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Abstract: Crohn’s disease (CD) is a chronic inflammatory bowel disease with a high prevalence
throughout the world. The development of Crohn’s-related fibrosis, which leads to strictures in the
gastrointestinal tract, presents a particular challenge and is associated with significant morbidity.
There are currently no specific anti-fibrotic therapies available, and so treatment is aimed at managing
the stricturing complications of fibrosis once it is established. This often requires invasive and repeated
endoscopic or surgical intervention. The advent of single-cell sequencing has led to significant
advances in our understanding of CD at a cellular level, and this has presented opportunities to
develop new therapeutic agents with the aim of preventing or reversing fibrosis. In this paper, we
discuss the current understanding of CD fibrosis pathogenesis, summarise current management
strategies, and present the promise of single-cell sequencing as a tool for the development of effective
anti-fibrotic therapies.
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1. Introduction

Inflammatory bowel diseases (IBD) are a group of chronic inflammatory conditions
affecting the gastrointestinal tract with a rising health burden globally. In the Western world,
a systematic review of population-based studies has shown a stable or decreasing incidence,
but the prevalence remains high, surpassing 0.3% in North America, Oceania and much
of Europe [1]. In the United Kingdom, a 2018 study showed an overall IBD prevalence
of 0.78% (with Crohn’s disease prevalence of 0.28%) and an incidence of 40.8/100,000
patient years in 2017 (13.6/100,000 CD). The incidence per calendar year between 2008
and 2017 was static (annual average percentage change of 14.4%) [2]. In contrast, in newly
industrialised countries, the prevalence remains low, but the incidence is increasing [3],
mirroring the epidemiological trends seen in the Western world in the 20th century [1].
Therefore, inflammatory bowel diseases will continue to provide significant healthcare
challenges throughout the world, and this is set to increase over time. With rising prevalence
globally, understanding the disease and developing management strategies have become
even more crucial.
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Crohn’s disease (CD) is one type of chronic IBD affecting the entire length of the
gastrointestinal tract. It is postulated to result from a complex interplay between environ-
mental, immune and intestinal microbiota factors in genetically susceptible individuals.
The majority of patients with CD are diagnosed in the second to fourth decade of life,
with a further smaller incidence peak in the 50–60 year age group, with no sex-specific
distribution [4]. CD follows a relapsing and remitting course and is characterised by
chronic transmural inflammation; 35–45% of patients with CD have ileo-colonic disease,
30% have isolated small bowel disease and 20% of patients have colonic disease alone [4].
Around 30% of those with luminal disease are also affected by perianal Crohn’s disease [5].
Extra-intestinal complications (EIM) are also seen commonly, with up to 50% of patients
experiencing at least one EIM [6]. The Montreal classification [7] describes the subtypes
of CD, taking into account age at diagnosis as well as disease location. It also categorises
CD into three broad phenotypes: inflammatory, stricturing and penetrating. The most
common presenting phenotype at diagnosis is inflammatory, and it is estimated that 30–50%
of those with CD may also have stricturing or penetrating disease at first presentation.
CD is a dynamic condition, and over 70% of those with an inflammatory CD phenotype
will develop clinically apparent stricturing or penetrating complications within ten years
of diagnosis [8,9], with a potential need for surgical intervention. Despite significant ad-
vances in therapies targeting inflammatory processes, the need for surgical or endoscopic
management of fibrostenotic diseases remains high.

In a study of 1753 CD cases between 2000 and 2017, the cumulative rates of surgery at
1, 5 and 10 years from diagnosis were 6.7% (95% confidence interval [CI], 3.7–10.8%), 16.3%
[95% CI, 12.9–20.3%] and 24.4% [95% CI, 20.4–28.7%], respectively [10].

The clinical prediction of which individual with CD will go on to develop this fi-
brostenotic phenotype is difficult. Furthermore, no specific anti-fibrotic treatment is avail-
able for CD. Understanding the pathogenesis of fibrosis is vital to develop new and effective
strategies to manage and prevent this significant complication of CD. Single-cell sequencing
techniques have provided a new opportunity to map the gastrointestinal tract at a cellular
level, thus allowing the identification of specific anti-fibrotic treatment targets.

2. Fibrosis Pathogenesis

Crohn’s disease can manifest in a variety of ways. Figure 1 depicts the formation of
multiple pathological abnormalities in the colon and ileum. Early inflammation, often with
deeply penetrating fissuring ulcers, may progress to fibrostenotic lesions in some patients
that necessitate surgical resection [11–13].

