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Abstract: In recent decades, cancer biology and medicine have ushered in a new age of precision
medicine through high-throughput approaches that led to the development of novel targeted thera-
pies and immunotherapies for different cancers. The availability of multifaceted high-throughput
omics data has revealed that cancer, beyond its genomic heterogeneity, is a complex system of mi-
croenvironments, sub-clonal tumor populations, and a variety of other cell types that impinge on the
genetic and non-genetic mechanisms underlying the disease. Thus, a systems approach to cancer
biology has become instrumental in identifying the key components of tumor initiation, progression,
and the eventual emergence of drug resistance. Through the union of clinical medicine and basic
sciences, there has been a revolution in the development and approval of cancer therapeutic drug
options including tyrosine kinase inhibitors, antibody–drug conjugates, and immunotherapy. This
‘Team Medicine’ approach within the cancer systems biology framework can be further improved
upon through the development of high-throughput clinical trial models that utilize machine learning
models, rapid sample processing to grow patient tumor cell cultures, test multiple therapeutic options
and assign appropriate therapy to individual patients quickly and efficiently. The integration of
systems biology into the clinical network would allow for rapid advances in personalized medicine
that are often hindered by a lack of drug development and drug testing.

Keywords: team medicine; precision medicine; cancer systems biology; clinical network systems
biology

1. Introduction

Cancer is a complex disease that is caused by a dysfunction of normal cell biology
through genetic and non-genetic changes including epigenetic changes that corrode the
cell’s ability to promote cell death, resulting in a process of dysregulated growth and
proliferation. Every year, approximately over 1.9 million people are diagnosed with cancer
and 609,820 die from cancer in the United States alone [1]. The discovery of new diagnostic
tools, immunotherapy, and novel therapies has helped to reduce the cancer death rate by
33% since 1991, but despite this positive milestone, the improvement in outcomes has not
been uniform across all tumor types [1]. This is largely in part due to the heterogeneity of
cancer as a multi-modal disease that is driven by a collection of genetic and non-genetic
mechanisms, which means tumors from a single tissue type do not respond to the same
therapies despite similar histological profiles [2–4]. Therefore, considerable effort has been
invested over the last 20 years to understand the biology of cancer and more importantly
cancer within individual patients to decipher the heterogeneity of cancer types [3,5–7]. The
revolution in next-generation sequencing, liquid biopsy, single-cell sequencing, proteomics,
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and other novel diagnostic techniques has generated large libraries of whole genome,
transcriptome, epigenetic, proteomic, and metabolomic data [3,5–8]. However, the rela-
tionship between the individual gene and protein discoveries is not intrinsic in affecting
tumor pathology, and often times, intricate cascade effects in transcriptional, translational
and post-translational modification limit therapeutic efficacy [9,10]. In essence, effective
cancer therapeutics cannot be achieved through understanding a cancer’s individual parts
but requires a systems biology approach where large cross-collaborations of multi-modal
scientists, clinicians, and experts collaborate to understand the entirety of the oncogenic
network.

Systems biology at its foundation is comprehending that the whole is greater than
the sum of its individual parts and is a heuristic process of collaboration, prediction, and
discovery that has yielded several scientific discoveries in the last century [11,12]. Within a
biological system, key processes are necessary for system-level insight and understanding
including system structures, systems dynamics, the control method, and the design method
as initially described by Kitano et al. [13]. Within the cancer systems biology paradigm,
the system structures can be separated into five networks including the gene regulatory
network, molecular network, cellular network, organ network, and clinical and research
network. The systems dynamics process aims to understand how cancer as a complex
system of abnormal cell growth behaves and changes over time from an initial set of
conditions [14]. The cancer control method of systems biology relies on modulating the
state of the cell to limit cancer growth or induce apoptosis to validate potential therapeutic
options [15,16]. The highest level of cancer systems biology is a design method or design
principles where multi-dimensional models, from in silico mathematical models to cell
cultures to organoids to mouse PDXs, are constructed to mimic and mirror the oncogenic
properties of individual patients or a cohort of patients so that therapies can be tested and
applied based on the definitive initial conditions of the tumor [16–18]. Due to this multi-
scale and multi-modal persistence of cancer, we propose a novel highly adaptive approach
of clinical network cancer systems biology that integrates basic science expertise and novel
methodology with physician-level expertise and patient access to achieve the dream of
personalized medicine. With the advent of modern technology, especially machine learning
and artificial intelligence (AI), it is noticeably clear that cancer systems biology ought to
take on an integrated approach where preclinical biology, patient translational specimens,
and clinical care are all merged under a singular umbrella.

