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Abstract: Over the last 75 years, artificial intelligence has evolved from a theoretical concept and
novel paradigm describing the role that computers might play in our society to a tool with which
we daily engage. In this review, we describe AI in terms of its constituent elements, the synthesis of
which we refer to as the AI Silecosystem. Herein, we provide an historical perspective of the evolution
of the AI Silecosystem, conceptualized and summarized as a Kuhnian paradigm. This manuscript
focuses on the role that the AI Silecosystem plays in oncology and its emerging importance in the
care of the community oncology patient. We observe that this important role arises out of a unique
alliance between the academic oncology enterprise and community oncology practices. We provide
evidence of this alliance by illustrating the practical establishment of the AI Silecosystem at the City
of Hope Comprehensive Cancer Center and its team utilization by community oncology providers.
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1. Introduction

Artificial intelligence (AI) plays an ever-increasing role in our daily lives most imme-
diate to us in our use of entertainment, consumer and communication products [1,2]. Less
immediately obvious to the oncology patient, AI has become an important tool to assist the
clinical management of and guide therapy for cancer [3–5]. Within the academic oncology
sphere, AI already has a significant impact. For example, AI has substantial, established
roles in precision oncology [6–8], clinical oncology decision-making [9–11], digital cancer
pathology [12–16] and radiology [17–19]. For community oncology practice, the role of AI
remains limited but continues to emerge [20–22]. In this review, we seek to further expand
knowledge of the role that AI plays in the community practice of oncology. We organize
this manuscript into two parts. In Part I, we review the history, current state and emerging
innovations relating to the computer hardware, data and software components that make
AI possible. For conceptual simplicity and coherence, we refer to the synthesis of these
components as the AI Silecosystem. We trace the emergence of the AI Silecosystem, its cur-
rent state and future directions within the context of a Kuhnian scientific paradigm. In Part
II, we provide a case example of the establishment and application of the AI Silecosystem
in community oncology practice. We review the historical role and current integral position
that academic medical institutions occupy in facilitating utilization of the AI Silecosystem
by the community oncologist. We describe and place special emphasis on our experience at
the City of Hope COH) Comprehensive Cancer Center to advance community oncology
team utilization of the AI Silecosystem.

2. The AI Silecosystem as Kuhnian Paradigm

By AI Silecosystem we mean the synthesis of data, hardware and software that under-
gird the operation, make available the use, and fuel the growth of AI (Figure 1). To concep-
tually appreciate the history, progress and future trajectory of the AI Silecosystem, we may
conceive and provide description of the AI Silecosystem as a Kuhnian paradigm [23]. As a
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Kuhnian paradigm, the AI Silecosystem has disrupted and shifted the original paradigm of
computer as finite computational machine to the novel paradigm of computer as versatile,
multipotent thinking machine. This paradigm shift characteristically matures through three
discrete, iterative stages: inception, intermission and invigoration.
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Figure 1. The AI Silecosystem comprises hardware, data and software components. The integrated
components of the AI Silecosystem facilitated the development, utilization and evolution AI.

3. Origins of the AI Silecosystem: A Chronicle of an Emergent Paradigm
3.1. Inception: Articulation Anticipates Actualization

McCulloch and Pitts defined the incipient notion of computer as a thinking machine,
suggesting that engineers might design computers to functionally mimic the operation of
the human nervous system. In this theoretic nervous system model, an individual neu-
ronal logic element achieves its ultimate activation state through cumulative summation of
weighted inputs generated from a syndicate of contiguous neuronal logic elements [24].
This proposal represented an important architectural anlage preceding physical construc-
tion of Rosenblatt’s early neural network, the Perceptron [25,26]. Rosenblatt’s Mark 1
Perceptron neural network machine demonstrated the ability to perform basic visual pat-
tern recognition. These early insights and accomplishments gave rise to an inchoate AI
Silecosystem that Alan Turing further accelerated with his proposition that machines might
“think” through serial adjudication of true and false logic states [27] (Figure 2). Formal
AI development acquired significant academic interest and gained further momentum
in 1956 when the early pioneers, McCarthy, Minsky and Shannon, convened a summer
research convention at Dartmouth College where they sought critical evaluation of the
assertion that “every aspect of learning or any other feature of intelligence can in principle
be so precisely described that a machine can be made to simulate it” [28]. Historians credit
McCarthy as one of the originators of the term “artificial intelligence”. Consistent with
previous Kuhnian paradigms, articulation of the AI Silecosystem paradigm anticipated its
practical implementation.
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Figure 2. The AI Silecosystem paradigm conceives of the computer as thinking machine. As
proposed by Turning [27] and McCarthy et al. [28], the computer may function as bone fide thinking
machine, rather than mere computational machine. In accordance with a Kuhnian paradigm, the AI
Silecosystem undergoes a series of stages: Inception, Intermission and Invigoration. Characteristically,
the paradigm experiences a series of iterative Intermission and Invigoration cycles as new expectations
develop and innovations occur.
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3.2. Intermission: Expectations Exceed Experience