Multiple overlapping factors contribute to the formation of fibrostenotic lesions in
Crohn’s disease. Figure 2 depicts an overview of the contributory factors involved in the
formation of prominent fibrotic tissue in the late stages of Crohn’s disease. In general,
a wide range of causative factors of fibrosis have been documented [14–18]. In sum-
mary, underlying genetic risk factors (in the form of single nucleotide polymorphisms
(SNPs) identified in GWAS studies of Crohn’s disease) together with environmental stim-
uli interact to contribute to the activation of the inflammatory cascade that leads to the
accumulation of fibrosis over time. Immune responses may be triggered within the mu-
cosa and deeper layers of the wall following a breach of the intestinal epithelial barrier,
allowing pathogens to enter. This breach is often caused by dysfunctional autophagy
and unresponsive Paneth cells, a cause widely known to SNP mutations in NOD2 and
ATG16L1, which constitute as the primary cause in around 30% of patients, but this num-
ber can vary based on the population [19–21]. In the presence of numerous cytokines,
particularly interferon gamma, interleukin-12, TGF-beta and interleukin-6, an elevated
proinflammatory cascade is activated, which includes CD4 T-cells that can differentiate
into pro-inflammatory CD4 Th2 and Th17 cells that drive inflammatory and fibrogenic
processes. The reasons behind these are complex and involve a number of potential SNP
mutations in toll-like receptors (TLRs) present on the surface of mononuclear cells, but
these interactions are very complex and have been addressed in other studies [22–24]. The
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invasion of specific bacteria and recruitment of inflammatory cells into the mesenteric fat
increases cytokine production [25], leading to aberrant adipocyte behaviour and the release
of leptin, adiponectin and chemerin, with progression to creeping fat, with adipose tissue
expanding and enveloping the inflamed regions of the small intestine, sometimes referred
to as fat wrapping [26–29]. Increasing endoplasmic reticulum stress from the accumulation
of unfolded or misfolded proteins inside the affected cells increases signalling pathway
activation and cytokine release. The overaccumulation of unfolded proteins leads to the
dissociation of immunoglobulin-heavy-chain-binding protein (BiP) that leads to the activa-
tion of a number of interlocking pathways, namely, ATF6, IRE1 and PERK pathways [30].
These respond to the presence of unfolded proteins and lead to the degradation of the
excess mRNA, inhibit the translation processes, enhance autophagy, and, in extreme cases,
lead to cell apoptosis. In Crohn’s disease, these pathways can be deregulated due to the
presence of SNPs in critical genes as well as activation of a protein called anterior gradient
homologue 2 (AGR2), which can prevent the inhibition of translation and, when released by
the cells into the environment, acts as a chemoattractant of monocytes, leading to enhanced
inflammation [31–33].
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Figure 1. Illustrative depiction of pathological changes in the colon and ileum during Crohn’s
disease. The diagram shows possible pathological abnormalities that can occur during the early, mid
and late stages of Crohn’s Disease. Manifestation of ulcers and inflammatory lesions, formation of
polyps and tumours and inflammation progressing to fibrosis of the intestinal wall may progress to
fibrostenotic lesions with obstruction of the intestinal lumen.

Macrophages develop into the M2 macrophage phenotype, which adds to the cytokines
already released into the intestinal wall [15]. These cytokines activate fibroblasts and
myofibroblasts, which generate collagenous fibrotic tissue with an associated extra-cellular
matrix (ECM), often together with the in-growth of granulation tissue capillaries as part
of a wound healing response [34,35]. Some epithelial cells around the site of breach of
the epithelial barrier may transform into mesenchymal-like cells in a process of epithelial-
to-mesenchymal transition [36–39]. Furthermore, some endothelial cells from either the
granulation tissue capillaries or pre-existing vasculature may also undergo a similar process
of endothelial-to-mesenchymal transition [40,41]. Variable combinations of these changes
result in fibroblast activation with ECM release, and increasing fibrotic tissue formation
contributes to fibrostenosing lesion formation in Crohn’s disease.
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Figure 2. Overview of the contributory factors leading to fibrostenosis in Crohn’s disease. Crohn’s
disease manifests as a result of interactions between abnormalities in three processes or pathways,
usually underpinned by a genetic predisposition in the form of multiple single nucleotide polymor-
phisms (SNPs) (identified in GWAS studies) that include most commonly: NOD2, ATG16L1, IRGM,
LACC1, CARD9, TLRs, LRRK2, MST1, CTLA4, PTPN2 and IL23R, but a long list of others has been
recognised. The relevant abnormalities of the three major pathways include (i) intestinal mucosal ep-
ithelial barrier breakdown (green), (ii) excessive inflammation with pro-inflammatory CD4 T-cell and
macrophage activation (blue), and (iii) formation of creeping fat and abnormal adipocyte behaviour
(yellow). These pathway abnormalities interact with each other, resulting in excessive inflammation
and fibrosis that, in some patients, may progress to fibrostenosing lesions of Crohn’s disease. The
diagram summarises some of the key pathological changes in each of these three pathways that
can contribute to the formation of excessive fibrosis. Acute endoplasmic reticulum (ER) stress is a
common feature of these three pathways.

