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Simple Summary: The introduction of immune checkpoint inhibitors has represented a milestone
in cancer treatment. Despite PD-L1 expression being the standard biomarker used before the start
of therapy, there is still a strict need to identify complementary non-invasive biomarkers in order
to better select patients. In this context, radiomics is an emerging approach for examining medical
images and clinical data by capturing multiple features hidden from human eye and is potentially
able to predict response assessment and survival in the course of immunotherapy. We reviewed
the available studies investigating the role of radiomics in cancer patients, focusing on non-small
cell lung cancer treated with immune checkpoint inhibitors. Although preliminary research shows
encouraging results, different issues need to be solved before radiomics can enter into clinical practice.

Abstract: Immune checkpoint inhibitors (ICI) have demonstrated encouraging results in terms of
durable clinical benefit and survival in several malignancies. Nevertheless, the search to identify an
“ideal” biomarker for predicting response to ICI is still far from over. Radiomics is a new translational
field of study aiming to extract, by dedicated software, several features from a given medical image,
ranging from intensity distribution and spatial heterogeneity to higher-order statistical parameters.
Based on these premises, our review aims to summarize the current status of radiomics as a potential
predictor of clinical response following immunotherapy treatment. A comprehensive search of
PubMed results was conducted. All studies published in English up to and including December
2021 were selected, comprising those that explored computed tomography (CT), magnetic resonance
imaging (MRI), and positron emission tomography (PET) for radiomic analyses in the setting of ICI.
Several studies have demonstrated the potential applicability of radiomic features in the monitoring
of the therapeutic response beyond the traditional morphologic and metabolic criteria, as well as in
the prediction of survival or non-invasive assessment of the tumor microenvironment. Nevertheless,
important limitations emerge from our review in terms of standardization in feature selection, data
sharing, and methods, as well as in external validation. Additionally, there is still need for prospective
clinical trials to confirm the potential significant role of radiomics during immunotherapy.

Keywords: radiomics; texture analysis; deep learning; immune checkpoint inhibitors; lung cancer;
PET/CT; response assessment; survival
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1. Introduction

In the last decade, cancer treatment has been characterized by a growing development
of new therapeutic agents, mostly involving the re-activation of the immune system. In
fact, several studies have demonstrated how immune cells interact with malignant cells,
inhibiting their growth, and which different mechanisms of immune evasion can be imple-
mented by tumor cells to avoid immune control [1,2]. Immune checkpoints, represented
by cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-
1) and its ligand 1 (PD-L1), are the most studied targets of immune escape through the
negative regulation of T lymphocytes by tumor cells. Likewise, the discovery and the
introduction into clinical practice of immune checkpoint inhibitors (ICI) has revolution-
ized the therapeutic armamentarium for cancer patients [3]. Ipilimumab was the first ICI
approved in 2011 for treating metastatic melanoma. Since then, other ICI have been dis-
covered and analyzed, and currently, nine of those are available on the market for treating
approximately 16 different types of cancer. Furthermore, the combination of ICI with other
anti-cancer therapies—e.g., immuno-oncology or targeted molecules, chemotherapy or
radiotherapy—has been approved, representing more than 76% of all oncology trials [4–6].

Before starting ICI therapy, the characterization of the immune profile is required
through biomarkers analysis of tumor tissue samples obtained from patients. In partic-
ular, genetic mutations, inflammatory cytokines, PD-L1 and CTLA-4 levels, and tumor-
infiltrating lymphocytes (TIL) should be assessed, as their expression has been related to
a favorable response to treatment. However, a complete prediction of ICI effectiveness
is still a challenge, as several factors could influence the therapy outcome, such as intra-
and inter-lesion heterogeneity and the progressive modifications induced by previous
treatments in the tumor microenvironment (TME). Moreover, an incorrect sampling evalu-
ation can sometimes occur, particularly when evaluating small or highly heterogeneous
tissues [7–11].

