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Abstract: The key role played by platelets in the atherosclerosis physiopathology, especially in the
acute setting, is ascertained: they are the main actors during thrombus formation and, thus, one
of the major investigated elements related to atherothrombotic process involving coronary arteries.
Platelets have been studied from different points of view, according with the technology advances
and the improvement in the hemostasis knowledge achieved in the last years. Morphology and
reactivity constitute the first aspects investigated related to platelets with a significant body of
evidence published linking a number of their values and markers to coronary artery disease and
cardiovascular events. Recently, the impact of genetics on platelet activation has been explored with
promising findings as additional instrument for patient risk stratification; however, this deserves
further confirmations. Moreover, the interplay between immune system and platelets has been
partially elucidated in the last years, providing intriguing elements that will be basic components
for future research to better understand platelet regulation and improve cardiovascular outcome
of patients.

Keywords: platelets; atherosclerosis; platelet reactivity; platelet function test; immunity;
genetics; prevention

1. Introduction

Platelets enter the circulation after the separation of bone marrow megakaryocytes,
as anucleate cells (2 µm in diameter) that lack genomic DNA [1]. Therefore, due to the
absence of a nucleus and in the presence of little capacity for protein synthesis, which
is only available by messenger RNA (mRNA) transferred from the megakaryocyte, the
lifespan of platelets is limited to 7–10 days [2,3]; however, platelets contain mitochondria
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that have also been transferred from megakaryocyte origin, and therefore, like nucleated
cells, they can still benefit from flexible aerobic and anaerobic metabolism in the presence of
necrotic and apoptotic pathways that regulate their function and fate [4]. Thrombopoietin
is a glycoprotein synthesized mostly in the liver but also in the kidneys, which regulates
megakaryocytic proliferation and maturation, as well as platelet production [5]. Once they
enter the circulation, platelets have a life span of 7 to 10 days in quiescent discoid state
in the presence of healthy vessels without endothelium-impaired homeostasis. Platelets’
primary function is to stop hemorrhage after tissue trauma and vascular damage.

Injury to the intimal layer of the vessel exposes the underlying subendothelial matrix.
Platelets move to sites of vascular disruption and adhere to the exposed matrix protein [6].
Adherent platelets undergo activation and subsequently release substances that recruit
additional platelets to the site of injury. Additionally, they promote thrombin generation
and subsequent fibrin formation. The potent platelet agonist thrombin, together with other
amplifying factors, promotes platelet recruitment and activation. Activated platelets then
aggregate to form a plug that seals the injury in the vasculature. The understanding of this
highly integrated processes is essential to optimize the treatment in patients suffering from
atherothrombotic disease [7–9]; therefore, the identification of makers of platelet regulation,
whether inhibiting or promoting, has deserved increasing attention in the last decades.

2. Platelet Adhesion, Activation, and Aggregation

The first step of platelets at sites of vascular injury consists in adhesion, which is
mediated by the glycoprotein complexes that allow platelets adhering to exposed factors
and collagen. In particular, the glycoprotein (GP) Ib/V/IX mediates the initial capturing of
free-flowing platelets binding the immobilized von Willebrand factor (vWF). The induced
signals promote platelet main integrin activation, αIIbβ3, which binds fibrinogen at their
ligation, which in turn induces a cascade of potent outside signals that significantly increase
the cytosolic calcium influx [3]. Mouse models knock-out for the GP VI gene have shown
platelets unable to form aggregate and occlusive arterial thrombi [10], and the progressive
shedding of GP VI can affect the functional platelets properties of adhesion to the site of
injury [11].

The vWF is synthesized by endothelial cells and megakaryocytes assembles into
multimers with a size ranging from 550 kDa to more than 10,000 kDa [12]; the prevention
of large multimer accumulation is mediated by the metalloprotease ADAMTS13, whose
deficiency results in the thrombotic thrombocytopenia purpura.

When released from the α-granules of platelets or the Weibel–Palade bodies of en-
dothelial cells, the majority of the vWF compounds enters the circulation, except for
the vWF released from the abluminal surface of the endothelial cells: it accumulates in
the subendothelial matrix and binds collagen via its A3 domain. The vWF anchored to
the vessel subendothelial matrix changes its conformation, exposing the A1 domain that
binds platelets.

