patients with CKD and HF com-
pared sacubitril/valsartan with irbesartan, valsartan, and enalapril [84]. Sacubitril/valsartan
significantly increased eGFR but did not reduce the urinary albumin/creatinine ratio more
than control. Further, sacubitril/valsartan reduced systolic blood pressure and NT-proBNP
more than the control, whereas no significant difference between sacubitril/valsartan and
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control regarding the side effects was observed. Similar were the findings in another meta-
analysis of 10 RCTs that included 16,456 patients with CKD and HF [85]. Sacubitril/valsartan
resulted in a lower risk of renal dysfunction as compared with ACEi/ARB alone. Finally, in
a recent study, sacubitril/valsartan was tested in coexistent end-stage kidney disease and
HF with reduced LVEF. After one year, LV systolic and diastolic function improved with
sacubitril/valsartan but were unchanged with conventional treatment [86].

In summary, sacubitril/valsartan is extremely useful in lessening cardiac events and
ameliorating renal impairment in CKD patients with HF.

6.4. Sodium-Glucose Cotransporter 2 Inhibitors (SGLT-2i)

The SGLT-2i were initially considered glucose-lowering agents. However, due to their
pleiotropic effects, the use of SGLT-2i has expanded far beyond T2DM and nowadays
includes CKD and HF with or without diabetes.

The mechanisms underpinning the renal and cardiovascular benefits of SGLT-2i
are multiple, with some related and some unrelated to the hypoglycemic effect of these
agents [87]. SGLT-2i prevent both hyperglycemia and hypoglycemia, with a slight effect on
HbA1C, decreasing fat mass and refining glomerular hemodynamics, thereby attenuating
albuminuria and O2 and the need for tubular reabsorption and increasing cortical oxy-
genation, which, in association with the diminished tubular glucotoxicity, protect tubular
function and maintain GFR. Further, it seems that SGLT-2i imitate systemic hypoxia and
prompt erythropoiesis, lessen volume retention and blood pressure, and preserve CV func-
tion, presumably by conquering diuretic and natriuretic-peptide resistance and hampering
Na+-H+ exchangers and sympathetic tone [88].

The first trial assessing the SGLT-2i effect on renal dysfunction was the Canagliflozin
and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation (CRE-
DENCE) study (4401 diabetic patients with eGFR 30 to less than 90 mL/min per 1·73 m2

and albuminuria more than 300 to 5000 mg/g), which was stopped early, as canagliflozin
reduced by 30% the primary outcome (end-stage kidney disease, doubling of the serum
creatinine level, or death from renal or CV causes) [89].

The renoprotective effects of SGLT-2i have also been documented in patients without
diabetes. The Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Dis-
ease (DAPA-CKD) trial (4304 participants with an eGFR 25–75 mL per minute per 1.73 m2

and urinary albumin-to-creatinine ratio 200 to 5000 mg/g) reported that dapagliflozin
reduced the risk of the primary endpoint (decline eGFR of 50% more, end-stage kidney
disease, or death from renal or CV causes) by 44% compared with placebo regardless of
diabetes status or CKD cause [90]. Similar were the findings in the recent Empagliflozin
in Patients with Chronic Kidney Disease (EMPA-KIDNEY) trial (6609 patients with CKD,
eGFR of 20 to 45 mL/min/1.73 m2, or eGFR of 45 but less than 90 mL/min/1.73 m2 plus
urinary albumin-to-creatinine ratio of 200 mg/g or more), in which empagliflozin reduced
the primary endpoint (end-stage kidney disease, eGFR 10 mL/minute/1.73 m2 or less,
a sustained decrease in eGFR of 40% or more from baseline, or death from renal causes)
compared with placebo [91].

There is compelling evidence that SGLT-2i also improve outcomes in HF as reported
by several trials, including the Dapagliflozin and Prevention of Adverse Outcomes in
Heart Failure (DAPA-HF) [92], Empagliflozin Outcome Trial in Patients with Chronic
Heart Failure and a Reduced Ejection Fraction (EMPEROR-Reduced) [93], Empagliflozin
Outcome Trial in Patients with Chronic Heart Failure with Preserved Ejection Fraction
(EMPEROR-Preserved) [94], the Dapagliflozin Evaluation to Improve the Lives of Patients
with Preserved Ejection Fraction Heart Failure (DELIVER) [95], and Empagliflozin in
Patients Hospitalized for Acute Heart Failure (EMPULSE) [96].