In the era of personalized medicine, a correct identification of patients who will benefit
from ICI is indispensable. Therefore, quantitative image analysis presents a great potential
in the pathway of personalizing patients’ management [12]. In this context, radiomics—
defined as the process of identifying mineable parameters hidden in the pixel of images
and routinely non-detectable with the human eye—could potentially have a rising role.
Radiomics is being applied in several fields of medicine, with the aim of defining tumor
phenotypes, including grade, TME, gene expression, response to systemic treatment, and
prediction of clinical outcomes, as demonstrated by numerous studies involving different
malignancies [13–15]. Radiomic features present several advantages for clinical oncology
application in the near future. First is its non-invasive nature, then the wide availability of
medical images, as all oncologic patients undergo several imaging procedures during their
disease. Moreover, as medical images show all lesion distributions, the critical limitation
of sampling biopsies is overcome. Finally, imaging data have the potential to be used
longitudinally in order to track their modifications overtime and potentially to identify
treatment-resistant tumors [16].

The aim of this review is to systematically summarize the current radiomic evidence
in cancer immunotherapy, particularly focusing on non-small cell lung cancer (NSCLC), by
providing in addition a helpful guide for clinicians approaching these new concepts.

2. Methods and Materials

Our systematic review was conducted following the Preferred Reporting Items for
Systematic Reviews and Meta-analyses (PRISMA) statement [17].

2.1. Literature Search Strategy

Potentially relevant publications, eligible for our review, were identified through the
PubMed and Web of Science databases. We did not select a start date, but the last update of
the literature search was 31 December 2021. We used the MeSH term “cancer” combined
with the following keywords: “radiomics”, “immune checkpoint inhibitors”, “magnetic
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resonance”, “MRI”, “computed tomography”, “CT”, “positron emission tomography”,
“PET”. The authors also evaluated all references cited in the retrieved articles.

2.2. Selection of Studies

Two authors (A.C., L.U.) worked independently throughout the scientific records
screening process, and then selections were combined. After screening by title and abstract
alone, full texts were downloaded for the subset of potentially eligible articles. Disagree-
ments were resolved by two other authors (L.M., E.L.). The criteria for excluding studies
were as follows: (a) non-English articles; (b) studies focused purely on methodological
aspects; (c) studies in animal models; and (d) case reports, poster presentations, letters, and
meeting abstracts.

2.3. Data Extraction

Two reviewers (A.C. and L.U.) extracted the information from each included study:
publication year, sample size, study population, study design, imaging modality, research
question, treatment, software, segmentation, clinical characteristics, imaging features,
validation, endpoints, references.

2.4. Quality Assessment

Figure 1 shows the workflow of radiomics in cancer treated by immunotherapy.
The methodological quality of the included studies was assessed according to the phase
classification criteria for image mining studies [18] and the Radiomics Quality Score (RQS),
which is a radiomics-specific quality assessment tool [16].
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Figure 1. Illustration of the main steps involved in radiomic analysis and model development.

3. Results

Figure 2 shows the PRISMA flowchart of the included studies of our systematic review.
The search strategy yielded 298 studies from PubMed and 278 from Web of Science. After
exclusion of 552 studies (duplicates, irrelevant titles/abstracts), 24 peer-reviewed articles
published were included in this systematic review.
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Figure 2. PRISMA flowchart of the study.

All studies focused on NSCLC except for four studies that also included other tumors.
All patients received either anti-PD-1/PD-L1 or anti-CTLA-4 therapy with at least one ICI
agent. The most common imaging modality was contrast-enhanced CT (18/24), followed
by [18F]FDG PET/CT (6/24) and only one with MRI. There were 20 radiomic studies
predicting immunotherapy response or survival, while 4 focused on characterization of
tumor immune phenotype.