The adhesion to collagen and vWF endorses the pathways that lead to platelet activa-
tion. The induced signals promote the integrin activation—firstly α2β1, which binds vWF,
and then αIIbβ3, which binds fibrinogen. The integrin ligation produces, in turn, a cascade
of signals increasing the cytosolic calcium influx [3]. During this process, platelets modify
their morphology and stimulate the release of their granule-content-rich soluble agonists,
including adenosine diphosphate (ADP), adhesion molecules, and coagulation factors,
almost all of which amplify the thrombotic response [13]. Among these autocrine and
paracrine mediators, platelet activation favors thromboxane A2 (TXA2) generation through
cyclooxygenase1. The next step involves the conversion of prothrombin into thrombin
through activated factor X [14]. Thrombin is the most potent known agonist for platelet
activation, binding protease-activated receptor types 1 and 4 (PAR-1 and PAR-4), but it also
plays a critical role in early thrombus formation, converting fibrinogen to fibrin, which
effectively anchors the growing thrombus.
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The final step in the formation of the platelet plug is represented by the aggregation
that links platelets to each other to form clumps. Linkages are mediated by GP IIb/IIIa that
has undergone conformational change after platelet activation to increase the affinity for its
ligand, fibrinogen (Figure 1) [15].
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Figure 1. Platelet activation pathways. The figure displays the intricate relationship between
different stimuli and platelet activation. Created with BioRender.com. AC = adenylate cyclase;
ADP = adenosine diphosphate; cAMP = cyclic adenosine monophosphate; DAG = diacylglycerol;
IP3 = inositol triphosphate; MLKC = myosin light chain kinase; PAR-1 = protease activated receptor-1;
PAR-4 = protease activated receptor-4; PIP2 = phosphatidylinositol bisphosphate; PKC = protein
kinase C; PLC = phospholipase C; TP = thromboxane receptor; TXA2 = thromboxane A2; vWF = von
Willebrand factor.

3. Interplay Immune System

The immune system has a central key role in the atherothrombotic process [16,17].
Platelets have been involved in modulation of innate and adaptive immune responses,
even if most mechanisms are still an enigma (Figure 2). Platelets α-granules contain
many molecules with several effects not limited to platelet aggregation amplification and
coagulation: a couple of molecules with a key role in several signaling pathways are CD40
and CD154, also known as CD40 ligand (CD40L) [18]. In particular, CD154 can interact
both with endothelial and immune cells. The stimulation of endothelial cells leads to
increased expression of adhesion molecules, mainly intercellular (I-CAM-1) and vascular
(V-CAM-1) adhesion molecules [19], and consequent increased leukocytes recruitment
and atherosclerotic plaque instability. Platelet-derived CD154 interacts with different
type of immune cells: it has been described stimulating the B cell differentiation [20] and
macrophages activity [21]. In a murine model of atherosclerosis, CD154 has been shown
to increase plaque fragility and reduce its stability by inhibition of regulatory T cells [22].
Platelets have been found expressing different toll-like receptor (TLR) subtypes, enforcing
the concept of inflammation modulatory action by platelets [23]. Among cytokines released
by platelets, transforming growth factor-β1 (TGF-β1) is one of the most important and
studied. It has been characterized with both anti-atherogenic and pro-atherogenic effects,
given its number of potential targets. Briefly TGF-β1 may prevent the formation and
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progression of endothelial lipidic deposit by increasing the nitric oxide synthetase activity
and polarization of macrophage into anti-inflammatory phenotypes [24], with consequent
enhanced plaque stability [25]. The TGF-β1 pro-atherogenic effect has been elucidated in
studies reporting its promotion of interstitial collagen deposition, fibrosis, and blockade
of endothelial regeneration, with consequent growth of lesion and reduction in vascular
lumen [26].

Moreover, platelets have been described to have the opportunity to recruit neutrophils
and worse thrombo-inflammation [27].

In fact, leukocytes’ interaction with the endothelium is mediated by the different
types of surface-expressed selectins and their specific ligands. Among selectins, E-selectin
expression mainly occurs in presence of endothelial dysfunction [28] while P-selectin
is expressed on both endothelial cells and platelets upon activation [29]. A damaged
endothelium is rapidly covered by activated platelets which in turn capture circulating
neutrophils into thrombus: in murine models, knock-out for P-selectin showed marked
lower or absent leukocyte recruitment [30]. The main crosstalk element is constituted by
the P-selectin that binds P-selectin glycoprotein ligand-1 expressed by neutrophils [31],
but also chemokines CXCL4 (also named platelet factor-4, PF-4) and CXCL7 (also named
neutrophil activating peptide, NAP-2) [32], and high mobility group box 1 (HMGB1) are
released by platelets and contribute to neutrophil chemotaxis [33]. Neutrophil β2 integrin
binds PF-4, while NAP-2 attracts and stimulates neutrophils through the engagement of
CXCR1 and CXCR2 [34].