Initial efforts to create and implement the AI Silecosystem experienced setbacks. Be-
tween 1970 and 1990, a series of pivotal, adverse events led to intermittent intermissions in
AI Silecosystem utilization, research and development. The inability of the AI Silecosystem
to deliver its promise to perform complex, traditionally human-only tasks such as language
translation, speech recognition and advanced image analysis efficiently and accurately
muted expectations for AI-based approaches. These shortcomings prompted sponsors to
withdraw financial support from several prominent AI initiatives. During this two-decade
period, the Defense Advanced Research Projects Agency (DARPA) reduced funding for
Carnegie Mellon’s AI speech recognition program, and the United States National Research
Council ended its financing of AI language translation efforts [29]. Following the Lighthill
report, the United Kingdom halted further public AI development [30], and Japan curtailed
AI investment after its Fifth Generation project failed to meet its articulated goals [31].
These setbacks instigated widespread public disillusionment with AI and precipitated a
series of intermissions in further AI discovery and advancement, that is, the “AI Winters”.
Intermissions, such as the AI Winters, Kuhn would recognize as expected phases in the
lifecycle of a paradigm shift. Full acceptance of a paradigm often must await creation of the
technology and evaluation tools to permit complete use, valid assessment and thorough
validation of the novel paradigm. Kuhn notes, for example, that many years passed after
Newton and Einstein first introduced their mechanics and relativity paradigms until the
availability of experimental verification protocols allowed scientists to fully understand,
confirm and accept their revolutionary ideas [23]. Ultimately, innovation and insight facili-
tate endorsement and adoption of emerging paradigms, and, specifically, in the case of the
AI Silecosystem, led to thawing of the AI Winters.

3.3. Invigoration: Innovation Invites Implementation and Investment

Innovation of and transformational progress within three core elements of the AI
Silecosystem, i.e., computer hardware, data acquisition and processing and software al-
gorithms, hastened thawing of the AI Winters. The following sections survey these key,
instrumental innovations and advances.

3.3.1. Advances in Computer Hardware: The Engines That Power the AI Silecosystem

If we view the AI Silecosystem as a computational vehicle, its hardware elements
function as the engines powering AI algorithmic processing. The invention of the sil-
icon chip [32], introduction of multicore constructs [33] and development of ultrahigh
capacity data storage systems [34], among other hardware innovations, enabled efficient,
inexpensive performance of computationally complex, data-dense AI algorithms. The
following more recent advances promise to further boost adoption and expansion of the AI
Silecosystem.

Quantum Computing

Quantum computing uses the quantum bit (qubit) as its fundamental unit of infor-
mation in contrast to conventional digital computing which employs the binary bit. Two
different value states define the classic binary bit, and these value states exhibit mutual
exclusivity (either 1 or 0). The qubit, however, may retain both values states simultaneously
(1 and 0) in a quantum condition known as superposition. Superposition enables more
rapid completion of complex, intensive computational tasks by quantum computation;
digital computation cannot complete these tasks within a meaningful time frame. The
computational superiority of the quantum computer, termed “quantum supremacy”, was
first demonstrated by Google in 2019 using a programable superconducting processor [35].
Quantum supremacy has the potential to amplify the power and practical utility of the
AI Silecosystem. For example, computational scientists have developed and now apply
AI algorithms to solve complicated combinatoric problems such as those encountered in
molecular oncology drug design [36] and cancer diagnostics [37]. Processing of such AI
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algorithms on traditional computer platforms, however, might require exorbitant, cost- and
time-prohibitive computational resources; implementation of quantum computation may
allow tractable, economic solutions for combinatoric and other equally complex oncologic
questions. Oncologists have successfully used quantum computing, together with AI
applications, in the prediction of breast cancer [38], the application of radiotherapy [39]
and cancer histologic assessment [40].

Artificial-Intelligence-Boosted Internet of Things (AIoT)

The internet of things (IoT) describes a system of local and remote physical instru-
ments with communication, data processing, computational, memory storage and sensor
capabilities interconnected via the internet and/or a local network [41,42]. The IoT aims
to leverage the full potential of modern digital resources to optimize and assist with the
activities and pursuits of daily living. Domestic examples of the IoT include smart speakers,
home security systems and integrated, residential thermostat devices. The IoT has the
potential for broad societal utilization. Specifically, within the sphere of health care, the
IoT, i.e., the internet of medical things (IoMT), has enabled new, vital medical services, for
instance, distance clinical assessment and monitoring [43,44] and remote health emergency
notification [45]. In addition, investigators have proposed using the IoMT to enhance
breast cancer detection [46], patient-centric healthcare [47,48], and the performance of
health-care-related deep learning models [49].

With the advent of AI, the next iteration of the IoT emerged: artificial-intelligence-
boosted IoT (AIoT) [50]. The AIoT underpins a range of familiar IoT applications such as
autonomous driving vehicles [51], industrial robots [52] and surveillance drones [53]. The
AIoT has provided impetus for several AI-based initiatives, for example, the development of
anticipatory manufacturing machine maintenance, automated optimization of commercial
operational efficiency and machine-learning-based urban safety monitoring and traffic
control. Hospitals have begun using the AIoT to maintain efficient daily facility functioning
and provide centralized patient monitoring. At COH, researchers have harnessed the AIoT
to ensure safe, timely and effective post-surgery recovery for the patient after return to
their home [54].