3. Current Treatment Strategies

Currently, no specific anti-fibrotic therapy exists for CD, so treatment is currently
aimed at managing the complications of stricturing disease. The CONSTRICT (Crohn’S dis-
ease anti-fibrotic stricture therapies) expert consensus group [9] has published suggestions
for diagnostic criteria for small bowel CD-related strictures. Magnetic resonance (MR) and
computer tomography (CT) enterography are suggested as the preferred diagnostic tools
for stricture assessment. Overall, MR enterography is favoured due to its lack of radiation
exposure. Small bowel ultrasound (US) is another emerging imaging technique that ap-
pears to be able to accurately identify small bowel CD-related strictures [42]. Endoscopic
evaluation requires adequate bowel preparation, which can be challenging to achieve in
patients with CD, with evidence that those with active CD experience more abdominal
pain during bowel preparation, which is a predictor of poor preparation [43]. When good
bowel cleansing is achieved, strictures may be visualised endoscopically, but assessment
is limited by its superficial mucosal views, lack of transmural assessment and inability to
traverse the strictured bowel [13].

While techniques to identify the presence of a stricture are well established, assessing
the composition (inflammatory versus fibrotic) is more challenging, and meta-analysis in
this area is lacking [13]. However, accuracy may improve when techniques that assess small
bowel motility are routinely integrated into clinical practice [44,45]. In surgical resections,
most stricture specimens have both inflammatory and fibrotic components [9].
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If there is clinical suspicion of an inflammatory component of the stricture, anti-
inflammatory therapy, typically with steroids acutely followed by anti-tumour necrosis
factor (anti-TNF) medication, is indicated. A recent prospective and observational trial, the
CREOLE study, evaluated the efficacy of adalimumab in 97 patients with symptomatic small
bowel strictures. In this group, 64% achieved success at 24 weeks (did not require other
anti-inflammatory drugs or endoscopic/surgical intervention), and at follow-up (median
time 3.8 years), 45.7 ± 6.6% of those who had achieved success at 24 weeks remained in
prolonged success at four years [46]. There is growing interest within the clinical community
in the ‘window of opportunity’ in CD [47], which describes the concept of commencing
aggressive treatment early in the disease course before bowel damage occurs, as well as the
concept of treatment to target (such as mucosal healing) and tight monitoring of both drug
levels and biochemical markers of inflammation, such as faecal calprotectin.

In addition to maximising the efficacy of currently established treatments, new med-
ical therapies are being investigated, including mesenchymal stem cells [48] and small
molecules with antifibrotic properties [49], although it will be some time before they reach
clinical practice.

In contrast, for strictures suspected to be primarily fibrotic in nature, surgery or en-
doscopic intervention remains the mainstay of treatment. The current approaches are
summarised in Table 1. Endoscopic intervention generally involves either balloon dilata-
tion, endoscopic stricturotomy or stenting. It is generally suitable to consider endoscopic
therapy for short (<5 cm), straight strictures without penetrating complications or deep ul-
ceration [50,51]. Endoscopic balloon dilatation (EBD) is the most commonly used technique,
with technical success rates (defined as the ability of the endoscope to pass through the
stricture following dilatation) of over 80% [52] and high rates of short-term symptomatic
improvement [51,52]. However, the risk of complications, including luminal perforation, is
around 3%, and this risk increases with increasing stricture length [50,52]. Symptomatic
recurrence is also high, and there is likely to be a requirement for further dilatation or
surgery [50].