A further step of neutrophil–platelet interactions is the promotion of neutrophil ex-
tracellular trap (NET) [35,36]. This structure consists of extracellular chromatin supported
by the histones. Activated platelets have been demonstrated inducing a rapid release of
NET, not only using the P-selectin-dependent interplay, but also the TLR4 pathways, like
in septic condition [37]. Moreover, NET itself may induce the thrombus formation, serving
as a scaffold for both platelet binding and activation [38]. Several pathways have been
suggested, including H3 histones and C3b attached to NET [39]: in murine models, the
infusion of histone preparate was related to accelerated thrombus formation and vWF
release [40]. Formed NET can reduce the endothelial integrity, which in turn determines
platelet recruitment and activation and coagulation through factor XII, as well as NET
physical interaction with activated fibrinogen providing stability to the thrombus [41,42].

From the clinical side, Hally et al. have investigated the potential utility of a composite
biomarker score of NET activation and release, or NETosis, for predicting major cardio-
vascular adverse event (MACE) post-myocardial infarction (MI): authors demonstrated
the importance of these combining biomarkers as risk predictors of MACE at 1 year [43].
Furthermore, Riegger et al. evaluated about two hundred and fifty thrombus specimens
in patients with stent thrombosis, demonstrating the recruitment leukocytes, particularly
neutrophils and the presence of NETosis in 23% of samples [44]. In the thrombus of culprit
artery from patients with acute MI, the presence of NET formation has also been demon-
strated [45]. Promising therapeutics have been investigated, inclacumab and crizanlizumab,
that block interaction of P-selectin and neutrophils. In the SELECT-ACS study, inclacumab
was reported to significantly reduce myocardial damage assessed through the CK-MB after
percutaneous coronary intervention (PCI) in patients with non-ST segment elevation acute
coronary syndrome (ACS) [46,47]. However, these findings were not confirmed in patients
suffering of bypass graft failure after coronary artery bypass surgery [48]. Therefore, further
studies are needed to better assess the potential of monoclonal antibodies therapy against
NET in patients with coronary artery disease (CAD) [49].
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4. Morphologic and Structural

Among the first proposed parameters linked to platelet aggregation, there is the
mean platelet volume (MPV). MPV is a marker of platelet size, and it is usually provided
by the majority of laboratories as a part of the full blood count [14]. It constitutes one
of the most used indirect markers of platelet function. In fact, it has been shown that
larger platelets are more active, from a metabolic point of view, thus leading to greater
prothrombotic risk [50,51]. Early released platelets display higher MPV, while aging
decreases platelet volume due to microvesiculation of fully activated platelets or apoptotic
membrane fragmentation [52].

In their denser granules, larger platelets contain more β-thromboglobulin, serotonin,
and TXA2 than smaller ones [53–55]. Moreover, it has been argued that MPV may reflect the
platelet production rate [56], stimulation [57], and activation [58–60]. In particular, larger
platelets are more adhesive and reactive [61,62], showing higher expression of glycoprotein
Ib and GP IIb/IIIa receptors at the surface [63]. For these reasons, MPV has been variously
associated to CAD, although with contrasting results [64]. In about 400 patients with ST
segment elevation MI undergoing primary PCI, Huczek et al. found MPV to be a strong,
independent predictor of impaired angiographic reperfusion and six-month mortality [65].
Similarly, Murat and colleagues showed MPV as an independent predictor of the severity
of CAD among ACS patients [66].

However, the direct relationship between MPV and CAD has not been validated by
other investigations [67,68]. Halbmayer et al., in fact, found no differences in MPV between
healthy persons and patients with CAD as well as no significant variations of MPV values
being reported between patients without prior MI and MI survivors [69]. In a large cohort
of more than 1400 patients undergoing PCI, no relationship was found between MPV and
the extent of CAD [70], neither with platelet aggregation [71].

Whether MPV might represent an independent predictor of cardiovascular (CV) events
or on the contrary the consequence of other CV risk factors, such as diabetes, hypertension,
or smoking is still debated, even if a recent meta-analysis suggests that MPV could be a
useful prognostic marker in patients with CAD [72].

Another morphologic parameter of platelets that has been inquired upon for a poten-
tial relationship with CAD is platelet distribution width (PDW): it directly measures the
variability in platelet size and has been used to differentiate primary disorders of platelets
such as essential thrombocythemia from reactive thrombocytosis [73], therefore providing
more information than MPV. Some studies have described a potential relationship between
PDW and chronic total occlusion of CAD [74] and occluded saphenous vein graft in patients
with coronary artery bypass graft surgery [75]. Opposite results were reported regard-
ing the role of PDW in predicting CAD and its severity, suggesting the need of further
investigations to clarify its contribution in patient management [76,77].