Distributive Edge Computing

Shared, centralized high-performance computer centers (HPCCs) have made available
to a multitude of scientists the computer resources required to perform highly complex,
computationally intense analyses. A HPCC may be located at a significant physical dis-
tance from the data source; moreover, as a shared resource, HPCC analytic jobs enter
a work queue and process them in a serial fashion. The geographical and operational
architecture of the HPCC results in “in due time” job completion. A complementary
data analytic approach, edge computing, redistributes data processing, computations and
memory storage from HPCC hubs to smaller, local computer nodes contiguous with the
data source [55]. Edge computer nodes excel at “now time” processing of smaller discrete
data parcels. For certain applications, most notably IoT platforms, edge computing offers
distinct advantages over centralized HPCC processing: improved efficiency, low latency
and increased agility; further, for large institutions, with often immensely large HPCC com-
putational demands, edge computing helps alleviate computational backlog and obviate
compromise of network bandwidth. Currently, edge computing plays an indispensable
role in healthcare, processing data originating from local clinics as well as patient wearable
monitoring devices. [56,57]. Researchers have begun to leverage the AI Silecosystem to
catalyze new discoveries in and applications of edge computing. Recent efforts seek to
bring the power, versatility and efficacy of AI to the edge in order to enhance local analytic
capabilities [58–60]; specific initiatives seek to apply AI to edge immune-oncology and
precision oncology computational efforts [61,62].
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Cloud Computing

Cloud computing refers to as-needed, subscription use of off-site computer services,
typically utilizing an internet connected network. Cloud computing allows organizations
to rapidly adapt to and accommodate their changing computational needs. Cloud com-
puting mitigates the often-substantial transitional financial and time lag costs associated
with start-up or rapidly expanding computer needs. As the owners of the cloud com-
puter services manage and maintain their product, subscribers avoid administrative and
custodian cost burdens. Further, in the event of abrupt computational deceleration or
change in operational goals, cloud computing eliminates organizational depreciation costs
associated with dormant or obsolete equipment and software. Even stably established and
well-resourced HPCCs may utilize cloud computing services to buffer acute fluxes in com-
puter needs. Cloud computing currently plays a pivotal role in supporting the healthcare
industry, including provision of the off-site storage of patient electronic medical records,
the warehousing of large genomic data sets, the enablement of robust telehealth capabilities
and the hosting of patient access portals [63]. Cloud computing utilizes the AI Silecosys-
tem to automate complex healthcare data management protocols and enhance workflows
associated with the processing and analysis of patient data [64]. Cloud AI platforms make
more immediately available to oncologists and their patients the tremendous power of AI
protocols [65]. AI-augmented cloud computing helps to advance tumor board operations,
cancer therapeutics, patient management, diagnostics and oncology services [66].

Neuromorphic Computing

Neuromorphic computing adapts the physical architecture and functionality of the
human central nervous system to enhance computer design and operation [67–70]. The
artificial neuron constitutes the fundamental functional unit of neuromorphic computing.
The construction and implementation of the artificial neuron and neuromorphic computers
rely on interdisciplinary collaboration among neurobiologists, electrical engineers, com-
puter scientists and computational specialists. Neuromorphic computing provided the
basis for the invention and utilization of neuromorphic sensors such as artificial retinas
and cochleae. Neuromorphic computing research inspired specialized subdisciplines,
for example, neuromemrestive initiatives that utilize electromagnetic memristors to cre-
ate CNS-computer interfaces [71]. Neuromorphic computing plays an ever-increasingly
important role in healthcare applications such as patient safety monitoring [72], neuro-
rehabilitation [73] and interactive health care robotics [74]. Recently, computer researchers
have incorporated neuromorphic computing approaches into AI platforms to boost their
effectiveness and efficiency [75–77]. Cancer scientists and oncologists have implemented
AI-based neuromorphic computing to enrich their research [78–80] and improve clinical
patient care [78,81].

Analog Neural Networks

As with neuromorphic computing, analog neural networks seek to mimic, more
closely, the biochemical and neurophysiological functioning of the biological nervous
system. Because biologic neuronal inputs comprise parallel converged signals originating
from a multitude of neighboring neurons, the inputs do not occur within discrete time
episodes, nor do the strength of signals have categorical quantitative values. Therefore,
a nervous system model with analog continuous, rather than digital, input values more
closely approximates actual nervous system functioning. Analog neural networks require
less energy and less computational time compared with digital networks [82–85]. Analog
neural networks now play central roles in the operation of numerous healthcare and
medical software applications, e.g., those related to medical imaging [86], mimicking of the
olfactory function [87] and modeling of mastoid bone pathologic events [88]. Investigators
observe that analog neural networks may be used to support AI-based platforms such
as vector machine learning [89], advanced edge computing [90] and natural language
processing [91]. Cancer computational specialists have adapted analog neural networks to
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strengthen AI-informed oncology research, including the development of efficient cancer
classification workflows [92,93], cancer histological analytic approaches [94] and oncology
drug design pathways [95].

Monolithic-3D AI Systems

Electrical engineers originally designed the integrated circuit (IC) as a two-dimensional,
flat semiconductor device containing a vast array of electronic elements such as transistors,
capacitors and resistors. The IC has the capability to perform a wide range of data pro-
cessing and computational operations. Relative to a collection of discrete circuit elements,
ICs carry out operations more rapidly and use less energy. Recent advancements in IC
design have led to the development of a three-dimensional (3D) IC configuration in which
engineers vertically layer two-dimensional IC units [96]. This innovative design allowed
construction of monolithic 3D ICs that contain within a single chip the necessary electronic
components to carry out increasingly complex, advanced computational tasks [97]. Mono-
lithic 3D ICs demonstrate improved efficiency of operation and allow for construction
of ever more compact electronic instrumentation. The introduction of monolithic 3D ICs
rapidly accelerated practical implementation of often very complicated AI machine learn-
ing and deep neural network algorithms in IoT devices such as personal, wearable medical
devices and point-of-service health equipment [98].