2. Systems Biology in Cancer

One of the primary challenges in cancer is that it cannot be understood through
a simplistic lens due to the nonlinear nature of the disease process and its subsequent
evolution. At the organ level, cancers exhibit differential patterns, and more evidence
has shown that cancer metastasis may have a deterministic pattern to its chaotic process
where certain genotypes show a preference toward target organs [19]. Furthermore, the
tumor tissue and its tumor microenvironment (TME) vary by cancer type, and recent
evidence shows that the TME may have an active role in the proliferation, migration,
invasion, survival, angiogenesis, and EMT within the cancer cell network [20]. This is
further complicated by protein signaling networks and biochemical signaling pathways
involved in cancer progression that are difficult to predict and overcome therapeutically
due to distinct perturbations in genotypes and phenotypes that drive their formation
and interaction [21,22]. At the lower magnification, genomic instability in DNA repair
and maintenance mechanisms as well as the disruption of epigenetic regulators has led
to the discovery of several genomic alterations and chromatin modifications. This has
unfortunately led to a high failure rate with only 6.7% of therapies reaching the phase II
trial phase with regulatory approval between 2009 and 2018 [23]. Ultimately, the issue of
cancer drug discovery is two-fold in that while with the help of next-generation sequencing,
large cohorts of patients have been identified with novel targeted therapeutic options
such as NSCLC EGFR-mutated patients or BRCA-2 positive breast cancer, there were also
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numerous cohorts of patients discovered with genomic alterations that have no clinically
proven drug options such as TP53, ARID1A or PIK3CA [24].

The discovery of novel therapeutics based on recent preclinical biological discoveries
is an iterative process within cancer systems biology that can be represented as a life cycle
of research that combines wet-lab and dry-lab efforts to arrive at validated therapeutics
(Figure 1). While traditionally systems biology begins its life cycle at preclinical basic
research, this is different in cancer in that there is a wide berth of data that is publicly
available from large cancer databases such as TCGA and publicly available results from
individual large cohort studies. This makes the life cycle of cancer systems biology more
fluid in that initial discoveries or drug targets can be made prior to any wet-lab experiments
through bioinformatics analyses and in silico modeling. Nevertheless, wet-lab analytical
modeling involving cell lines, 3D spheroids, tumoroids, and in vivo experiments is a
required stepping stone toward verifying an underlying therapeutic hypothesis regardless
of whether the foundation of that hypothesis was based on previous preclinical or clinical
knowledge. Subsequently, predictive modeling and translational research go hand in
hand in validating the clinical efficacy and viability of any therapeutic approach. This
is then followed by biomarker discovery and computational modeling where potential
therapeutics attempt to find the “best-fit niche” for their mechanism of action. However, it
is important to underscore that the cancer systems biology life cycle is nonlinear, and each
step may flow back into the previous step where further analytical modeling and predictive
modeling work is required based on the computational and biomarker findings, which in
turn may require new hypotheses to be made. This has further importance in clinical trials
and personalized medicine where initial findings of the therapeutic in a clinical population
such as toxicity or various omics profiling may yield results that require further drug
optimization or drug repurposing.
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The arrival of next-generation sequencing in the clinical setting has allowed for the
further stratification of individual cancer types beyond their histology or tumor locale.
However, as mentioned previously, cancer systems biology is complicated by the fact
that individual components of data do not represent the entire network of the cancer
system. While genomic data has been valuable in developing targeted therapies and
stratifying patients by biomarkers, it is not uniform with actionable mutation rates in
patients varying from 10.8% to 90.6% depending on cancer type [25]. This leaves large
cohorts of patients without viable therapeutic options. A recent example is EGFR to
SCLC transformation following osimertinib therapy, which underscores the importance
of non-genetic mechanisms at play in cancer resistance [26]. The underlying challenge for
this beyond identifying the possible drug candidates and novel therapeutic approaches
is clinical trial cost and a lack of clinical trial integration into the oncology standard of
care, which in turn further increases clinical trial costs [27–29]. This is in part due to the
traditional clinical trial model where cohorts of patients at different sites especially in the
community network are screened for individual trials separately to identify an individual
with a biomarker that is possibly present in less than 1% of that cancer population [27–29].
The implementation of large umbrella trials such as the Lung-MAP, ALCHEMIST, or
NCI-MATCH trials that aim to screen patients’ biomarkers and match the patients to
appropriate therapies have been successful in the academic setting [30]. However, it has
been reported that 40% of patients were more than 60 min away from a clinical trial location,
which is a central issue in increasing NCI-MATCH trial recruitment in the community
network setting [31,32]. This is further complicated by the lack of access to the community
practice patients from the trial and drug development perspective in that often, the complex
community network patients do not have access to trials that address their biomarker [33].