In addition, the platelet-large cell ratio (P-LCR), an index representing the percentage
of platelets larger than 12 fL, has deserved attention as a marker of platelet activation [78].
Despite some promising results showing a relationship between P-LCR and inflammation
in CAD patients [79,80], no significant contribution regarding the severity of CAD and
platelet reactivity has been found for P-LCR [81,82].

Growing interest has been denoted about the fraction of reticulated platelets, which
represent the proportion of younger platelets released from the bone marrow last, with a
higher content in α-granules and RNA: these features have been hypothesized as leading
to enhanced capability of proteins synthesis and then to a potentially increased overall
reactivity [83,84]. McBane et al. reported that younger reticulated platelets appear to have
a greater propensity for thrombus participation in presence of atherosclerotic stenosis and
shear conditions compared to older ones. Among the suggested mechanisms, an increased
receptor density of integrin-β3 in younger platelets may contribute to higher predisposition
to thrombosis [85].

Immature platelet fraction (IPF) and the absolute immature platelet count (IPC) repre-
sent parameters for the identification of the reticulated platelet with a sample for a routine
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blood count [86]. A certain number of studies has reported higher IPF in patients with
CAD, especially in the subgroups admitted for an ACS [87,88], with a potential role of
IPF > 6.2 to predict mortality [87]. On the other hand, Berny-Lan et al. found no difference
of IPF in patients with and without ACS [89] and Verdoia et al. showed no role of IPF
to predict CAD and the severity of CAD in patients undergoing PCI, discussing IPF as
a marker of platelet turnover rather than being directly involved in the pathogenesis of
CAD. In patients on antiplatelet drugs, IPF has been linked with ineffective therapy, both
mono- and dual-antiplatelet therapy [90,91], despite opposite evidences having also been
provided [92,93].

5. Function and Reactivity

A direct assessment of platelet activation and aggregation could be performed though
a platelet function test (PFT), of which the most used are displayed in Table 1. The identifi-
cation of impairment in clot formation for hemorrhagic disorders was the rationale of the
first test described by Duke, the evaluation of bleeding time [94]. To better assess congenital
and acquired platelet disorders, the first platelet aggregation test was developed, adopting
the light transmission aggregometry (LTA) with platelet-rich plasma (PRP) [95,96]. After
them, several tests with different methods have been proposed to estimate platelet function.
Apart from LTA, which requires elaborate management of blood samples before proceeding,
impedance whole aggregometry allows to assess platelet aggregation using anticoagulated
whole blood. It allows to measure platelet aggregation after several stimuli inquiring differ-
ent activation signaling pathways with two main advantages: the small quantity of whole
blood required and no manipulation before testing, preserving the physiological condition
as much as possible [97]. Another aggregometry method uses a turbidimetric-based opti-
cal detection through a system cartridge containing fibrinogen-coated beads and platelet
agonists [98]; specific assays for patients under antiplatelet therapy are commercially
available [99]. A certain number of commercial assays are instead based on the evaluation
of platelet adhesion under shear stress, or on viscoelastic methodologies [100–103].

Besides the different technologies used, the rationale of assessment of platelet func-
tion in patients with CAD is used for monitoring the response to antiplatelet drugs in
order to identify subjects deserving modification in the composition and/or treatment
duration [104]. The main reason of assessment is to recognize patients that are poor respon-
ders to antiplatelet therapy, both aspirin and P2Y12 inhibitors. Since these drugs represents
the cornerstone in patients with CAD, undergoing PCI, their effectiveness is crucial to
prevent adverse events [105]. However, the adoption of the expression “drug resistance” is
not appropriate, considering that the baseline assessment of platelet function is unavailable
in the vast majority of cases, especially in the acute setting. Therefore, it is recognized to
refer to inappropriate platelet reactivity during antiplatelet therapy with the expression
of “high residual platelet reactivity” (HRPR) or “high on-treatment platelet reactivity”
(HTPR) [106]. Even if HRPR is a well-known independent predictor of several adverse
events [107], strategies to tailor antiplatelet therapy according to platelet function provided
contrasting results in demonstrating clinical benefits [104,108–110], suggesting other factors
involved in the determinism of elevated platelet reactivity on top of antiplatelet treatment
(Table 2).
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Table 1. Main platelet function test used in clinical practice.

