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Abstract: Background: Arterial stiffness (AS), measured by arterial stiffness index (ASI), can be
considered as a major denominator in cardiovascular (CV) diseases. Thus, it remains essential to
highlight the risk factors influencing its increase among healthy participants. Methods: According to
European consensus, AS is defined as ASI > 10 m/s. The purpose of this study was to investigate
the determinants of the arterial stiffness (ASI > 10 m/s) among UK Biobank normotensive and
healthy participants without comorbidities and previous CV diseases. Thus, a cross-sectional study
was conducted on 22,452 healthy participants. Results: Participants were divided into two groups,
i.e., ASI > 10 m/s (n = 5782, 25.8%) and ASI < 10 m/s (n = 16,670, 74.2%). All the significant uni-
variate covariables were included in the multivariate analysis. The remaining independent factors
associated with AS were age (OR = 1.063, threshold = 53.0 years, p < 0.001), BMI (OR = 1.0450,
threshold = 24.9 kg/m2, p < 0.001), cystatin c (OR = 1.384, threshold = 0.85 mg/L, p = 0.011), phos-
phate (OR = 2.225, threshold = 1.21 mmol/L, p < 0.001), triglycerides (OR = 1.281, threshold = 1.09 mmol/L,
p < 0.001), mean BP (OR = 1.028, threshold = 91.2 mmHg, p < 0.001), HR (OR = 1.007, threshold = 55 bpm,
p < 0.001), Alkaline phosphate (OR = 1.002, threshold = 67.9 U/L, p = 0.004), albumin (OR = 0.973,
threshold = 46.0 g/L, p < 0.001), gender (male, OR = 1.657, p < 0.001) and tobacco use (current,
OR = 1.871, p < 0.001). Conclusion: AS is associated with multiple parameters which should be
investigated in future prospective studies. Determining the markers of increased ASI among healthy
participants participates in the management of future CV risk for preventive strategies.

Keywords: arterial stiffness index; arterial stiffness; phosphate; albumin; triglycerides; phosphate;
albumin; tobacco; BMI; age; mean blood pressure; heart rate; cystatin c; alkaline phosphatase

1. Introduction

Arterial stiffness (AS) is as a major denominator in target organ damage [1,2]. Nu-
merous noninvasive arterial parameters have been shown to be biomarkers of arterial
stiffness [3]. Arterial stiffness is the arteries capacity to expand and contract during the
different phases of the cardiac flow. Arterial stiffness can be an integrator of long-lasting
arterial wall damage leading to luminal dilation due to an increase in collagen deposi-
tion [4]. Arterial stiffness is associated with coronary atherosclerosis [5], cardiovascular
(CV) events [6] or inflammatory disorders [7]. Several studies have shown that carotid–
femoral (aortic) pulse wave velocity (PWV) can be considered to be the criterion standard
for assessment of arterial stiffness. PWV levels are strongly correlated with risk factors such
as atherosclerosis [8], hypertension and diabetes [9] and CV diseases [10]. Nevertheless,
carotid–femoral PWV measurement is time-consuming and operator dependent.

The arterial stiffness index (ASI) is simple, operator independent, convenient and can
be measured by finger photoplethysmography through the utilisation of infrared light
(photoplethysmography) to record the volume waveform of the blood into the finger. The
shape of the waveform is directly associated to the time it takes for the pulse wave to cross
by the arterial tree. These tools could be of interest for rapid estimation of CV risk [11,12].
The European consortium have reported normal references and they stated that 10 m/s was
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the cutoff for pathological values [9]. However, it remains essential to better understand the
factors influencing the increase of ASI, especially in a population without CV comorbidities
and CV diseases. Thus, in the context of new challenges in personalised, predictive and
preventive medicine, it is essential to understand the harmful factors which could influence
CV markers, such as ASI, in healthy participants. Correcting the potential risks of increased
ASI should use their precise targeting. Determining the differences between the biological
factors of participants with or without ASI > 10 m/s is essential to better understand the
underlying pathophysiological mechanisms and, thus, to be able to better manage the
patients before the CV event occurs. In this study, the aim was to investigate the biological
determinants of ASI > 10 m/s among healthy participants.