The Graphics Processing Unit

The central processing unit (CPU) provides global program execution instructions
for the computer; typically, the CPU performs its operational tasks in a serial fashion, one
following another. CPUs normally contain a modest number of individual processing
units (most often fewer than one hundred). Electrical engineers designed the CPU to
complete dedicated large-scale computer operational tasks. In comparison, the graphics
processing unit (GPU) has more limited operation execution responsibilities related to
specific tasks [99]. The GPU can execute functions in a parallel fashion, handling multiple
tasks simultaneously; facilitating parallel execution, the GPU may contain thousands of
processing units. Although originally designed to perform video and graphics functions,
computer scientists realized that vis-à-vis the CPU, the GPU performs AI-related tasks
(e.g., machine learning and neural network operations) more proficiently. Oncologists have
utilized GPU-based devices to augment their ability to implement radiation therapy [100]
and interpret neuro-oncology MRI images [101]

Analog, Non-Volatile Memory Devices

Analog memory devices can store continuous data values. Volatile memory requires
a continuous power source to retain data; non-volatile memory devices retain and stably
store data after power discontinuation. The profound interest in implementing AI-based
approaches, such as neuromorphic computing, that require durable and continuously val-
ued data sets, has intensified the need for analog, non-volatile memory devices. Recently,
engineers have innovated memory storage with the introduction of analog, nonvolatile
ferroelectric field-effect [102,103], resistive random access memory [104–106], magnetic ran-
dom access memory [107,108] and phase change memory technologies [109–111]. Analog,
non-volatile memory has been instrumental in the continuing maturation of AI-based neu-
ral networks [84,112,113], image analytic platforms [114] and bio-sensor devices [115,116].

3.3.2. Advances in Data

Data fuels the engine of the AI Silecosystem vehicle [117]; historically, several data-
related innovations contributed to thawing of the AI Winters. Increasing the size of a data
set characteristically elevates performance of an AI algorithm [118,119]. The advent of
systematized large-scale data acquisition, concomitant with convergent informational and
technical advances such as data compression [120], solid state memory [121] and random
access memory [122], contributed to improved AI algorithmic functionality and abetted the
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awakenings of the AI Silecosystem from its early hibernations. In the following section, we
examine additional data innovations that have driven forward the evolution and growth of
the AI Silecosystem.

Synthetic Data

Synthetic data refer to information originating from an intentionally engineered pro-
cess, in contrast to authentic data generated spontaneously from actual, real-world events.
The desire for optimized AI algorithmic operability and larger data sets drove the develop-
ment of synthetic data fabrication protocols.

Synthetic data production typically requires application of stringent statistical analytic
procedures, precise data sampling approaches and rigorous testing methods to ensure
accuracy and validity [123,124]. Synthetic data offer several key advantages over real-
world data. For very large data sets, synthetic data avoid the often-tremendous financial
costs associated with real-world data collection. Moreover, synthetic data, as they do not
originate from actual patients, do not pose privacy risks and, additionally, eliminate the
potential financial liability associated with a data breech. In addition, because of anonymity,
synthetic data collections may allow their unrestricted use as open-source data repositories.
The collection of real-world data may expose investigators to physical hazard. Data arising
from natural disaster areas, associated with dangerous chemical or biologic agents, or
originating from an unsafe physical environment (e.g., an active military combat zone or
crime-challenged neighborhood) may all threaten the safety of data collection personnel.
The surrogate production of synthetic data obviates such threats.

Within the AI Silecosystem, synthetic data have acquired increased prominence as
recognition of their utility has grown. Synthetic data have driven forward innovations
within the healthcare space. Synthetic data undergird many current initiatives in medical
education [125,126], clinical training [127,128], epidemiology research [129,130] and disease
prevention [131,132]. Cancer researchers now use synthetic data resources to bolster their
work including precision medicine [133] and palliative care [134].

Facilitating Culturally Representative AI Data Sets

Experts identify cultural inequity and lack of diversity as ongoing and significant chal-
lenges in our society specifically impacting healthcare and medical outcomes [135–137]. As
AI gains increasing currency as a tool to direct healthcare decision-making, and recognizing
that patient data set composition influences AI algorithmic outcomes, consideration of
the racial and ethnic composition of patient data sets has become important in order to
ensure equity of healthcare outcomes, specifically within the sphere of cancer care [138].
Nevertheless, despite legal requirements for representative inclusion of racial and ethnic
minorities in health research, disparities persist; data sets used in AI-based algorithms
continue to employ non-representative patient populations, undermining the validity of
algorithmic decision-making [139,140]. Novel initiatives aim to improve and maintain
broad population representation within health care data sets and across AI platforms.
These initiatives include the implementation of intentionally diverse data sets [141], the
enactment of more effective legislative guidelines to promote equity and diversity [142] and
initiation of proactive community programs to promote health research participation [143].