Methods Sample Application Principle Advantages Disadvantages

Tests based on platelet aggregation

Light transmission platelet
aggregation (LTA); also named
optical platelet aggregation

Citrated PRP

Screening test for bleeding
propensity
Diagnostic for platelet defects,
both congenital and acquired
Monitoring antiplatelet
treatment effect

Photo-optical measurement of
light transmission increase in
relation to specific
agonist-induced platelet
aggregation

Historical gold standard
Diagnostic method
Different platelet pathways
investigated
Sensitive to different
antiplatelet drugs therapy

Manual and long sample
processing
Pre-analytic and analytic
variables
High sample volume
Time consuming

Impedance platelet aggregation Citrated WB

Screening test for bleeding
propensity
Diagnostic for platelet defects,
both congenital and acquired
Monitoring antiplatelet
treatment effect

Measurement of electrical
impedance between two
electrodes after induction of
platelet aggregation through a
specific agonist

No sample processing
Diagnostic method
Flexible
Different platelet pathways
investigated
Sensitive to anti-platelet
therapy
Close to LTA

Sample preparation
Time consuming

Lumiaggregometry
(i.e., VerifyNow) Citrated WB

Modified aggregometry for
detection of storage/release
disorders

LTA or WB aggregometry
combined with luminescence

No WB processing
Quick and easy to do methods
Monitoring antiplatelet therapy

Nonflexible
Very expensive
Limited hematocrit and platelet
count

Plateletworks Citrated WB Monitoring of the platelet
response to antiplatelet agents

Platelets’ counting and
aggregates pre- and
post-activation (use of ADP or
arachidonic acid) in whole
blood based in GP
IIb/IIIa-dependent aggregation

Minimal sample preparation
Easy, rapid screening test

Indirect assay
Performance within few
minutes after sample collection
Required adjunctive platelet
count
Scarce clinical data

Platelet function methods combined with viscoelastic test

TEG/r-TEG
platelet mapping system Citrated WB

Assessment of global
hemostasis plus monitoring
antiplatelet treatments effect

Assessment of the rate and the
strength of clot formation
based on low shear-induced
and agonist addition

Point of care for viscoelastic test
Global hemostasis test
Measure clot properties
Reduces blood transfusions

More studies are needed
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Table 1. Cont.

Methods Sample Application Principle Advantages Disadvantages

ROTEM platelet Citrated WB

Assessment of global
hemostasis plus diagnostic of
platelet defects plus monitoring
antiplatelet treatments effect

Measurement of electrical
impedance increase in relation
to agonist-induced platelet
aggregation

Adaptation from TEG: results
are identical
Predicts bleeding
Reduces blood transfusions
Improves clinical outcome
Global hemostasis test WB
platelet aggregometry

Limited hematocrit and platelet
count range (for platelet
system)
Lack of clinical studies

Tests based on platelet adhesion under shear stress

PFA-100; Innovance PFA-200 Citrated WB

Assessment of bleeding risk
and drug effects
Searching severe platelet
dysfunctions, revealing of
vWF disease

Time evaluation of high shear
WB flow blocked by platelet
plug into a hole in activated
surface. Use of combination of
collagen/epinephrine or
collagen/ADP

In vitro standardized bleeding
test
Quick and easy to do
Sensitive to severe platelet
defects

Rigid closed system
Dependent on hematocrit,
platelet count and vWF
Not sensitive to platelet
granules defects
Contrasting evidence in
thienopyridines treatment,
especially for PFA-100

IMPACT—Cone and Plate(let)
Analyzer (CPA) Citrated WB Screening of primary

hemostasis and platelet defects

Shear-induced platelet
adhesion–aggregation upon
specific surface covered by
polystyrene. Ongoing studies
on addition ADP and
arachidonic acid for antiplatelet
therapy monitoring

Global platelet method
Small sample volume

Expensive
Experienced staff
Lack of clinical studies
Not widely available

Platelet analysis based on flow cytometry

Flow cytometry Citrated WB, PRP,
washed platelets

Cell counting, detection
platelet activation by extent of
expression of surface and/or
cytoplasmic biomarkers

Engineering laser-based
detection of suspending
fluorescent label platelets in a
flowing solution

Useful into diagnose inherited
platelet disorders

Expensive
Experienced staff
Not widely available

Vasodilator Stimulated
Phosphoprotein (VASP) Citrated WB Intracellular platelet pathway

Immunofluorescence on assay
with a specific monoclonal
antibody

Useful into monitoring
antiplatelet drug Expensive
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Table 1. Cont.