2. Materials and Methods
2.1. UK Biobank Population

The UK Biobank is a prospective cohort for the investigation, prevention, diagnosis and
treatment of chronic diseases, such as CV diseases in adults. A total of 502,478 Britons across
22 UK cities from the UK National Health Service Register were included between 2006
and 2010. The cohort was phenotyped and genotyped, by participants who responded to a
questionnaire, a computer-assisted interview, including physical and functional measures
and blood, urine and saliva samples [13]. Data included socio-economic status, behaviour
and lifestyle, a mental health battery, clinical diagnoses and therapies, genetics, imaging
and physiological biomarkers from blood and urine samples. The cohort protocol can be
found in the literature [14]. All participants provided electronic informed consent and
UK Biobank received ethical approval from the North-West Multi-center Research Ethics
Committee (MREC) covering the whole of the UK. The study was conducted according to
the guidelines of the Declaration of Helsinki, and approved by the North-West–Haydock
Research Ethics Committee (protocol code: 21/NW/0157, date of approval: 21 June 2021).
For details, visit https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/
ethics, accessed on 1 January 2022.

2.2. Blood Pressure Measurement

Systolic and diastolic blood pressure (SBP, DBP) were measured twice at the assessment
centre by the use of an automated BP device (Omron 705 IT electronic blood pressure
monitor; OMRON Healthcare Europe B.V. Kruisweg 577 2132 NA Hoofddorp), or manually
by the use of a sphygmomanometer with an inflatable cuff in association with a stethoscope
if the blood pressure device failed to measure the BP or if the largest inflatable cuff of the
device did not fit around the individual’s arm [15].

The participant was sitting in a chair while the measurements were taken. The
measurements were carried out by nurses trained in performing BP measurements [16].
Multiple available measurements for one participant were averaged. The Omron 705 IT
BP monitor has satisfied the Association for the Advancement of Medical Instrumentation
SP10 standard and was validated by the British Hypertension Society protocol, with an
overall “A” grade for both SBP and DBP [17]. Nevertheless, automated devices measure
higher BP in comparison to manual sphygmomanometers; thus, we adjusted both SBP and
DBP, which were measured using the automated device using algorithms [18]:

For SBP, we performed the following algorithm:

SBP = 3.3171 + 0.92019 × SBP (mmHg) + 6.02468 × sex (male = 1; f emale = 0)

For DBP, we performed the following algorithm:

DBP = 14.5647 + 0.80929 × DBP (mmHg) + 2.01089 × sex (male = 1; f emale = 0)

These adjusted BP values were used for all calculations, including mean BP calculation.

https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics
https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics
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Mean BP was calculated as:

mean BP =
(SBP + 2 × DBP)

3

2.3. Arterial Stiffness Measurement

Pulse wave arterial stiffness index (ASI) was measured by a non-invasive method
during a volunteer’s visit to a UK Biobank Assessment Centre. Pulse waveform was
taken by clipping a photoplethysmograph transducer (PulseTrace PCA 2TM, CareFusion,
San Diego, CA, USA) to the rested volunteer’s finger (any finger or thumb, mainly the
index finger). Volunteers were asked to breathe in and out slowly five times in a relaxed
fashion and readings were taken over a 10–15 s period. ASI is performed from a single
peripheral pulse waveform. The carotid-to-femoral pulse transit time was estimated from
the dicrotic waveform as the time difference between a forward compound when the
pressure is transmitted from the left ventricle to the finger and a reflected or backward
compound as the wave is transmitted from the heart to lower body via the aorta [19]. ASI
was estimated in meters per second (m/s) as H/PTT. H is the individual’s height, and PTT
is the pulse transit time or the peak-to-peak time between the systolic and diastolic wave
peaks in the dicrotic waveform [19]. This methodology has been validated by comparing
it with carotid–femoral PWV. These studies concluded that both measurement methods
were highly correlated. ASI was a simple, operator-independent, non-expensive and rapid
method [11,20,21]. We excluded extreme outlier ASI values from the analyses (defined as
mean +/− 5 * standard deviation).