Optimizing Data Deposition and Engineering

In order to optimize functioning of the Silecosystem and performance of downstream
applications, computer engineers and scientists require tractable access to high-quality,
large-volume data [144,145]. For example, machine learning algorithms for drug discov-
ery [146], diagnostic prediction [147] and oncology medical imaging [148] demonstrate
significant improvement with enhancement of data quantity and quality. The construction
of national federated data repositories seeks to establish direct, streamlined public access
to large data warehouses [149–153]. Data engineering aims to modify and format data to
facilitate AI model building and the completion of analytic tasks [154,155]. Recent data
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engineering efforts have sought to automate data quality improvement protocols such as
eliminating bias in and assessing the integrity of large data sets [156–158].

Together, the careful generation of synthetic data, increased attention to equitable data
representation and the facilitation of high-quality data access have promoted the saliency
and amplified the currency of the AI Silecosystem. In the section that follows, we chronicle
the role of software algorithms in mitigating past AI winters and their continuing role to
solidify collective adoption of the AI Silecosystem.

3.3.3. Advances in Software Algorithms: Piloting the AI Ecosystem

If hardware functions as engine, and data serve as fuel, then the software algorithm
operates as pilot to direct the AI Silecosystem. As a pilot, the software algorithm directs the
operational flow, direction and output of the AI Silecosystem. The AI computer scientist
may choose among a variety of software algorithms; most frequently, the scientist utilizes
machine learning or neural network algorithms [159,160].

Machine learning algorithms employ either supervised or unsupervised protocols [161].
With supervised protocols, input data have assigned labels that link with an output result;
using this label, the algorithm then “learns” the rule that governs the relationship between
the input and output data. With unsupervised protocols, the data lacks labels, and the
algorithm must devise its own associative rules to understand patterns in the data. Among
a range of practical applications, supervised machine learning has been used to predict
customer behavior [162,163], differentiate cells of different histologies [164,165] and recog-
nize faces [166,167]. With unsupervised machine learning, the algorithm seeks to cluster
entities based upon some discoverable property of the entities, for example, grouping
anonymous individuals within a large crowd based upon biometric or acquired physical
variables [168,169].

Neural network algorithms, subsets of machine learning, generally supervised, work
by mimicking the workings of the nervous system; within a neural network, an artificial
neuron receives multiple inputs from neighboring neurons and then generates a resultant
output based upon combined input [170]. In turn, the neuron transmits its output signal to
other neighboring neurons, culminating, ultimately, in a final, consolidated output value
from the system. The neural network algorithm “learns” the necessary rules that govern the
correct association between input and output values. For example, computer scientists have
adapted neural networking to interpret handwriting; this task entails making the correct
association between a handwritten word and the ground truth, intended word [171–173].

Building upon the revolutionary impact of machine learning, other software inven-
tions and algorithmic discoveries helped to rejuvenate AI and continue to transform the
Silecosystem. A brief synopsis of major innovations follows.

Generative AI

Generative AI, an evolutionary offshoot of machine learning, uses rules derived
from established instances of creative content to generate novel content such as original,
advanced-level written documents [174], music compositions [175] and video game plat-
forms [176], among others. Recently available generative AI applications, Microsoft’s
ChatGPT [177] and Google’s Bard [178], have piqued the public’s attention as both tools
demonstrate the ability to very quickly generate works that approach the imaginative and
technical abilities of human creators [179,180]. ChatGPT and Bard have authored working
computer code [181–183], achieved passing scores on professional qualifying and academic
exams [184,185] and written jokes [186]. In the health care field, generative AI enables
chatbot services [187], carries out natural language processing of medical records [188]
and completes medical education tasks [189]. These generative AI applications currently
play important roles in cancer drug discovery [190], review of cancer patient medical
records [191] and digital pathology [192].
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Virtual and Augmented Reality

Virtual reality relies upon AI-empowered three-dimensional viewing devices together
with positional tracking to construct and allow participation in a simulated, pseudo-
physical existence [193]. Augmented reality combines input originating from physical
reality with information generated by a computer device to enrich the conscious experi-
ence [194,195]. Providers have utilized both virtual and augmented realities in health care,
for example, to improve medical practice and basic science research, advance educational
curricula [196–200], refine surgical skills [201,202], guarantee the safety and effectiveness
of medical procedures [203,204] and alleviate cancer pain and suffering [205–207]. Future
virtual and augmented reality efforts aim to optimize routine, everyday tasks as well as
medical professional-related procedures [208–210].

Explainable Machine Learning

Machine learning algorithms achieve their solutions through progression of relation-
ally dependent steps. The underlying logic governing these relations, however, may be
abstruse and not readily decipherable by a computer scientist [211]. Disambiguating the
machine learning logic yields significant benefits. For just as explaining the mechanism
of a biologic process or chemical reaction may reveal secondary insights and lead to addi-
tional discovery, so also may explaining the logic of a machine learning solution lead to
derivative AI computational breakthroughs [212]. Furthermore, end users of transparent,
explainable machine learning algorithms have increased confidence in the predictions
of and conclusion made by the algorithm [213,214]. AI computer scientists use a vari-
ety of explanatory methods to reveal and illuminate the underlying governing logic of a
machine learning behavior [215–218]. For example, gradient methods quantify the effect
that a change in a machine input parameter has on the algorithm output at each step of
the algorithm [219,220]. Deconvolution protocols provide logical information about the
logical relationship between a specific output feature and input variable [221,222]. Local
interpretable, model-agnostic explanations work by randomly inactivating model inputs
and then observing and collectively analyzing output results [223–225]. These and other
explainable methods promise to enhance the intuitive utility of and confidence in machine
learning as well as other AI-based methods. For example, oncologists have employed
explainable machine learning to boost their ability to perform breast cancer morphological
and molecular breast cancer profiling [226] as well as estimate cancer hospital length of
stay [227].