3.1. Quality Analysis

The number of patients included in the studies in our review ranged from 30 to 399;
fifteen studies (62.5%) enrolled more than 100 patients. Most of the studies (22/24, 91.6%)
were retrospective, only one study was prospective, and one study was retrospective on
training set and prospective on validation set. Only 3 studies (12.5%) performed external
validation, whereas 18 studies (75%) performed internal validation, and in 3 studies no type
of validation was identified. With respect to phase classification criteria, twelve studies
were classified as phase II, seven as phase 0, three as discovery science, and the remaining
as phase I (n = 1) and phase III (n = 1). On the other hand, according to RQS criteria, the
mean score of examined studies was 12.2% (range between 0 and 68%), with only three
papers characterized by a score greater than 20%.

3.2. Non-Small Cell Lung Cancer

As previously mentioned, quantitative image analysis is becoming crucial in the evalu-
ation of clinical outcomes, particularly in oncologic patients. Therefore, the identification of
reliable and validated methods for image analysis is of primary importance. While several
immune phenotypes have been identified and associated with standard image parameters
(i.e., standardized uptake value, SUV; length; volume) [19–21], there are still few studies
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investigating the application of radiomic features as potential predictors of response in
patients treated with ICI (Tables 1 and 2).

One of the first studies in the setting of NSCLC and ICI was from Mu et al. [22], who
developed a multiparametric radiomic signature from baseline CT, PET, and PET/CT-fused
images for predicting patients with clinical benefit and survival from immunotherapy. In
particular, they found that features of heterogeneity, such as short run low gray emphasis
or short zone emphasis, were able to predict durable benefit with good results (area under
the curve, AUC, was 0.86 for training, 0.83 for retrospective, and 0.81 for prospective test
cohorts). Nevertheless, as PD-L1 expression was available only in a few patients, a com-
parison of their model with the PD-L1 status was not possible, representing an important
limitation for the study. Likewise, Ravanelli and colleagues [23] demonstrated on CT
images that lung lesions with homogeneous enhancement, expressed by negative values
of kurtosis, were less responsive to nivolumab. Intraclass correlation coefficient, ranging
between 0.83 and 0.86, demonstrated a good reliability for repeatability of histogram fea-
tures between the two operators, although retrospective design as well as the absence of
an external validation cohort require further studies to confirm these preliminary results.
On the other hand, these results were in contrast with those from other studies, which
reported worse clinical outcomes in tumors with heterogeneous features by CT texture
analysis [24,25]. In particular, Polverari et al. [25] demonstrated that disease progression
during ICI treatment in NSCLC was more likely in patients with elevated total lesion
glycolysis (TLG), volume, and high tumor heterogeneity represented by asymmetry (e.g.,
skewness feature) and kurtosis. However, as the study did not establish a simple model
for determining clinical application and did not include a robust validation, RQS was
low. Similarly, Ladwa and colleagues [26] showed that homogeneous CT texture features,
analyzed only in 2D format, were indicative of clinical benefit from ICI treatment when
positive skewness was associated with either low entropy (hazard ratio 0.43, p = 0.036) or
low standard deviation (SD) (hazard ratio 0.42, p = 0.04). On the contrary, Shen et al. [27],
comparing texture features of contrast-enhanced CT images before treatment, demonstrated
that patients with progressive disease had a greater S(2,2)SumEntrp and S(1,0)SumEntrp
compared with non-progressive patients, while kurtosis values were lower in the progres-
sive group than in the non-progressive group. Despite the texture features extracted by
the classification error probability combined average correlation coefficients (probability
of classification error + average correlation coefficient, POE + ACC) model having the
best diagnostic efficacy (AUC = 0.812), the 2D image texture analysis may represent an
important bias. From these data, they argued that texture features revealed wide CT val-
ues and internal structure complexity from malignant lesions, suggesting that a defect of
the tumor tissue vascular structure and rich stroma make it difficult for immune cells to
penetrate effectively. Recently, a machine learning approach was used to build a model for
predicting clinical success of ICI based on CT-radiomic features [28]. Of note, three machine
learning classifiers—e.g., support vector machine, logistic regression, and Gaussian naïve
Bayes—were demonstrated to be valid for predicting response to ICI, with an AUC value
of 0.73 and 0.61 for PFS and OS, respectively, and average Harrell’s concordance indexes
for three classifiers of 0.92 and 0.79. Nevertheless, the robustness of the model requires
training and testing on a larger data set.