2.4. Laboratory and Clinical Parameters

Hypertension was defined as systolic blood pressure (SBP) of at least 140 mmHg
and/or diastolic BP (DBP) of at least 90 mmHg, according to guidelines by the European
Society of Cardiology, and/or antihypertensive drug use [20] or hypertension diagnosed
by a doctor (reported by in questionnaire, as “has a doctor ever told you that you have
had any of the following conditions (i.e., high blood pressure)?”. Diabetes status was
defined as either receipt of anti-diabetic medication or diabetes diagnosed by a doctor
(reported by in questionnaire, as “has a doctor ever told you that you have diabetes?”)
or a fasting glucose concentration ≥ 7 mmol/L. Dyslipidemia was defined as having a
fasting plasma total-cholesterol or triglycerides level of ≥6.61 mmol/L (255 mg/dL) or
>1.7 mmol/L (150 mg/dL), respectively, or having statins medication. Calculated glomeru-
lar filtration rate (GFR) (by MDRD formula, MDRD: modification of diet in renal disease,
by mL/min/1.73 m2; GFR < 60 mL/min/1.73 m2 defined chronic kidney disease (CKD)).
Current tobacco smokers were defined as participants who responded “yes, on most or all
days” at the question “do you smoke tobacco now”. CV diseases were defined by heart
attack, angina and stroke, as diagnosis by a doctor and reported in questionnaires (by the
question, “has a doctor ever told you that you have had any of the following conditions?”).
Obesity was defined as a body mass index (BMI) higher than 30 kg/m2.

2.5. Study Population

Of the 502,478 participants, 460,576 were excluded due to CV diseases, hypertension,
diabetes, dyslipidemia, CKD, obesity or extreme values of ASI. We excluded extreme
outlier ASI values from the analyses (defined as mean +/− 5 * standard deviation). Then
19,450 participants were excluded for data missing and finally 22,452 healthy participants
were included in the study (Figure 1).
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Figure 1. Flowchart. CV: cardiovascular; CKD: chronic kidney disease; ASI: arterial stiffness index.

2.6. Statistical Analysis

Characteristics of the study population were described as the means with standard de-
viation (SD) for continuous variables. Comparisons between groups were performed using
Student’s test for continuous variables. Pearson’s Chi-2 test was performed for categorical
variables. An ASI superior to 10 m/s was defined as arterial stiffness according to the Euro-
pean consortium [9]. Firstly, univariate associations were performed between ASI > 10 m/s
and various clinical parameters and biomarkers. Secondly, only the significant univariate
covariates were included in the multivariate model. A forward–backward multiple logistic
regression model was performed to discriminate independent factors (p < 0.05) associated
with arterial stiffness. The accuracy and the receiver operating characteristics (ROC) curve
were measured [21]. An ROC graph is a method for visualising and selecting classifiers
based on their performance [22]. The area under the curve (AUC) of the classifier can be
described as the probability of the classifier to rank a randomly selected positive result the
highest predictive accuracy [23].

For each independent classifier of the logistic multivariate analysis, the ability of the
logistic regression models to allow discrimination was quantified by the area under the
ROC curve (AUC).

The maximum Youden index, performed as:

J = maxc
[
Se(c) + Sp(c)− 1

]
was chosen to determine the optimal decision thresholds (c) for the discrimination.

Statistics were performed using SAS software (version 9.4; SAS Institute, Carry, NC,
USA). A p value < 0.05 was considered statistically significant.