Generative Adversarial Networks

Generative adversarial networks (GANs) represent a category of generative machine
learning algorithms in which two neural networks, a generator and discriminator, “com-
pete” to achieve a maximized generative outcome, for example, production of an artificial
image indistinguishable from an actual image [228,229]. Ground truth data sets train
the generator to produce artificial data and also train the discriminator to distinguish
between actual and artificial data [230,231]. The GAN algorithm achieves its generative
objective when the generator produces artificial data, a majority of which the discriminator
fails to distinguish from authentic data [230]. GANs have applications across a variety
of disciplines including natural language processing [232–234], cybersecurity [235,236],
manufacturing [237–239] and military defense [240,241]. Prominently, science and medicine
have adapted GANs to design and analyze biological networks [242], perform medical
imaging [243,244], inform precision oncology [245] and prescribe radiation medicine proto-
cols [246–248].

Neuro-Vector-Symbolic Architecture

Illustrative of the rapid transformation of the AI Silecosystem, computer scientists
recently introduced a novel AI computer operational structure, neuro-vector-symbolic
architecture (NSVA) [249]. NSVA combines two existing, highly impactful AI strategies,
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deep neural networks (DNNs) and vector symbolic architectures (VSAs). DNNs excel at
discerning objects in images, but lack the ability to differentiate among similarly shaped
objects with differentiating secondary characteristics [250,251]. VSAs have the capacity
to distinguish among entities having a multitude of secondary characteristics; however,
they faulter with image perception [252,253]. Thus, neither DNNs nor VSAs can indepen-
dently solve image-based abstract reasoning problems adequately. NSVAs incorporate
the strengths of both SVAs and DNNs without their inherent weaknesses to create an
innovative AI architecture capable of solving complex, perceptual problems [254]. Ap-
plied architectural synergism, such as the NSVA, provides a model for evolving the AI
Silecosystem to accommodate the burgeoning computational complexity brought about
by the accelerated societal adoption and use of AI. Cancer specialists have adapted these
novel architectures to aid image analysis [255] and tumor classification [256].

The Democratization of Resources/Open-Source AI Software

Open-source software refers to computer software universally available to individuals
for unrestricted use, modification and distribution [257]. Open-source software, beyond
facile, economic availability, accelerates computer discovery, engenders trust in the soft-
ware and organically self-improves due to iterative public editing and optimization [258].
The AI community has access to a broad menu of open-source software applications. Two
frequently used AI open-source programs, TensorFlow [259] and PyTorch [260], provide
platforms for the development of machine learning programs. Computer scientists fre-
quently utilize TensorFlow to develop and train deep neural networks [261,262]. PyTorch
has a variety of uses including the construction of natural language processing applica-
tions [263,264] and image processing [265,266]. Open-source AI software promotes the free
exchange of ideas among users, sustains the democratization and pace of AI Silecosystem
maturation, and serves as a catalyst for continuing research, invention and insight. Cur-
rently, AI computer scientists employ open-source software solutions to facilitate brain
cancer research [267], perform cancer digital pathology [268] and analyze cancer genomic
data [269].

In Table 1 below, we provide a summary of the significant historical and ongoing
hardware, data and software innovations with regard to their impact on seven key metrics
of the AI Silecosystem: AI algorithmic speed, efficiency, utility, agility, accuracy, security
and accessibility.
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Table 1. Significant Past and Ongoing Advances in Hardware, Data and Software Driving Evolution
of the AI Ecosystem and Their Value Impact.
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4. Tribulations of the AI Silecosystem: Impending AI Winter or Early Twilight of a
Paradigm in Demise?

Interest in, adoption of and innovation associated with the AI Silecosystem have
surged in no small measure due to the recent advances in the field of generative AI. With
this surge, however, has come an amplification of concerns over the real and emerging
risks and dangers of the AI Silecosystem [270]. Some experts see a more powerful AI
Silecosystem as an existential threat to humanity [271]; the Center for AI safety recently
advised that “mitigating the risk of extinction from AI should be a global priority alongside
other societal-scale risks such as pandemics and nuclear war” [272]. Consequently, some
societal leaders and countries have sought to pause or curtail continued AI development
and/or use [273,274].

Regarding the use of AI within the healthcare and oncology sphere, leaders have
voiced three broad concerns: loss of autonomy, malpractice and loss of compassion.

Scholars envision, on the horizon, ostensibly in the very near future, an AI singularity
event wherein the intellectual capabilities of AI surpass that of humans, potentially with
AI demonstrating unpredictable and uncontrollable behavior [275,276]. In this scenario,
humans may unintentionally cede autonomy over their healthcare decision-making to an
AI algorithm based upon actual superior medical insight [277–279], misperceived medical
authority [280] or psychological manipulation [281].

Computer scientists and AI end users have expressed concerns over factual errors
generated by AI algorithms [183,282–284]. AI-informed healthcare may pose real physical
danger for the patient as AI algorithms may be prone to misdiagnosis [285] and incomplete
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or inaccurate treatment recommendations [286–288]. Healthcare specialists now recom-
mend careful assessment of AI algorithms used for medical decision-making and expert
review of AI-generated recommendations to avoid medical mistreatment [289,290].