Based on the above, the benefits of SGLT-2i are consistent across many CKD with
coexistent HF subgroups regardless of the T2DM status [97]. In addition, SGLT-2i reduce
new-onset anemia and hyperkalemia in patients with CKD and are safe and generally
well tolerated. Although there are few data on SGLT-2i for end-stage kidney disease and
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transplant recipients, many studies have started to enroll patients with severely impaired
kidney function, defined as eGFR 25 mL/min/1.73 m2 or less [98]. One of the limited
number of studies including diabetic kidney transplant recipients reported that SGLT-2i
use was associated with improvement in weight as well as hypomagnesemia, without
significant changes in renal function at 6 months [99].

6.5. Diuretics

Diuretics are of prime importance in the management of volume overload and com-
prise several classes [100]. Loop diuretics are the agents of choice for combating volume
overload. They inhibit the Na+/K+/2Cl- symporter (NKCC2) in the thick ascending loop
of Henle, thereby preventing reabsorption of tubular Na+ and eventually leading to Na+
and water removal [101]. Loop diuretics are initially tackled by organic anion transporters
(OATs) and afterwards secreted into the luminal surface of the renal tubule where their
action takes place. In addition, they may cause venous dilation, leading to a reduction in
venous return and cardiac preload with consequent relief of dyspnea even before initiation
of diuresis.

Water and sodium retention, often resulting from an unjustified interruption or reduc-
tion of doses by the patients themselves, lead to venous congestion associated with dyspnea
on the one hand and worsening renal function on the other. Diuretics cause decongestion
but may worsen renal function since the optimal stopping point for decongestive therapy
and avoidance of hypovolemia remain major challenges in HF management. Larger doses
of diuretics are required in patients with CKD and HF, as diuretic resistance is frequent in
this context [102]. Many mechanisms contribute to diuretic resistance, including reduced
gastrointestinal tract absorption, diminished plasma albumin, neurohormonal activation,
nephrotic syndrome, and hypotension [102].

Practical approaches to overcome diuretic resistance include readjustment of the di-
uretic dose; addition of other categories of diuretics (preferably thiazides), always with
caution regarding electrolyte disturbances; change from furosemide to torasemide due
to its long action; and discontinuation of anti-inflammatory drugs [102]. The recent Ac-
etazolamide in Decompensated Heart Failure With Volume Overload (ADVOR) study
showed that the addition of 500 mg of acetazolamide (a carbonic anhydrase inhibitor) daily
to loop diuretics increased the rate of successful decongestion [103]. In a large observa-
tional study (≈11,000 patients) of hemodialysis patients, the use of loop diuretics reduced
hospitalizations and hypotensive episodes during hemodialysis but not mortality at one
year [104].

Loop diuretics are indicated to alleviate congestion in symptomatic patients, and when
this is achieved, the dose has to be down-titrated to the lowest dose that will keep the
patient euvolemic. Higher stages of CKD may require higher doses of loop diuretics to
reach decongestion or euvolemia, as tubular delivery of diuretics decreases [4,103]. It is
noteworthy, that loop diuretics can utilize residual renal function and attenuate excess fluid
retention that can cause congestion and hyperkalemia, the two most frequent indications
for emergency dialysis [105]. Finally, although diuretic use does not appear to attenuate
the benefit from SGLT-2i in preventing adverse kidney events or AKI, renal function and
electrolytes should be closely monitored, especially during loop diuretic initiation or after
modifications in loop diuretic dose [106].

7. Management of Specific Conditions
7.1. Worsening Renal Function

Worsening renal function (WRF) is usually defined as a 20–30% decrease in eGFR
or an increase in creatinine of 0.3 mg/dL or more 15–30 days after an intervention and
occurs in approximately 25% of the cases [107,108]. The prognostic significance of WRF
depends on the context in which it develops. WRF appearing after initiation or up-titration
of treatment with β-blockers may reflect a decrease in cardiac output and necessitates
a thorough re-evaluation of hemodynamics and clinical status, as it is accompanied by
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a worse prognosis [109]. In contrast, RAASi, sacubitril/valsartan, and SGLT-2i lessen
pressures within the glomerulus accompanied by acute eGFR reduction, which reflects a
rearrangement of renal hemodynamics, and it is not linked to a decrease in the number of
nephrons that function. Usually, the eGFR slope reaches a plateau after the acute phase,
and the subsequent curve inversion is indicative of a slower CKD progression [110]. Renal
function should be tested during initiation and titration of RAASi. A decline in renal
function of 30% is allowable. According to the Heart Failure Working Group of the French
Society of Cardiology, the following should be considered [110]:

(A) After RAASi initiation, rise in creatinine up to 50% and a rise in potassium to
5.5 mmol/L or less are allowable;

(B) A rise in creatinine 50–100% requires a systematic evaluation of the clinical context
(congestion, dehydration, blood pressure, and concomitant interaction) and adjustment of
medications (halving of usual dose may be considered). Close monitoring of the patient is
also required;

(C) A rise of potassium more than 5.5 mmol/L or a rise in creatinine more than 100% or
a creatinine level more than 310 mol/L (3.5 mg/dL) or eGFR less than 20 mL/min/1.73 m2

necessitates discontinuation of RAASi and ARNI and seeking the advice of a nephrologist;
(D) A rise in creatinine more than 100% or underlying CKD with an acute decrease in

eGFR to less than 20 mL/min/1.73 m2, acutely decompensated HF, severe ionic disorders
(e.g., hyponatremia (sodium level less than 125 mEq/L), hypokalemia (potassium level
less than 3 mEq/L) or hyperkalemia (potassium level more than 6.0 mEq/L)), severe
dehydration with symptomatic hypotension, cardiogenic shock, hemodynamic instability
accompanied by urinary tract disorders (obstruction/infection), or ineffectiveness of 48 h
outpatient treatment require urgent hospital referral.

7.2. Hyperkalemia

Hyperkalemia, defined as a serum potassium level > 5.0 to 5.5 mmol/L, is uncommon
in health due to the renal excretion of the dietary potassium, but it is one of the most
prevalent electrolyte disorders in CKD, adversely affecting outcomes [111]. The prevalence
of hyperkalemia rises in the advanced CKD stages and is linked to poor prognosis. The rela-
tionship between potassium intake and serum potassium levels is virtually unknown, and
this has generated controversy regarding the correct nutritional approach to hyperkalemia
in CKD patients [112]. Another issue is that RAASi-induced hyperkalemia is frequently
associated with an unjustified down-titration or discontinuation of these agents in CKD
patients, depriving them of major renoprotective and cardioprotective interventions that
prolong survival [113]. Fortunately, nowadays, patiromer and sodium zirconium cyclosili-
cate (SZC) allow clinicians to maintain patients on RAASi and up-titrate medications to
optimal doses without worrying for hyperkalemia and its adverse effects [113,114].

Timely detection of moderate or severe hyperkalemia is of major importance to avoid
fatal cardiac arrhythmias and paralysis of the muscles. Treatment of hyperkalemia en-
tails the eradication of reversible etiology (diet and medications) and implementation
of therapies that act rapidly by shifting potassium into cells and mitigate the effects of
hyperkalemia on cardiac membrane and measures augmenting the removal of potassium
from the organism (e.g., saline, resins, and hemodialysis). Hyperkalemia with electrocar-
diographic (ECG) changes or with a potassium level more than 6.5 mEq/L (even in the
absence of ECG changes) should be treated as a medical emergency (Table 1).

Treatment must be started with calcium gluconate for cardiomyocyte membrane stabi-
lization, followed by insulin injection and β-agonist administration. During intercurrent
illness, stopping RAASi should be discouraged, but if potassium levels exceed 6.0 mEq/L,
or creatinine rise exceeds 30%, RAASi should be temporarily discontinued [115]. In the
presence of fluid retention, high doses of diuretics may be needed, and a deterioration of
renal function is not an indication to decrease diuretic dosage. In contrast, if the patient
remains congested, an increase in diuretic dose may be required. In hypovolemic patients,
diuretics should be stopped for a short time. Treatment with RAASi should be initiated,
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up-titrated, and maintained as soon as possible whether during intercurrent illness or
worsening HF [116].

Table 1. Management of hyperkalemia.

Agent Mechanism of Action Dose Side Effects

Mild/Moderate Hyperkalemia
(Serum K+ > 5 mEq to <6 mEq/L without ECG changes)

Sodium polystyrene sulfate (SPS):
Oldest of potassium binding resins.

Use limited by side effects.

SPS binds to K+ in the intestine
in exchange for Na+.

SPS oral: 15 g 1–4 times daily.
SPS rectal: 30–50 g every 6 h. The 30 g dose lowers

K+ by ≈1 mEq/L. Action appears at 2–6 h.

Nausea
Vomiting

Constipation
Diarrhea

Patiromer: K+ binder

It is nonabsorbable, binds more
K+ than SPS and exchanges K+

for Ca++ and therefore is
suitable for patients with

heart failure.