3. Results

The characteristics of the 22,452 healthy participants were shown in Table 1. Partici-
pants were divided into two groups, i.e., ASI > 10 m/s (n = 5782, 25.8%) and ASI < 10 m/s
(n = 16,670, 74.2%).
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Table 1. Characteristics of the study population according to arterial stiffness status (ASI > or < to 10 m/s).

ASI < 10 m/s ASI > 10 m/s

n = 16,670 n = 5782 p Value

Gender (female) 11,396 68.4% 2998 51.9% <0.001
Tobacco (yes) 943 5.7% 576 9.9% <0.001
Age (years) 51.3 7.8 55.9 7.7 <0.001

Arterial Stiffness index (ASI), m/s 7.12 1.48 12.08 1.81 <0.001
Systolic Blood Pressure (SBP), mmHg 118.7 11.3 122.6 10.5 <0.001

Diastolic Blood Pressure (DBP), mmHg 76.2 6.1 78.2 5.8 <0.001
Mean Blood Pressure (MBP), mmHg 90.4 7.2 93.1 6.7 <0.001

Heart Rate (HR), bpm 65 10 66 9 <0.001
Body Mass index (BMI), kg/m2 24.2 2.6 24.8 2.6 <0.001

Alanine Aminotransferase (ALT), U/L 18.3 9.7 19.7 10.4 <0.001
Albumin, g/L 45.4 2.5 45.1 2.4 <0.001

Alkaline Phosphatase, U/L 74.9 22.7 80.1 23.1 <0.001
Apolipoprotein A1, g/L 1.59 0.25 1.57 0.25 <0.001
Apolipoprotein B, g/L 0.92 0.16 0.96 0.15 <0.001

Aspartate aminotransferase (AST), U/L 24.0 8.2 24.9 10.6 <0.001
Calcium, mmol/L 2.3 0.08 2.37 0.09 0.580

Creatine, micromole/L 68.8 12.8 71.4 13.3 <0.001
C reactive protein (CRP), mg/L 1.60 3.39 1.98 4.14 <0.001

Cystatin c, mg/L 0.82 0.11 0.87 0.12 <0.001
Gamma glutamyl transferase, U/L 24.7 25.0 28.3 29.8 <0.001

Glucose, mmol/L 4.89 0.48 4.93 0.47 <0.001
HDL cholesterol, mmol/L 1.59 0.34 1.53 0.34 <0.001
Total cholesterol, mmol/L 5.32 0.72 5.41 0.71 <0.001
LDL cholesterol, mmol/L 3.23 0.56 3.34 0.55 <0.001

Triglycerides, mmol/L 1.03 0.30 1.11 0.30 <0.001
Lipoprotein (a), nmol/L 43.4 47.8 43.5 47.7 0.924

Phosphate, mmol/L 1.19 0.15 1.20 0.15 <0.001
Testosterone, nmol/L 5.10 6.31 7.14 6.78 <0.001

Total bilirubin, micromol/L 9.68 4.86 9.60 4.61 0.295
Insulin like Growth Factor (IGF), nmol/L 22.8 5.5 21.8 5.44 <0.001

Urate, mmol/L 266.2 65.4 287.1 70.1 <0.001
Vitamin D, nmol/L 52.8 22.3 53.5 21.8 0.045

Glomerular filtration rate (GFR),
mL/min/1.73 m2 93.3 15.9 94.2 16.0 <0.001

For continuous covariates: mean and standard deviation, or for categorical covariates: n and percentage.

The two groups were significantly different for all the covariates, except for calcium
(p = 0.580), lipoprotein (a) (p = 0.924) and total bilirubin (p = 0.295). The group with
ASI > 10 m/s presented an average of 12.0 m/s whereas the group with ASI < 10 m/s
had an average equal to 7.1 m/s (p < 0.001). Participants with ASI > 10 m/s were older
(55.9 years vs. 51.3 years, p < 0.001), displayed higher tobacco use (9.9% vs. 5.7%, p < 0.001)
and there were fewer women (51.9% vs. 68.4%, p < 0.001).