Methods Sample Application Principle Advantages Disadvantages

Evaluation of Thromboxane metabolites

Radio- or enzyme-linked
immune assays

Serum, urine,
citrated plasma

Measurement of TXA2
metabolites (and β-TG, PF4,
soluble P-selectin) Ligand-binding assays Directly related to COX-1, the

aspirin’s target
Indirect measure
No platelet specific

ADP = adenosine diphosphate; β-TG = β-thromboglobulin; COX-1 = cyclooxygenase-1; LTA = light transmission platelet aggregation; PF4 = platelet factor-4; PFA = platelet function
assay; PRP = platelet-rich-plasma; ROTEM = rotational thromboelastometry; r-TEG = rapid thromboelastography; TEG = thromboelastography; TXA2 = thromboxane A2; WB = whole
blood; vWF = von Willebrand factor.

Table 2. Main clinical trials using platelet function test for tailoring antiplatelet therapy.

Study Year PFT Intervention Subjects Study design Findings

VASP-02 [111] 2008 VASP VASP-guided switch after
2 weeks in low responders

150 patients undergoing
elective PCI

Randomized to 150 mg vs.
75 mg clopidogrel

Greater platelet inhibition
with 150 mg clopidogrel in
poor responders

Bonello et al. [112] 2008 VASP VASP-based adjustment of
clopidogrel loading dose

162 patients undergoing PCI
with basal VASP > 50%

Randomized to VASP-guided
vs. standard of care

Lower rate of 1-month MACE
in VASP-guided group

Cuisset et al. [113] 2008 LTA
PFT-based identification of
poor responder before
randomization

149 clopidogrel
non-responders undergoing
elective PCI

Randomized to administration
of additional GP IIb/IIIa
antagonist vs. standard of care

Lower rate of 1-month CV
event in intervention group

3T/2R [114] 2009 VerifyNow
PFT-based identification of
poor responder before
randomization

263 ASA and/or clopidogrel
non-responders undergoing
PCI

Randomized to tirofiban
administration vs. standard
of care

Lower MI and 1-months
MACE in intervention group

Wang et al. [115] 2011 VASP PFT-based drug adjustment in
tailored strategy

306 patients undergoing PCI
with basal VASP > 50%

Randomized to VASP-guided
vs. standard of care

Lower rate of 1-year MACE in
VASP-guided group

GRAVITAS [116] 2011 VerifyNow
PFT-based identification of
poor responder before
randomization

2796 clopidogrel
non-responder patients
undergoing PCI

Randomized to higher dose of
clopidogrel vs. standard
of care

No differences in 6-month
MACE rate

Aradi et al. [117] 2012 LTA
PFT-based identification of
poor responder before
randomization

200 clopidogrel
non-responders undergoing
elective PCI

Randomized to higher dose of
clopidogrel vs. standard
of care

Lower MI and 1-months
MACE in intervention group
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Table 2. Cont.

Study Year PFT Intervention Subjects Study design Findings

Hazarbasanov
et al. [118] 2012 Impedance

aggregometry
PFT-based drug adjustment in
tailored strategy 192 patients undergoing PCI Randomization to tailored

strategy vs. standard of care
Lower rate of 6-months
MACCE in intervention group

TRIGGER-PCI [119] 2012 VerifyNow
PFT-based identification of
poor responder before
randomization

423 clopidogrel
non-responders undergoing
PCI

Randomized to switch to
prasugrel vs. clopidogrel
maintenance

Higher platelet inhibition in
prasugrel group.

ARTIC [120] 2012 VerifyNow

PFT-based administration of
additional bolus of
clopidogrel, prasugrel or ASA
along with GP IIb/IIIa
antagonist

2440 patients undergoing
elective PCI

Randomization to tailored
strategy vs. standard of care

No differences in 1-year
MACE

MADONNA study [104] 2013 Impedance
aggregometry

PFT-based additional
antiplatelet drug loading dose 798 patients undergoing PCI Randomization to tailored

strategy vs. standard of care
Lower stent thrombosis and
ACS rate in tailored strategy

ANTARTIC [121] 2016 VerifyNow PFT-based dose or drug
adjustment in tailored strategy

877 patients undergoing PCI
for an ACS

Randomization to tailored
strategy vs. standard of care

No differences in 1-year
MACE

TROPICAL-ACS [122] 2017 Impedance
aggregometry

PFT-based de-escalation
strategy after 14 days

2610 patients undergoing PCI
for an ACS

Randomization to tailored
strategy vs. standard of care

Tailored de-escalation strategy
non-inferior to standard
of care

CREATIVE [123] 2018 TEG
PFT-based identification of
poor responder before
randomization

1087 clopidogrel poor
responders undergoing PCI

Randomized to higher dose of
clopidogrel vs. standard dose
of clopidogrel plus cilostazol
vs. standard of care

Lower rate of 18-months
MACCE with the adjunct of
cilostazol
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6. Platelet Reactivity

The detection of patients displaying enhanced platelet reactivity despite antiplatelet
therapy and deserving more clinical attention and stricter follow-up could improve the
overall outcome of those subjects at higher risk for CV adverse events.