Endoscopic stricturotomy is a newer technique that is not yet widely practised, and
is associated with a lower perforation rate and lower stricture recurrence rates compared
to balloon dilatation, but with a higher bleeding risk [53]. Endoscopic stenting with a
self-expanding metal stent (SEMS) is another potential strategy for the management of CD-
related strictures, but further studies are needed to assess the effectiveness of this against
more well-established techniques. A randomised trial of 80 patients in 19 Spanish centres
demonstrated a similar safety profile for SEMS versus EBD, but EBD was found to be
more effective overall [54]. Surgery can, in some circumstances, be an appropriate first-line
management option for the management of CD-related strictures. Indications for a surgical
approach over endoscopic management include fistulating disease, abscess formation or
significant pre-stenotic dilatation proximal to the stricture. First-line management should
also be considered if there is any concern regarding malignancy.

The main surgical options include resection and stricturoplasty. The choice of which
technique to use depends on, amongst others, the site, length and number of strictures.
The European Crohn’s and Colitis Organisation (ECCO) and the European Society of Proc-
tology (ESCP) published consensus guidelines on surgery for CD in 2018. The guidelines
recommend that, where technically feasible, stricturoplasty should be considered first-line
surgical management, particularly when long segments of the small bowel are affected (to
minimise the risk of short-bowel syndrome), in recurrent strictures at ileocolic anastomotic
sites, and where there is no complicating factor such as an associated abscess [55].

In localised stricturing ileo-caecal Crohn’s disease, first-line surgical management is
with either a laparoscopic ileo-caecal resection or stricturoplasty, unless there are perforating
complications, in which case resection is required [55].

There remains a high risk of recurrence following surgical intervention, and thus the
risk of further surgeries also remains; with repeated resections, eventually, there is a risk of
short-bowel syndrome, with major implications for nutrition and quality of life.
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In the BACARDI study [56], a risk model was suggested to identify those most at risk
of requiring surgery and those who may benefit from ongoing medical management or
endoscopic intervention for stricturing CD.

However, none of these options provide definitive, recurrence-free treatment for
Crohn’s fibrosis; thus, the need for therapies specifically targeting the pathways leading to
fibrosis is urgently required. A recent paper by Lin et al. [57] highlights the developed anti-
fibrotic therapies that already exist for conditions affecting the lung, kidney, skin and liver,
and identifies several potential therapies that may have a transferrable role in managing
Crohn’s fibrosis. These include targets such as growth factor modulators, inflammation
modulators, intracellular enzymes and kinases, extracellular matrix (ECM) modulators,
renin-angiotensin system (RAS) modulators and 5-hydroxy-3-methylglutaryl-coenzyme A
(HMG-CoA) reductase inhibitors. While these may present promising opportunities for
further study, a greater understanding of the gut at a cellular level, particularly in relation
to fibrosis, is essential to develop novel therapeutic options for CD specifically.

Table 1. Surgical and endoscopic approaches for stricture management of CD.

Intervention Indications Technical Success Rates Complications Recurrence

Endoscopic balloon
dilatation

- Short, straight
strictures <5 cm
- No penetrating
complications or deep
ulceration
- No evidence of
malignancy

- >80% (the ability of the
endoscope to pass
stricture following
dilatation) [52]

- 3% perforation risk
(increases by 8% for
every 1 cm increase in
stricture length) [52]

- 52% require repeat
dilatation and 30%
require surgical
intervention at
12 months [50]
- 73% require repeat
dilatation and 42%
require surgery at
24 months [52]

Endoscopic
stricturotomy

- Not yet widely
practiced

- >90% immediate
technical success rate in
retrospective
studies [58–60]

- Lower perforation
rate but higher
bleeding rate than
balloon dilatation [53]

- Small retrospective
studies report a 9–15%
subsequent need for
surgical
intervention [59,60]

Endoscopic
self-expanding

metal stent

- Not yet widely
practiced

- >90% technical success
rate in small
retrospective studies
- with 60–80% initial
symptomatic
improvement [61,62]

- Safety profile similar
to EBD in one
randomised trial;
further studies
needed [54]

- 49% of patients
required further
intervention at
12 months in one
randomised trial;
further studies
needed [54]

Surgical
stricturoplasty

- Long strictures to
minimise the risk of
short bowel
- Ileo-colonic
anastomotic strictures

NA
- Peri-operative
complication rate
averages 13% [63]

- Low site-specific
recurrence rate (2–5%
at 10 years) [55]

Surgical resection

- Complicated disease
with perforation or
abscess, or concern
regarding malignancy
- Localised ileo-caecal
disease

NA

- Dependent on
multiple factors
including the extent of
surgery and approach
required
- Risk of short bowel
with
multiple/extensive
resections