All the significant univariate covariables were included in the multivariate analysis.
The remaining independent factors were age (OR = 1.063, p < 0.001), BMI (OR = 1.0450,
p < 0.001), cystatin c (OR = 1.384, p = 0.011), phosphate (OR = 2.225, p < 0.001), triglycerides
(OR = 1.281, p < 0.001), mean BP (OR = 1.028, p < 0.001), HR (OR = 1.007, p < 0.001), alkaline
phosphate (OR = 1.002, p = 0.004), albumin (OR = 0.973, p < 0.001), gender (men, OR = 1.657,
p < 0.001) and tobacco status (current, OR = 1.871, p < 0.001) (Table 2).
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Table 2. Forward–backward multivariate logistic regression model for arterial stiffness. CI: confidence interval.

Parameters Odds Ratio 95% CI p Value

Age (years) 1.063 [1.058–1.068] <0.001
Body Mass index (BMI), kg/m2 1.050 [1.037–1.063] <0.001

Cystatin c, mg/L 1.384 [1.027–1.863] 0.011
Phosphate, mmol/L 2.225 [1.784–2.781] <0.001

Triglycerides, mmol/L 1.281 [1.150–1.426] <0.001
Mean Blood Pressure (MBP), mmHg 1.028 [1.023–1.034] <0.001

Heart Rate (HR), bpm 1.007 [1.004–1.011] <0.001
Alkaline Phosphatase, U/L 1.002 [1.001–1.003] 0.004

Albumin, g/L 0.973 [0.961–0.986] <0.001
Gender (male) 1.657 [1.538–1.784] <0.001
Tobacco (yes) 1.871 [1.663–2.105] <0.001

The accuracy (AUC) of the multivariate model was 0.706 (Figure 2).
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For each independent parameter, Youden indexes were calculated to performed thresh-
old values to discriminate ASI > 10 m/s or not (Table 3). Cutoff values for determining
arterial stiffness corresponded to age superior to 53.0 years (AUC = 0.663, p < 0.001),
BMI superior to 24.9 kg/m2 (AUC = 0.567, p < 0.001), cystatin c superior to 0.85 mg/L
(AUC = 0.610, p < 0.001), phosphate superior to 1.21 mmol/L (AUC = 0.516, p < 0.001),
triglycerides superior to 1.09 mmol/L (AUC = 0.574, p < 0.001), mean BP superior to
91.2 mmHg (AUC = 0.606, p < 0.001), heart rate superior to 55 bpm (AUC = 0.514, p < 0.001),
Alkaline phosphatase superior to 67.9 U/L (AUC = 0.577, p < 0.001), but albumin inferior
to 46.0 g/L (AUC = 0.540, p < 0.001), male gender (AUC = 0.583, p < 0.001) and current
smoking status (AUC = 0.502, p < 0.001).

Table 3. Thresholds values and their performance for each independent parameter to discriminate
ASI > 10 m/s.

Parameters Thresholds AUC Sensitivity Specificity Accuracy p Value

Age (years) 53.00 0.663 65.8% 59.2% 60.9% <0.001
Body Mass index (BMI), kg/m2 24.91 0.567 50.4% 60.0% 57.6% <0.001

Cystatin c, mg/L 0.85 0.610 55.4% 61.7% 60.0% <0.001
Phosphate, mmol/L 1.21 0.516 47.1% 55.7% 53.5% <0.001

Triglycerides, mmol/L 1.09 0.574 51.1% 59.7% 57.5% <0.001
Mean Blood Pressure (MBP), mmHg 91.24 0.606 63.1% 53.0% 55.6% <0.001

Heart Rate (HR), bpm 55.0 0.514 89.9% 11.9% 32.0% <0.001
Alkaline Phosphatase, U/L 67.9 0.577 70.0% 41.9% 49.2% <0.001

Albumin, g/L 46.0 0.540 65.1% 41.3% 47.4% <0.001
Gender (male) - 0.583 48.2% 68.4% 63.2% <0.001
Tobacco (yes) - 0.502 52.4% 64/8% 61.6% <0.001
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4. Discussion

This study showed that arterial stiffness was present in 25.8% of the normotensive and
healthy population. This result appears to be concordant with previous studies showing
similar rates [24,25]. Moreover, the multivariate analysis showed that four well-known
independent risk factors were predictive of arterial stiffness in normotensive and healthy
subjects; these were age, gender, mean blood pressure and heart rate [26].