One of the first described elements affecting atherosclerosis and platelets is cigarette
smoking. The impact on the CV system is recognized, while less detailed are the smoking
mechanisms involved in the promotion of platelet reactivity. The increased smoking-
induced lipid oxidation products bind platelet scavenger receptor CD36, which in turn
results in increased platelet aggregation response [124]. Amplifying factors, including
ADP and thrombin, have been shown to increase after cigarette smoking exposure, with
consequent higher platelet aggregation response to these pathways [125,126], and nicotine
displayed a direct role in increasing platelet aggregability [127]. However, some recent
studies have found an opposite effect of smoking, especially on P2Y12 antagonists, whose
platelet inhibition is enhanced after smoking exposure [128], despite concerns regarding
basal lower platelet aggregation [129] and smoking effect on platelet morphology [130].

Higher platelet reactivity has been reported among diabetic patients, due to continuous
environmental inflammation that characterizes diabetes mellitus. However, diabetes is
not only per se a marker of higher risk [131], but the impaired glycemic control has also
been linked to HRPR among clopidogrel-treated subjects [132] or under more potent P2Y12
inhibitors [133]. Conversely, Vivas et al. documented a significant reduction in aggregation
in post-ACS patients receiving intensive glucose control treatment with insulin [134].
Indeed, hyperglycemia can impact platelet function both directly and by modulating the
release of pro-oxidant and inflammatory substances or by the glycation platelet surface
proteins, with consequent amplification of platelet adhesion [134].

Similar pathophysiological elements are shared by the excess of uric acid: it has been
addressed as a main determinant of atherosclerosis and metabolic syndrome. In fact,
hyperuricemia is a condition characterized by impaired nitric oxygen release and enhanced
pro-inflammatory cytokines [135,136]. However, no direct impact has been demonstrated
on platelet reactivity under antiplatelet therapy [137].

Increasing interest has grown regarding the potential CV impact of vitamin D [138].
Alongside the impact on endothelial dysfunction [139], a vitamin D receptor was detected
on platelet surface, displaying antithrombotic effects [140]. Pivotal role in the platelet ag-
gregation and thrombus formation has been described by Aihara et al., who demonstrated
in murine models knock-out for the vitamin D receptor gene an enhanced thrombogenic-
ity [141]. An indirect antiplatelet therapy has been previously reported by Lòpez-Farré and
colleagues: the addition of vitamin D binding protein to whole blood in healthy subjects
hampered the antiplatelet inhibitory effect of aspirin [142], and lower levels of vitamin
D have been significantly associated to HRPR under ticagrelor treatment [143]. Genetics
of vitamin-D-related genes constitutes an interesting ongoing field of investigation [144],
despite more studies being needed [145].

7. Genetics and miRNAs

In relation to the antiplatelet therapy with P2Y12 inhibitors, several reports have
addressed concerns on reduced effectiveness and platelet inhibition, especially during
clopidogrel treatment. Because clopidogrel is a pro-drug, it first needs a metabolic modi-
fication by CYP2C19 before it becomes effective. However, about 5% of Caucasians and
15 to 20% of Asians display low or absent CYP2C19 activity, leading to a smaller or no
clopidogrel effect on platelet function [146]. Several studies have reported higher number
of CV adverse events in subjects who carry at least one non-functional copy of the CYP2C19
gene compared with patients with wild-type CYP2C19 gene [147,148], portraying these
patients to be treated with higher clopidogrel dosage or with an alternative drug [149,150].

Guidelines to describe scenarios deserving modification in antiplatelet therapy have
been proposed by the Clinical Pharmacogenetics Implementation Consortium (CPIC) and
by Dutch Pharmacogenetics Working Group (DPWG) of the Royal Dutch Association for the
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Advancement of Pharmacy [151,152]. However, the recent TAILOR-PCI trial showed that
in CYP2C19 loss of function carriers with ACS and stable CAD undergoing PCI, genotype-
guided selection of an oral P2Y12 inhibitor, compared with conventional clopidogrel therapy
without genotyping, resulted in non-statistically significant difference with respect to a
composite end point of CV death, MI, stroke, stent thrombosis, and severe recurrent
ischemia at 1 year [153], while a meta-analysis suggests the potential usefulness of genetic
testing to guide de-escalation of antiplatelet therapy after a PCI for ACS [154].