- 25% recurrence rate in
a meta-analysis of six
studies [64]
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4. Single-Cell Sequencing

Conventional research approaches investigating Crohn’s disease rely on the superficial
assessment of endoscopic mucosal biopsies or on the large amount of data generated
by surgical resection specimens. However, their ability to decipher the complex cellular
networks and environmental topography, which may help identify new therapeutic targets,
is limited. Single-cell techniques have provided new tools for investigating cellular changes
in tissues, including heterogeneity of cellular composition, the differential abundance of
cell (sub-)populations, along with alterations in cell states between normal and diseased
conditions. A number of single-cell sequencing technologies have been designed for the
investigation of the genome, transcriptome, epigenome (chromatin accessibility, DNA
methylation, histone modifications and chromosome structure) and proteome (surface
marker expression). In addition, spatial transcriptomics allows the correlation of such data
with the two-dimensional location of cells within tissue sections [65–68].

Recent studies related to Crohn’s disease have focused on single-cell transcriptomics
(scRNA-seq), gut microbiome and dysbiosis [69]. It has been established that Crohn’s dis-
ease usually involves pre-existing genetic polymorphisms that interact with environmental
triggers. A number of studies have explored the most common microbiota composition
present in Crohn’s disease patients and found organisms such as Escherichia, Shigella or
Atlantibacter species [70]; however, this often correlates with the patient’s original geograph-
ical disease location [71]. Certain bacterial strains such as Clostridium innocuum have been
shown to be involved in deep tissue penetration, invading the mesenteric fat surrounding
ileal tissue, which has been proposed to lead to pro-inflammatory and pro-adipogenic
responses, contributing to the formation of “creeping fat” or “fat-wrapping” [25].

The role of the immune system in Crohn’s disease biology, specifically that of pro-
inflammatory CD4 T-cells, has been studied by scRNA-seq, with a recent focus on CD8 T-
cells and populations of natural killer T (NKT) type II cells identified in Crohn’s disease [72].
The presence of CD8 T-cells that express surface markers CD39+ and PD-1+ was associated
with disease progression, with the exhaustion of CD39+ PD-1+ CD8 T-cells correlating with
remission [73,74], although the mechanisms for this require further investigation [75]. The
use of scRNA-seq for studying mononuclear phagocyte populations in the lamina propria
of the intestines has shown changes in macrophage and dendritic cell subtypes during
inflammatory bowel disease inflammation [76].

Furthermore, a recent study by Mukherjee et al. [77] examining scRNA-seq in stric-
turing disease showed increased fibroblast heterogeneity, particularly in the mucosa and
submucosa, in areas of stricture compared to non-strictured bowel. This suggests that up-
regulation of fibroblast-specific markers in areas of stricturing—for example, Cadherin-11,
a profibrotic cell surface receptor expressed in these fibroblasts—may play a major role in
the development of fibrosis.

Single-cell sequencing methods have led to an increased understanding of the het-
erogeneous cellular changes in Crohn’s disease, which may shed new light on potentially
novel therapeutic targets and mechanisms of resistance to existing therapies [78]. The
Gut Cell Atlas (www.gutcellatlas.org, accessed on 7 May 2023) is a valuable resource for
profiling the gut cellular heterogeneity in healthy individuals, with applications to the
study of Crohn’s disease in comparison with a control [79,80]. The integration of single-cell
samples is possible due to machine-learning techniques [81] and allows population-specific
differential gene expression profiling between conditions [82,83], the discovery of new cell
types and the capture of differentially abundant states [84]. Evolutionary trajectories can
be inferred using computational methods for pseudo-time ordering [85]; when samples at
multiple disease stages are available, this information can be integrated into the model [86]
to improve the predictions.

5. Spatial Analysis

For fibrosing CD, the ability to spatially characterise the dynamic pathogenesis at a
cellular level will be critical in facilitating targeted drug design. Single-cell sequencing

www.gutcellatlas.org
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technologies have the power to redefine disease mechanisms as seen in hepatic fibrosis;
therefore, unbiased gene expression analysis may identify rare cell types, transforming our
understanding of CD-related fibrosis. Specifically, novel highly multiplexed microscopy
techniques that establish gene expression at cellular resolution across histological sections
can reveal the spatial organisation of detailed cellular activity within tissues, thus enabling
these cell types to be located within their functional groups. The collection of spatial data
is crucial to precisely pinpoint the differences in the severity of the disease progression,
depending on the location of its expression. This type of detailed spatial analysis is possible
when the gut location is precisely recorded during tissue specimen collection.