We believe the solution to these issues is a novel approach that integrates cancer sys-
tems biology with a concept that we previously identified called “Team Medicine” [34,35].
Team Medicine is a cross-collaborative effort to integrate basic scientists with clinicians to
drive forward rapid-pace translational research. The merging of Team Medicine and cancer
systems biology would result in a new paradigm called Clinical Network Systems Biology
where the academic site, the clinical community network, and basic scientists at a research
center would integrate under one umbrella to discover, develop, and test novel therapeutics
at a rapid pace to achieve more personalized medicine (Figure 2). The framework embodies
the four biological networks involved in cancer including the organ network, cellular
network, molecular network, and gene regulatory network, and it combines it with the
clinical and research network that encompasses the primary academic site and community
practice network.

In the subsequent sections, we will delve deeper into the two components that com-
prise this framework by looking at the individual parts of the biological network that drive
the patients’ cancer and the various strategies that can be utilized in the clinical network to
enhance the basics of systems biology toward precision medicine.

2.1. Biological Network in Cancer Systems Biology

Clinical Network Systems Biology is analogous to the Matryoshka nesting dolls: a set
of wooden dolls of increasing size placed one inside another. Thus, Matryoshka serves as a
great metaphor for a complex system. Analytically speaking, the metaphor is especially
well suited since it is likened to thinking in systems. Relatively speaking, a system may
be defined as an interconnected set of components that are organized toward a specific
function or purpose. Complex systems are systems within a system. Indeed, a Clinical
Network may be thought of as a complex system itself. Here, the biological network
may be perceived as comprising the inner (smallest) doll representing a single cell with
its gene network, i.e., the gene regulatory network (GRN) together with the non-genetic,
protein interaction network (PIN), which is followed by the next (bigger) doll representing
the cellular networks to form tissues that comprise the individual organs and, finally,
a bigger doll representing a network of organs that constitute an individual. Thus, it
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follows that a Clinical Network is a complex system comprising many systems which may
interact with each other with dependencies, competitions, relationships, or other types
of interactions such as feedback loops between their parts or between the system and its
environment. These interactive systems are traditionally called complex adaptive systems
(CAS) where the biological behavior of one component does not predict the behavior of the
other components. CASs are capable of self-organization that adapts to their environmental
stimuli, which increases their chances of survival. Therefore, due to the unpredictable and
temporal nature of these systems, they cannot be studied with traditional tools and require
analysis using nonlinear dynamical models that can accurately predict emergent behaviors,
cellular plasticity, and heterogeneous cells.
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GRN (Gene Regulatory Network): At the principal level, a GRN is a group of genes
that are characterized by gene expression and linked to one another through target gene
nodes that regulate a specific cell function. Such interactions are genetically “wired”
to ensure transgenerational transfer with high fidelity. Regulators of gene expression
include transcription factors (TFs) that typically bind specific DNA sequence motifs and
transcriptional regulators that typically interact with the basic transcriptional machinery
and specific transcription factors. Both TFs and regulators can act as either activators of
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gene expression or as repressors that repress gene expression. Other molecules that may
also play important roles in regulating gene expression include RNA-binding proteins
and regulatory RNAs. Elucidating the intricate regulatory relationships between TFs,
transcriptional regulators and their targets is essential to understand cellular functions
such as cell growth and division, differentiation, and development. They can also help
shed light on evolution, especially in the past half a billion years or so [36]. Furthermore,
identifying GRNs can also aid in understanding how the dysregulation of gene expression
contributes to complex heritable diseases as well as diseases such as cancer that have both
genetic and non-genetic underpinnings [37,38].