Arterial stiffness, along with blood pressure, increases with age in both genders
and with increase in mean BP [27] contributing to the promotion of vascular thickening
and fibrosis [28]. The main mechanism involved is alterations in the structure of the
extracellular matrix (ECM), with enhancement of collagen deposition and the increase in
elastin breakdown [29]. Recent findings have shown the implication of the vascular smooth
muscle cell (VSMC) as a direct source of arterial stiffness through the alteration in the
cytoskeleton and integrin interactions with the ECM [30]. Moreover, vascular oxidative
stress can derived from mitochondrial dysregulation and increased superoxide production
as processes which can enhance arterial stiffening with aging [31].

Gender is a well-known pejorative factor with a pejorative pathway for men [28,32].
However, with aging this relationship remains complex with women showing a more rapid
increase in stiffening after the onset of the menopause, consistent with the idea that the
removal of estrogen can contribute to aging-associated arterial stiffening in females [33].

The increase in sympathetic activity showed by elevated HR can reduce arterial
distensibility. The trophic effect of sympathetic nervous system can influence modification
in arterial wall tissue and, therefore, the arterial wall structure in a way that favors its less-
extensible components and increases its thickness [30]. Nevertheless, the role of HR remains
controversial [34] due to HR dependence on PWV decrease at higher levels of BP [35].

This study shows that arterial stiffness presented several biological parameters, includ-
ing albumin, alkaline phosphatase, phosphate, cystatin c and triglycerides, in association
with BMI and tobacco status. By performing thresholds, the results may help to discrimi-
nate healthy participants with high risk of arterial stiffness, and this can participate in the
implementation of primary prevention focused on biological parameters and on behaviors
such as tobacco use. Nevertheless, even if the multiple covariates regression model showed
an AUC = 0.706, each determinant presented low performance to determine AS. This could
be explained by the healthy aspect of participants where each parameter remained little
associated with AS before CV events occurred. However, our modelling performances
were consistent with previous works in healthy populations [36,37].

Current tobacco smokers were mainly presented in cluster number 8 but in which 37%
of the participants had arterial stiffness. The role of tobacco remains unclear in arterial
stiffness in this study. Nevertheless, numerous studies have explained the possible link
between tobacco use and arterial stiffness [38]. Active tobacco smoking is associated with
increased arterial wall thickness and arterial stiffness [39], suggesting that active tobacco
smoking accelerates atherosclerosis, reduces endothelium-dependent arterial dilatation [39]
and increases the stiffness of muscular arteries [40].

BMI and arterial stiffness are closely associated [41,42]. Increase in BMI can be a factor
for arterial remodeling leading to a modification in haemodynamic and arterial changes
detrimental to vascular function [43] and vascular endothelial wall [44].