Inherent anatomical variations, the effects of chronic disease and previous surgery
make it challenging to accurately determine the origin of tissue samples, limiting data
interpretation and clinical translation [87]. This has been recognised within the global
Human Cell Atlas (HCA) initiative [88] and in the gut context with the development of
the Human Gut Cell Atlas (HGCA) promoted by NIH-funded HuBMAP and Helmsley
Trust HGCA programmes. A roadmap for the human developmental cell atlas [88] and
a proposal for a focused gut-specific Common Coordinate Framework (CCF) have been
published [89] and illustrated in Figure 3. In brief, a common coordinate framework is
being established to provide a mechanism for data integration and analysis that will allow
appropriate cross-study analysis and comparison. If standard protocols for mapping data
of all types can be adopted, the data can be compared, analysed and visualised for spatial
dependencies hitherto not understood or discovered. In the context of the CCF shown
in Figure 3, mapping can be performed for any of the model representations (1D–3D),
visualised within any of the models; therefore, the data can become accessible for machine
learning or AI approaches for the discovery of spatial patterns.
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Figure 3. Clinical and research data integration. The Common Coordinate Framework depicted
within the centre is a series of spatially interoperable models in 1D, 2D and 3D [89], combined with
anatomy and cell-type ontologies. Spatially annotated data using any of the CCF representations can
be visualised within any other representation, cross-queried and compared. Each sample/observation
or data type can be annotated using the CCF models, and thus they become integrated with all other
spatially mapped data. This integration is depicted by a continuous grey arrow linking the boxes.
The upper, blue-bounded boxes show different clinical and patient data that could be mapped; the
lower, red-bounded boxes are large data sources and atlas research programmes that deliver relevant
data and analysis tools. For open access, all clinical data are fully anonymised, and the clinical data
could include all that is relevant to interpreting the observations and comparisons with other cases.
The “Clinical Data” input box includes some possible inputs but could extend to a more detailed
clinical history, if relevant.
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6. Collaborative Approaches

Zilbauer et al. [90] have published their vision to achieve these goals and develop
a common coordinate framework. They outline the requirements for a structured and
coordinated approach across the scientific community to allow successful collaborative
efforts to develop this invaluable tool.

They highlight several areas for development. One such area is that of ensuring tissue
sampling of the gut for accurate mapping including all anatomical areas, suggesting the use
of resection and deceased tissue specimens, as mucosal biopsies—although easily obtained
during routine clinical practice—capture only superficial layers of the gut mucosa, and are
generally confined to the large bowel and terminal ileum, or upper GI tract.

Furthermore, they recommend a template for metadata collection that should be used
by the scientific community to standardise data collection across studies, allowing for
the comparability and integration of datasets. They also review the existing data portals
available for interrogating and combining datasets and suggest this as a further area
for development.

Several of these challenges are currently being addressed by our group, including
standardising single-cell isolation from fibrotic intestinal tissue and developing platforms
to integrate clinical, histological, radiological and computational data.

A challenge to the clinical community is to adopt and introduce standard reporting
practices, which are more consistent and rigorous methods of anatomical and tissue annota-
tion to precisely localise and reveal the spatial aspects of cellular and disease heterogeneity.

7. Conclusions

At present, no effective anti-fibrotic treatment exists to manage and prevent Crohn’s
disease fibrosis. In fact, the term “Crohn’s Disease” has been debated over the last two
decades [68] due to the wide spectrum of genetic causes and environmental triggers that
result in varying disease progression in patients, and thus should be termed as “Crohn’s
Diseases” to reflect this [91]. As the molecular characterisation and understanding of
Crohn’s disease evolve, the Montreal Classification may need to be reviewed and expanded
to encompass the novel findings. To achieve this, a cross-disciplinary approach between
clinicians, surgeons, radiologists, pathologists and data and computational scientists will
be critical in fully understanding Crohn’s disease, the formation of fibrosis and the devel-
opment of more effective treatment strategies.

The Common Coordinate Framework can be used to address the necessity of develop-
ing new treatments. The vast amount of publicly available multi-omics data, if mapped
with available atlas data and clinical data, could benefit clinicians and patients by creating
more efficient ways of visualising and analysing the available data, and thus help identify
novel biomarkers for the early detection of fibrosis and personalised treatments, and thus
avoiding drug exposure if the phenotype is associated with an increased likelihood of
surgery, preventing collateral tissue damage and reducing the possibility of an elevation of
the symptom severity.
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