PIN (Protein Interacting Network): The proteins that result from differential gene
expression regulated by the GRNs interact with their cognate partners to form cellular
PINs. While it was initially believed that PIN configurations occur randomly, Barabási
and colleagues showed that PINs have a “scale-free” architecture in which the degree
distribution P(k) expresses a power-law behavior as a function of the degree k [39,40]. A
major advantage of scale-free networks is that they are largely resistant to random node
failure, but they are vulnerable to critical hub failures [39].

Intrinsically disordered proteins (IDPs) are proteins that lack unique 3D structures
and constitute a significant fraction of the proteome [41,42]. Because IDPs exist as confor-
mational ensembles (are highly malleable), they can interact with multiple partners [43].
Consistent with their unique ability to interact with multiple partners, IDPs occupy hub
positions in the scale-free network and play critical biological roles including transcriptional
regulation [44–46]. Furthermore, they also regulate several key processes such as cell cycle
regulation and facilitate phenotypic plasticity [47–50]. Nevertheless, IDP dysregulation
of expression can often bring about non-specific interactions and generate phenotypic
plasticity due to PIN modulation. This heuristic can often discover dormant pathways in
the network and result in phenotypic variability. When the environmental stressors are
removed, the IDPs are capable of reconfiguring the PIN to its original state, which suggests
a non-genetic mechanism in phenotypic reversal. However, when the stressors persist,
they can result in chronic network frustration through the acquisition of DNA mutations
and other genetic alterations, which can result in permanent phenotypic alterations. This
pinpoints the genetic/non-genetic duality in nature such as the evolution of drug resistance
in tumor cells. This duality helps us understand how non-genetic mechanisms are involved
in acquired resistance through irreversible genetic alterations at the single cell level.

Cellular Network: Individual cells, both in normal healthy tissue as well as in diseased
tissue such as cancer for example, do not exist as individuals: they live in communities
with other cells be it in their natural tissue environment or the tumor microenvironment.
Therefore, they exhibit group behavior which can significantly influence their fitness. Thus,
it is imperative to gain a systems perspective to fully understand their group behavior,
leading to the expected physiological output or how cancer cells exploit group behavior
to evade the toxic effects of a drug to eventually develop drug resistance. Nonetheless,
previous studies have not investigated drug resistance from such a systems-level perspec-
tive. Most studies employ a reductionist approach focusing on a gene target, its mutated
version(s), a pathway, or a small molecule. Alternatively, they endeavor to develop “inter-
mittent/adaptive” therapy by studying group behavior at the population level but do not
consider the role of individual molecules or the associated pathways.