In addition, more potent and expensive P2Y12 inhibitors were inquired for a potential
impact of genetics on their effects: prasugrel, a pro-drug like clopidogrel, was found
being influenced by some cytochrome P450 polymorphisms [155], even if the Food and
Drug Administration stated that there were no relevant effects of genetic variation on
pharmacokinetics of prasugrel’s active metabolite and, thus, on its antiplatelet effect [155].
On the other hand, ticagrelor, that is direct P2Y12 inhibitor not requiring activation, has no
specific warning about potential genetic impact: Varenhorst et al. found some genetic loci
influencing ticagrelor pharmacokinetics through a genome-wide association study, but that
did not translate into any clinical detectable effect on ticagrelor efficacy and safety [156],
even if the genetics of the adenosine signaling pathways may affect platelet reactivity under
ticagrelor treatment (Figure 3) [157].

In the last years, increasing interest has been dedicated to RNA carried by platelets,
specifically with regards to microRNAs (miRNAs). Considering that platelets are enriched
with miRNAs and represent the second most abundant blood cell type, platelets are the
major source of miRNAs in plasma and serum [158,159]. Moreover, the levels of both
intraplatelet and circulating platelet-derived miRNAs are shown to correlate with platelet
reactivity [160,161].

Of about 750 intraplatelet miRNAs identified, the most extensively investigated are
miR-223, miR-21, and miR-126. With respect to the overall amount of platelets, miR-223 is
the most represented, and it has been linked to P2Y12 receptor regulation, despite the exact
mechanism needing to be clarified [162]. However, some suggestions come from murine
model without miR-223 expression, which displayed increased thrombus size compared to
normal miR-223 expression [163]; among diabetic patients, a lower level of miR-223 was
detected with a concomitant increased platelet reactivity [164]. On the other hand, miR-21
together with other miRNAs were found upregulated in ACS patient with an enhanced
response to clopidogrel [165]; however, this deserves further study to define its role in
regulation of α-granules and platelet-derived pro-fibrotic factors, including TGF-β1 [166].
The role of miR-126 has been shown involving the regulation of P2Y12 receptor and,
potentially, platelet-derived thrombin generation [167,168].

The role of circulating miRNAs in platelet activation is still under investigation, even if
a progressive quantity of evidence has been published, underscoring their role in aggrega-
tion homeostasis [169,170]. Major shadows are related to the general mechanisms used by
circulating miRNAs to act on their target, especially considering the abundance of RNases
in the circulation that quickly degrade free RNA [171]: it has been proposed that circulating
miRNAs might regulate the cell surface receptor through physical conformational interac-
tion, but an adversative issue is that miRNAs are contained in vesicles or protein complexes
to protect them by degradation [172]. Jansen et al. have described in 181 patients with
stable CAD that miRNAs contained in microvesicles but not circulating miRNAs predict
the occurrence of CV events [173]. In addition, Zampetaki et al. described the association
of miRNAs expression patterns and the incidence of MI in a cohort of 820 patients [174],
while other miRNAs levels were significantly associated with the risk of death in univariate
and age- and sex-adjusted analyses in patients with ACS [175]. Further investigations will
provide us a more detailed understanding of miRNAs pathways to design accurate studies
for the definition of their functions in platelet aggregation and atherosclerosis progression.
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8. Future Perspective and Conclusions

This overview aimed to show the different approaches and methods adopted to study
platelet aggregation that appropriately warranted the attention of scientific research: not
only because they are an essential component of the physiological hemostasis and patho-
logical atherothrombotic process, but also since interventions on them have demonstrated
dramatic improvements in patients with CAD, including both stable disease and acute
presentation. Antiplatelet therapy represents a mandatory approach for subjects with
clinically significant atherosclerosis, but the availability of effective parameters to assess
platelet function is indispensable to select the best option for each patient in the era of
a tailored therapeutic approach [176–178]. From the first instrument developed and of
limited routinary usage, several morphological parameters and methods to assess platelet
reactivity have shown significant contribution to daily clinical practice. Auspicious findings
are from genetic investigations, in particular miRNAs, as well as from the progressively
better understanding of the role of immune system cells in platelet thrombus formation. A
single, definite biomarker of platelet aggregation would probably be chimeric, whilst the
merging of different aspect assessments, including the most recent advances, will help—if
not to close, then at least to move near the circle on a comprehensive valuation of the CV
risk for patients with CAD.
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