The effect appears 4–7 h from first dose.
Initial dose: 8.4 g orally once daily. Serum K+

should be monitored and dose adjusted in 8.4 mg
increments at 1-week intervals depending on

serum K+ level and target range.
Maintenance dose: 8.4 to 25.2 mg/day. Maximum

dose 25.2 g/day.
-All medications should be spaced apart by 3 h

from patiromer.

Hypomagnesemia
Constipation

Flatulence
Diarrhea

Sodium zirconium cyclosilicate
(SZC):

K+ binder

Insoluble compound working
throughout the gastrointestinal

tract by binding K+ and
exchanging it for Na+ and H+.

Initial dose: 10 g orally 3 times a day for up to 48 h,
then 10 g orally once daily.

Maintenance dose: 5 g every other day to 15 g once
a day

Hypertension
Peripheral edema

Urinary tract
infections

Severe Hyperkalemia
(Serum K+ > 5 mEq/L to < 6.0 mEq with ECG changes

or
K+ ≥ 6.0 mEq/L (even without ECG changes))

Calcium: Rapid response.
Intravenous (IV) Ca++ salts should

be administered immediately in
hyperkalemic patients presenting
with electrocardiographic (ECG)

changes suggesting hyperkalemia.
Ca++ is also indicated when

K+ > 6.5 mEq/L regardless of the
presence or absence of

ECG changes.

Cardiomyocyte protection.
Membrane stabilization with
Ca++ is essential due to the

cardiotoxic effects of
hyperkalemia. Ca++ does not

reduce the K+ level and must be
combined with

potassium-lowering
interventions.

Calcium chloride: 0.5–1 g IV over 2–5 min. The effect
appears within 1–2 min and lasts 30–60 min.

Calcium gluconate: 1–3 g IV over 2–5 min. The
effects appear within 5 min, and the dose can be
repeated at this interval in cases with sustained,

life-threatening ECG changes.

Hypotension
Bradycardia

Insulin: Intermediate response

Intracellular shift of K+. Insulin
acts on the glucose transporter
type 4 promoting intracellular

movement of potassium
through the Na+/K+

ATPase pump.

Ten-unit bolus of regular insulin IV together with 1
ampule of 25 g dextrose to prevent the

hypoglycemic effects.
IV insulin lowers the serum potassium level by ≈1
mEq/L. The effect appears within 10–20 min and

lasts about 4–6 h.

Hypoglycemia

Salbutamol: Intermediate response

Intracellular shift of K+.
Salbutamol is a β2 agonist that

also activates the Na+/K+

ATPase transporter on muscle
and liver cells.

Amount of 10–20 mg of nebulized salbutamol will
lower the K+ by 0.5 to 1.0 mEq/L. The effect

appears within 15–30 min and lasts at least 2 h.

Trembling
Palpitations

Sodium bicarbonate: Intermediate
response. Only in patients with

metabolic acidosis or in the setting
of cardiac arrest.

Intracellular shift of K+ by
serum alkalinization, and direct

bicarbonate transport into
muscle cells along with K+.

IV push of 50 mEq. The effect appears 15–30 min
and lasts 2–6 h

Hypernatremia
Volume overload

Furosemide: Delayed response and
inconsistent effect

Elimination of K+ from
the body.

Furosemide 40–80 mg IV (large doses may be
needed in renal failure). The effect appears within

5–30 min and lasts 2–6 h.

Hypotension
Worsening renal

function

ECG: electrocardiogram.

7.3. Anemia

The constellation of CKD, HF, and anemia (Figure 4) occurs frequently and carries high
morbidity and mortality [117]. Although anemia is associated with increased risk, intensive
anemia treatment with erythropoietin (EPO) and subsequently with other erythropoiesis-
stimulating agents (ESA) is of limited usefulness [118–120]. Possible explanations are either
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that the associations of anemia with CKD and HF prognosis do not reflect direct causality
but residual confounding or reverse causality, or the use of EPO/ESA increases risk through
other side effects outside of erythropoiesis [121]. Based on the above, interest is shifted
to iron-replacement therapy since at least every second patient with CKD [118] or with
CHF [122] is iron-deficient with or without anemia.

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 13 of 20 
 

 

7.3. Anemia 
The constellation of CKD, HF, and anemia (Figure 4) occurs frequently and carries 

high morbidity and mortality [117]. Although anemia is associated with increased risk, 
intensive anemia treatment with erythropoietin (EPO) and subsequently with other 
erythropoiesis-stimulating agents (ESA) is of limited usefulness [118–120]. Possible 
explanations are either that the associations of anemia with CKD and HF prognosis do 
not reflect direct causality but residual confounding or reverse causality, or the use of 
EPO/ESA increases risk through other side effects outside of erythropoiesis [121]. Based 
on the above, interest is shifted to iron-replacement therapy since at least every second 
patient with CKD [118] or with CHF [122] is iron-deficient with or without anemia. 