Some studies have independently associated serum Phosphate with arterial stiff-
ness [45–47] in population with or without CKD [45,48]. The biological effect of serum
Phosphate on arterial stiffness is complex and presents multiple influences, but presents the
highest OR (OR = 2.225) in this study. In the presence of a high level of serum phosphate,
vascular smooth muscle cells retain their ability to mineralise [49]. Phosphate in association
with calcium levels induce VSMC death and apoptotic body release (with inflammation), as
well as matrix vesicle release, leading to calcification [50]. Moreover, increased phosphate
levels suppress vitamin D synthesis, leading to an increase in arterial calcification [51].
Several findings have shown that high serum phosphate levels are associated with high
all-cause mortality; thus, phosphate could accelerate aging, a major determinant of arterial
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stiffness [52]. Recent studies have shown that phosphate reduction may improve vascular
end-points, especially in CKD patients [53]. Furthermore, medial arterial calcification is
characterised by disseminated and progressive precipitation of calcium phosphate within
the medial layer, a prolonged and clinically silent course, and compromise of haemody-
namics associated with chronic limb-threatening ischaemia. The accumulation of calcium
phosphate with the formation of hydroxyapatite crystals results in progressive petrification
of the medial layer of the arterial wall [54].

Similarly, triglycerides are well-established as risk factor for arterial stiffness [55,56].
The subendothelial space can be invaded by cholesterol-enriched remnant byproducts
following the hydrolysis of exogenously derived chylomicrons or endogenously secreted
by very-low-density lipoproteins [57]. Furthermore, elevated triglyceride levels can pro-
mote atherosclerosis through the scavenger receptor class B Type 1 (SR-BI) by impairing
the capacity of high-density lipoprotein to deliver cholesteryl esters [58]. High levels of
triglycerides can induce inflammation and oxidative stress to enhance adhesion molecule
expression and foam cell formation, to stimulate the toxicity of smooth muscle [59] and to
increase the release of endothelin-1 responsible for the development of atherosclerosis [60].

Cystatin c is a cysteine protease inhibitor which has been an early and sensitive marker
of renal function [61]. Cystatin c could be considered as an integrator behavioural factor.
Cystatin c is mainly associated with several medical conditions, including metabolic syn-
drome, diabetes, physical activity, smoking, diet and drinking [62]. Previous studies have
shown that cystatin c was associated with arterial stiffness in the general population [63,64].

Alkaline phosphatase is a main factor of hepatobiliary or bone disorders and has
been found to be correlated with CV diseases [65]. The relationship between alkaline
phosphatase and arterial stiffness remains unclear, but several hypotheses can be made.
Alkaline phosphatase catalyzes the hydrolysis of inorganic pyrophosphate, downregulating
the expression of hydroxyapatite and the level of inorganic pyrophosphate to promote
vascular calcification [66]. Furthermore, alkaline phosphatase is associated with chronic
inflammation. During the process of chronic inflammation, tumor necrosis factor (TNF)-α
and interleukin (IL)-1 β levels are increased, thus leading to the stimulation of alkaline
phosphatase activity in vascular smooth muscle cells [67].

5. Limitations

The main strength of this study is the very large sample size of the cohort. However, the
cross-sectional observational design limits the relationship of causality. Reverse causation
cannot be ruled out. A potential limitation could stem from the utilisation of the Pulse Trace
device to measure arterial stiffness on account of greater variability in ASI values relative to
other available devices [68]. The UK Biobank study showed a low response rate of 5.5% and
possible volunteer bias may be involved. Nevertheless, given the large sample size and high
internal validity, these are unlikely to affect the reported associations [69,70]. Our study
presents some limitations, such as in medical history and comorbidities, which have been
collected by self-reporting and physician assertion during medical examination in health
centers. In addition, the study cohort consisted of middle-aged European participants, so
these findings may not be generalisable to other age groups and ethnic populations.

6. Conclusions

In the normotensive and healthy participants, we observed that a quarter presented
arterial stiffness (i.e., ASI > 10 m/s). The different parameters observed showed that arterial
stiffness is associated with multiple parameters. In healthy participants, arterial stiffening
is associated with well-known parameters as gender, aging, mean blood pressure, tobacco
use, triglycerides, body mass index and heart rate. However, other complex associations
should be highlighted, such as cystatin c, phosphate, albumin and alkaline phosphatase.
Future clinical trials may involve these parameters to better understand their associations
with arterial stiffness and their role in the increase of vascular stiffening in healthy subjects.
This phenotyping could optimise clinical trial designs.
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