Organ network: The human body is a complex interconnected organ system where
individual organs have their own morphology and functional diversity, which leads to
temporary, shifting, nonlinear output biological changes. This process is interlinked in
that one organ in the system has a direct effect on the behavior of the other systems. The
multi-component organ systems regularly interface with one another through continuous
feedback mechanisms and throughout varying scales of space and time to arrive at a precise
physiological output. The lack of such coordinated interactions and communications can
lead to the malfunction of individual systems or the entire organism [51]. Thus, it follows
that a systems perspective rather than a reductionist approach is required to gain an
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in-depth understanding of the integrated physiologic function, which is an emergent
phenomenon resulting from interactions between the diverse organ systems. Indeed, in
recent years, a new field called network physiology has emerged [52,53]. The goal of
network physiology is to horizontally integrate physiological systems where individual
structures and regulation mechanisms lead to biological behavior and unique physiological
functions. There is a necessity to develop innovative analytical instruments and theoretical
structures to address dynamical networks observed in physiological systems, which has
further underscored the need for a highly interdisciplinary ‘Team Medicine’ approach to
the problem.

2.2. Clinical Network in Cancer Systems Biology

A Clinical Network may be likened to a complex system comprising individual
physicians and physician–scientists at both academic and community practice sites who
enhance cancer systems biology through biomarker discovery, translational research, and
clinical trial enrollment with a focus on cross-collaborative precision medicine. Precision
medicine is the tool that drives cancer systems biology, where the technologies of precision
medicine are utilized in tandem with the clinical network to study the distinct biological
and environmental factors of each patient toward the development of new therapeutics [54].
Precision medicine has revolutionized the field of cancer over the last two decades from
identifying new cancer biomarkers, genetic alterations, and treatments to improving patient
outcomes [55–57]. Despite all the successes, there are several shortcomings of current
precision medicine that need to be addressed such as its incorporation into the clinical
cancer network, more consistent serial specimen collection, and increased collaboration
between the researchers and clinicians to harness the research network in real time [58,59].
Here, we introduce the clinical network as a part of cancer systems biology and build upon
our approach by proposing a model for an AI-driven drug-matching algorithm.

One crucial issue that needs to be resolved for the further widespread adaptation of
precision oncology is the consistent use of biomarker platforms at the community and
independent oncology clinic level. The availability of biomarker testing among practicing
oncologists differs based on their geographical location and practice type with reported
rates varying from 0.1% to 100% in actionable biomarkers in community practices, indi-
cating the need for further policies that ensure all cancer patients have access to precision
oncology [32,60]. Limited resources at both the clinics and in the community are a few
of the multiple factors that contribute to this disparity [61]. Furthermore, the utilization
of multiplex biomarker tests in clinical practice varied significantly among oncologists,
and since many reported mixed confidences in interpreting these results, evidence-based
guidelines and deploying pathways with the combination of physician education efforts
may combat this issue [62]. The implementation of large panel omics testing across the
clinical network would improve biomarker discovery in cancer systems biology. A multi-
faceted approach is needed to encompass as many solutions as possible comprising a wide
array of parameters to include infrastructure changes such as the expansion of academic
centers to incorporate community clinics or geographical sites into one large oncology
network, the use of clinical pathways, and the development of molecular tumor boards
within those networks and at the patient level such as community engagement, education,
and empowerment [61,63–65].

Our previous work highlighted the importance of a strong integrated clinical and
research network at both academic and community practice sites [29,32–34,66,67]. On-
cology pathways that guide physicians have been implemented across the City of Hope
network, and applying such a strategy can ensure that patients are assigned appropriate
therapies based on their biomarker profile both in the academic and community practice
settings [66,67]. Most cancer patients start their cancer journey with a community oncolo-
gist, and the main reason they are referred to an academic site is to enroll in a clinical trial;
nevertheless, cooperation and communication between sites needs to increase [68]. The
complete incorporation and cross-collaboration of clinical trial systems from the lowest
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levels (e.g., community sites) to the highest levels (e.g., national networks) is critical in
expanding access to clinical trials, which are specifically biomarker-driven [30,67]. The
decentralization of clinical trials conducted in the clinical network would address dis-
parities of care, access to care, and raise trial accrual rates that will accelerate the cancer
systems biology drug discovery pipeline [69]. We have previously designed a pyramidal
decision support framework that leverages this cross-collaboration through four distinct
levels including a clinical pathway program, network and academic clinician consultations,
disease team tumor boards, and complex oncology case discussions [33]. This would allow
for a better examination of rarer cancer-type populations such as Nuclear protein of the
Testis (NUT) carcinomas or narrow targets for traditionally hard-to-treat cancers such as
pancreatic cancer [30,70–72].