 
Figure 4. Inflammation, oxidative stress, neurohormonal overactivity, and sodium and water 
retention contribute both to adverse renocardiac interactions and anemia development. The latter 
contributes to a further deterioration of renal and cardiac function. 

Patients with advanced CKD and iron deficiency should be treated with iron 
supplementation, as first demonstrated in the Proactive IV irOn Therapy in hemodiALysis 
(PIVOTAL), which demonstrated that high-dose intravenous iron was superior to the low-
dose regimen and resulted in lower doses of ESA being administered [123]. Similar 
findings have been reported with intravenous iron in HF patients [124].  

A turning point in the management of anemia both in CKD and HF has been 
treatment with SGLT-2i. These agents, which favorably affect prognosis both in CKD and 
HF, increase hemoglobin by approximately 0.6–0.7 g/dL, an effect that has been linked to 
a rise in EPO and an expansion in red blood cell mass that alleviate anemia [125]. The 
extent of this effect can be compared to that of low to medium doses of hypoxia-inducible 
factor (HIF)/prolyl hydroxylase domain (PHD) inhibitors, which have been developed as 
a potential alternative to EPO/ESA agents [30]. Interestingly, HIF/PHD inhibitors act by 
preventing degradation and increasing the levels of both isoform HIF-1α and isoform 
HIF-2α [126]. However, only the HIF-2α isoform stimulates the production of EPO, and 
upregulation of HIF-1α may be an unnecessary ancillary property of HIF-PHD inhibitors. 
In contrast, SGLT-2i selectively increase HIF-2α and downregulate HIF-1α, a distinctive 

Figure 4. Inflammation, oxidative stress, neurohormonal overactivity, and sodium and water re-
tention contribute both to adverse renocardiac interactions and anemia development. The latter
contributes to a further deterioration of renal and cardiac function.

Patients with advanced CKD and iron deficiency should be treated with iron sup-
plementation, as first demonstrated in the Proactive IV irOn Therapy in hemodiALysis
(PIVOTAL), which demonstrated that high-dose intravenous iron was superior to the
low-dose regimen and resulted in lower doses of ESA being administered [123]. Similar
findings have been reported with intravenous iron in HF patients [124].

A turning point in the management of anemia both in CKD and HF has been treatment
with SGLT-2i. These agents, which favorably affect prognosis both in CKD and HF, increase
hemoglobin by approximately 0.6–0.7 g/dL, an effect that has been linked to a rise in EPO
and an expansion in red blood cell mass that alleviate anemia [125]. The extent of this effect
can be compared to that of low to medium doses of hypoxia-inducible factor (HIF)/prolyl
hydroxylase domain (PHD) inhibitors, which have been developed as a potential alternative
to EPO/ESA agents [30]. Interestingly, HIF/PHD inhibitors act by preventing degradation
and increasing the levels of both isoform HIF-1α and isoform HIF-2α [126]. However, only
the HIF-2α isoform stimulates the production of EPO, and upregulation of HIF-1α may be
an unnecessary ancillary property of HIF-PHD inhibitors. In contrast, SGLT-2i selectively
increase HIF-2α and downregulate HIF-1α, a distinctive property that may contribute to
their renoprotective and cardioprotective effects. Thus, SGLT-2i should be evaluated as a
treatment option for anemia both in CKD and HF.

8. Conclusions-Perspective

CKD affects millions of individuals globally, and for the majority of CKD, patients the
risk of developing CVD is higher than the risk of progression to advanced or end-stage
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kidney disease. Further, CV mortality in CKD patients is markedly higher than in the
general population, and LV ventricular hypertrophy as well as HF contribute to the grave
prognosis. The etiology of CV complications and especially HF in CKD is multifactorial.
SGLT-2i have revolutionized treatment of CKD complicated by HF (Figure 5). The beneficial
effects of SGLT-2i are diverse and include stimulation of erythropoiesis and attenuation
of anemia, which is a common and severe complication in this setting. Considering
that anemia treatment in the context of CKD and HF is challenging due to the multiple
interactions and pathophysiologic complexity, evaluation of SGLT-2i as antianemia drugs
with an appropriately defined treatment target has become mandatory.
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