Many patients do not trust AI [291–293]. Patients feel slighted by AI algorithms as
the algorithms may, seemingly without apparent logic, deny patients health care coverage
and needed services [294,295]. Patients perceive AI decisions as obdurate, unnuanced and
arbitrary [296,297]. AI lacks compassion. The AI Silecosystem may be intelligent, but to
many it is not wise.

These challenges, if not timely addressed, may precipitate the next AI intermission.
Alternately, and potentially of greater consequence, the recent ascendancy of generative
AI may presage an incipient twilight of the paradigm of “computer as thinking machine”
along with the dawning of a succeeding, replacement paradigm, “computer as rational,
sentient being”.

In Part I, we reviewed the primary hardware, data and software components of AI that
enable its operation and advancement, encapsulated in the idea of the AI Silecosystem. As
well, we chronicled the historical phases of progress and recession of the AI Silecosystem,
conceptualized as the Kuhnian paradigm. In Part II that follows, we provide an example of
practical utilization of the AI Silecosystem and illustrate its value to advance community
oncology practice at the COH Comprehensive Cancer Center. We begin with a short
discussion of the academic origins of the AI Silecosystem, and then proceed to detail its
application at COH to advance community oncology practice.

5. The Academic Origins and Catalysis of the AI Silecosystem

The AI Silecosystem can trace its origins back to a number of key societal institutions
that include commercial enterprises [298–304], the military [304–307] and, arguably, most
prominently, academic centers [308–310]. Given their focus on research and education as
well as their often substantial financial resources, academic centers became the natural
home, incubator and accelerator of the AI Silecosystem. Because of their interdisciplinary
and collaborative natures, academic departments often cross-pollinate ideas among depart-
ments and anticipate, react to and advance emerging paradigms such as the AI Silecosystem.
Examples of notable AI advances originating from academic centers include invention of
the Perceptron at the Cornell Aeronautical Laboratory in 1943 [311], conceptualization of the
idea of AI at the 1956 Dartmouth Summer Research Project on Artificial Intelligence [312],
construction of the first life-like robot at Waseda University in 1970 [313], demonstration
of the first autonomous driving vehicle, the Stanford Cart, in 1979 [314] and creation of
ImageNet, an annotated image repository, at Princeton University [315].

The emergence of the AI Silecosystem from academic centers accelerated adoption by
academic healthcare and further advanced AI discoveries within the healthcare field. AI
has established a widespread presence within medicine [316,317]. For instance, radiologists
have harnessed AI to assist with interpretation of medical images [16,318,319], cardiologists
use AI to diagnose and monitor patients with heart disease [320–322], gastroenterologists
leverage AI to enhance the effectiveness of their interventions [323–325] and pulmonolo-
gists apply AI algorithms to optimize their diagnoses [326–328]. The AI Silecosystem has
demonstrated tremendous value in oncology. Academic AI-based protocols have impacted
oncologic approaches to the early diagnosis of cancer [329,330], targeted precision therapeu-
tic recommendations [331] and palliative interventions [332,333]. After early applications
in academic oncology, subsequent initiatives aimed to extend the AI Silecosystem paradigm
to community oncology practice. Next, we chronicle these various initiatives.

6. Harnessing of the Academic Oncology AI Silecosystem to Advance Community
Oncology Practice: The City of Hope Experience

Although the AI Silecosystem has firm footing within academic oncology, its place
within community oncology practice continues to mature. The City of Hope Cancer Center
(COH) comprises a central, academic campus together with over 30 community satellite
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oncology practices. The central academic campus hosts COH’s AI Silecosystem. In the
following section, we describe the hardware, data, and software algorithm resources
of the COH Silecosystem, the availability of these resources to the community oncology
practices and the efforts to advance AI-empowered oncology care within the COH oncology
enterprise (Figure 3).
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6.1. Hardware Resources: High-Performance Computer Cluster

To support AI computations, COH maintains a high-performance computer center
(HPCC) comprising 7300 CPU cores, 80 TB of memory and 176 GPUs. All COH physicians,
faculty, staff and students, including community oncology members, have privileges to
access the HPCC remotely through desktop terminal applications. Round-the-clock IT
experts provide technical support to assist with access to and utilization of the HPCC.

6.2. Data Resources

The COH Data Center manages and ensures reliable availability of several petabytes of
deidentified clinical and genomic data for AI-related projects. To facilitate AI research and
clinical projects, the Data Center relies on an institution-wide data repository, POSEIDON
(Precision Oncology Software Environment Interoperable Data Ontologies Network), to
house patient clinical and genomic data [334]. AI-assisted natural language processing
organizes POSEIDON data according to a Common Data Model to optimize and accelerate
downstream data input into AI operational workflows. To date, POSEIDON has assembled
nearly one quarter million unique real world patient data sets. COH information and health
care scientists have instituted and optimized operational protocols to structure efficiently
patient-generated data for AI-based applications [335].

6.3. Software Resources

COH maintains a suite of bioinformatics and AI application modules on the HPCC.
Clients may utilize HPCC resources and pursue AI investigations independently or col-
laboratively with COH expert consultants. COH established its Department of Applied
Artificial Intelligence and Data Science (AAI/DS) to educate the COH community, facilitate
institutional AI-based research and to provide clinical decision support to aid with AI
modeling. AAI/DS hosts two forums each month. One forum, a journal club, reviews
published manuscripts covering current areas of AI research including image analysis,
machine learning and natural language processing. The second forum focuses on machine-
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learning-related institutional research initiatives, software applications and computational
tools.