Additionally, multidisciplinary cancer teams’ collaboration and sub-specialties are a
vital component in the clinical network systems biology where knowledge and expertise
need to be diversified beyond individual cancer specialists such as the involvement of
pathologists, radiologists, and others to improve patient outcomes, particularly in complex
cases and through the utilization of Precision Oncology Tumor Boards [33]. Baseline and
serial sample collections need to be improved across the network. The use of technologies
such as liquid biopsies and single-cell sequencing can help determine the early signs
of possible recurrence of early-stage cancers, monitor treatment response, and follow
the evolutionary heterogeneity diversity between cancer clones [73–75]. Yet, despite the
prevalence and importance of biobanking protocols at institutions, many fail to capture the
necessary specimens and data to accelerate its adaptation networkwide [76–78].

Previously mentioned stopgaps to precision medicine and more recently personalized
medicine have largely been due to the high cost of various sequencing techniques as well
as the cost of drug development or repurposing, and they have been limited by a lack of
high-throughput drug screening. With the advent of liquid biopsies, it is now possible to
study circulating tumor cells and detect protein expression from standard blood as well as
cerebrospinal fluid (CSF) in patients with leptomeningeal metastases [74,79]. Advances in
microbiome analysis have resulted in the identification of temporal changes in microbiome
composition as a potential marker for immunotherapy response [80]. Microbiome discover-
ies have resulted in novel techniques of fecal microbiota transplants and have been shown
in advanced melanoma to help immunotherapy-resistant patients overcome anti-PD-1
resistance [81]. Novel biopsy analysis techniques to detect and study circulating cancer
cells, epigenetic modifications, point mutations, translocations, amplifications, deletions,
chromosomal abnormalities, protein expression, and phosphorylation are now more readily
used for liquid and tissue samples. Alongside this, the development of rapid 3D cell cul-
tures and tumor organoids allows for high-throughput drug screening [82–84]. The recent
developments in artificial intelligence, specifically machine learning, can further enhance
personalized drug screening and match patients quickly with appropriate therapies and
discover new therapeutics or candidates for drug repurposing [82,85,86]. Taken altogether,
harnessing the clinical data and specimens and the research network, we have designed
and proposed a novel real-time AI-driven drug-matching algorithm that could be utilized
to enhance future personalized medicine (Figure 3). Additionally, the hope is that this
technology ultimately assists in drug discovery and the development of novel therapies by
taking advantage of retrospective samples leading to clinical trials.
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3. Conclusions

Cancer systems biology has been instrumental in the recent discoveries of precision
medicine. Furthermore, the integration of traditional basic science and clinical cancer
researchers with a multidisciplinary team of scientists from other fields has allowed for
the study of cancer at multiple scales with a deeper understanding of its biology and
evolution. While previously, sequencing cost remained a barrier for clinical research,
novel technologies have made it possible to quantitate tumor samples beyond genomic
sequencing toward understanding protein expression and phosphorylation, epigenetic,
chromosomal abnormalities, and other non-genetic mechanisms in real-world clinical
samples. Furthermore, adaptive therapy (also known as intermittent therapy) based on the
principles of ecology and evolution may help address the issue of drug resistance, which is
almost inevitable [87,88]. This has allowed for the study of cancer biology at multiple scales
enhanced by the traditional experimental and computational models. However, further
cross-collaboration and integration between individual academic sites, national cancer
networks, and community practices is required to achieve truly personalized medicine.
The implementation of these ideas powered by recent advances in artificial intelligence
and machine learning would in the future allow for personalized high-throughput drug
screenings that would yield faster drug discoveries and approved therapeutics.
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