AAI/DS efforts have resulted in the creation of multiple machine-learning-based
models to predict real world clinical events. Following bone marrow transplantation
(BMT), the development of severe sepsis has an associated mortality rate exceeding 50%.
One AAI/DS project utilized an ensemble approach combining multiple random forest
binary classifications models to develop a tool to estimate the risk of patients developing
life-threatening sepsis after BMT [336]. COH clinicians have employed this model to
improve clinical care, avert sepsis-associated organ damage and ameliorate mortality
events after BMT.

Serious complications such as cardiac events, pneumonia, hemorrhage and death
many times follow cytoreductive cancer surgeries. Another AAI/DS initiative employed
an explainable machine learning strategy to develop a model that predicts complications
following cytoreductive surgery [337]. Surgeons at COH currently employ this model to
identify patients at risk for post-operative complications and to implement preventive
measures to mitigate these risks. For oncologists, time estimation until end of life in
terminally ill patients poses a challenge; frequently, oncologists overestimate time until
end of life. Such misestimation may negatively impact patient and family emotional and
financial planning as well as confound medical management. Working with COH palliative
care specialists, AAI/DS used a gradient-boosted trees binary classifier to create a model
estimating time to end of life [338]. This model reliably outperformed oncologists for
predicting 90-day mortality in terminally ill patients.

Alongside AAI/DS, associate COH departments and institutions further underpin the
AI Silecosystem. The COH Center for Informatics, comprising the Divisions of Biostatistics,
Clinical Research Information Support, Research Informatics and Mathematical Oncology,
provides key computational support to the COH AI Silecosystem. The Center assists
with the statistical design of research projects, restructures health and research data to
be compatible with computer processing and aids with the visualization and analysis
of data. AI projects supported by the Center for Informatics include the use of machine
learning approaches to optimize, organize and structure electronic health care records
for downstream artificial-intelligence-related projects [339], development of a machine
learning platform to visualize and extract computationally employable information from
biomedical and clinical data records [340] and utilizing machine learning approaches to
advance the study and clinical implementation of immune-oncology [341].

The Translational Genomics Research Institute (TGen), a COH-affiliated center, lever-
ages translational genomics to innovate diagnostic methods, molecular prognostic tools
and targeted therapies for cancer through independent and collaborative projects [342].
Implementation of AI and machine learning algorithms have accelerated TGen-driven
insights, fortifying the COH AI Silecosystem. One recent TGen-initiated scientific endeavor
applied machine learning to develop a novel early cancer detection method, targeted digital
sequencing (TARDIS) [343].

The cumulative energies of the AAI/DS, Center for Informatics, TGen, as well as the
efforts of independent COH investigators have helped create a rich resource of AI expertise
and maintain a robust portfolio of AI research. Examples of other initiatives at COHthat
illustrate the depth and breadth of the AI Silecosystem include the use of AI autoseg-
mentation for patients pending bone marrow transplant irradiation [344–346], AI-assisted
oncologic drug design [347], expert critical review of clinical AI models [348], AI-based
platforms for the evaluation and treatment of lung [349] and breast cancers [350], machine
learning enabled pre-surgery physical status scoring [351] and AI-assisted irradiation dose
estimation [352].

6.4. COH AI Silecosystem Engagement with the Community Oncology Network

Community Oncology patients and physicians at COH interface with and gain advan-
tage from the AI Silecosystem on multiple levels. Every day, COH patients benefit directly
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from AI-informed institutional clinical care protocols such as the AI-informed diagnostic
radiology, radiation oncology, medical oncology and palliative care initiatives described
above. Moreover, community oncology patients may qualify for AI-based national clinical
trials sponsored by COH. One such trial, currently available at COH, uses machine learning
to inform the treatment of high-risk prostate cancer (NCT04513717) [353]. Community
oncology patients also collaterally benefit from inclusion of their health care and genomic
data in the electronic health record as their data help shape and make more accurate the AI
models from which their AI-informed healthcare derives [354].

The COH AI Silecosystem likewise aids community oncologists. The AI Silecosystem
provides access to expert AI specialists capable of providing to the community oncologist
insights into the clinical serviceability and utilization of AI-based healthcare applications.
Additionally, COH community oncologists may avail themselves of the many educational
opportunities such as AI-related journal clubs, seminars and lectures. Further, COH
community oncologists may employ the AI-Silecosystem data repository and institutional
AI-associated hardware and clinical platforms for their own patient care [355]. Moreover,
the COH AI Silecosystem helps expand AI-based clinical trial and research opportunities
for community oncology providers.

7. Conclusions

The AI Silecosystem operates, innovates and advances as a synthesis of its component
hardware, data and software elements. The AI Silecosystem has transformed in accordance
with a Kuhnian paradigmatic progression with periods of rapid advancements punctuated
by episodes of retreat. Recent signals of possible impending AI recession or even demise
notwithstanding, the AI Silecosystem currently enjoys increasing societal currency and
practical adoption. The academic oncology healthcare enterprise has significantly leveraged
the AI Silecosystem to rapidly advantage cancer care, in particular the clinical management
of the community oncology patient. The COH academic-community oncology team alliance
demonstrates the practical feasibility and the tangible dividend of such leverage. In the
near term, we may reasonably anticipate continued enthusiasm for the AI Silecosystem
and its further utilization within community oncology practice.
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