Despite most of published papers having focused on radiomic features at baseline,
interesting evidence is also emerging from studies assessing changes in radiomic param-
eters over time, which seem to be associated with tumor response and survival [29–33].
For example, Khorrami et al. [29] evaluated response to ICI by exploiting differences in CT
radiomic features between baseline and after 3–4 cycles of immunotherapy. In a population
of 139 patients with NSCLC that was divided into a training set (n = 50) and two indepen-
dent validation sets (n = 62, n = 27, respectively), their model with eight delta radiomic
features discriminated responders from non-responders (AUC of 0.88) and was prognostic
for improved OS. Furthermore, combination of perinodular delta radiomics with PD-L1
expression was superior to PD-L1 alone for predicting OS, highlighting the importance
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of integrating radiomics and biological features into the personalized decision process of
NSCLC patients. A similar study, although based on delta features between pre- and post-
contrast CT, was conducted by Nardone et al. [30] in 59 patients with metastatic NSCLC
treated with nivolumab. According to 14 texture parameters, highly reproducible by ICC
analysis (>0.70), the authors differentiated two subgroups at low and high risk for OS, sug-
gesting radiological settings as indirect sign of active immune response. Nevertheless, the
arbitrary choice of cut-off values for texture parameters might have biased the study. Simi-
larly, four delta radiomics signatures, extracted by CT images, showed an AUC of 0.77 in
the validation set (n = 20) for predicting treatment sensitivity to nivolumab. Moreover, PFS
was significantly shorter in patients with a high-risk nivolumab signature [31]. Nonetheless,
Liu at al [32] developed a nomogram model based on delta radiomics signature, clinical
variables, and PD-L1 status that was able to identify responders from non-responders with
good accuracy (AUC of 0.83 in the training test).

Since the introduction of ICI in cancer treatment, several criteria have been proposed
for assessing both morphologic and metabolic response. However, there is still uncer-
tainty regarding which method is most suitable for routine clinical use. In this context
Valentinuzzi et al. [34] aimed to explore whether [18F]FDG PET/CT radiomic signature
(iRADIOMICS) could predict response to pembrolizumab in NSCLC patients. From six
primary tumor radiomic features, only higher Small Run Emphasis (SRE) and lower en-
tropy GLCM were able to differentiate responders from non-responders. In addition, SRE
and difference entropy showed the highest predictive power (AUC = 0.90) compared with
iRECIST (AUC = 0.79 at 1 month and 0.86 at 4 months) and PD-L1 score (AUC = 0.60).
In addition, the advent of immunotherapy has revealed new response patterns, such as
hyperprogression, dissociated response, and pseudoprogression [35–37]. In this setting,
Tunali et al. [37] developed a complex predictive model for hyperprogression combining
radiomic (approximately 600 features extracted from the largest lung lesions and tumor
border regions) and clinical parameters (demographics, mutations, hematologic data) in
patients affected by NSCLC treated with single or double ICI. The final radiomic-clinical
model obtained, which was based on four clinical covariates and four radiomic features,
determined an AUC of 0.80. Specifically, three radiomic features—i.e., radial gradient
border SD-2D, border quartile coefficient of dispersion, and border 3D Laws E5E5L5—were
extracted from the border regions of the tumors, which is the immediate outside of the
tumors and may reflect data related to TME. Despite promising results, the study lacked
replication in the independent validation cohorts, which compromised a wider application
in clinical routine. Likewise, Vaidya et al. [38] also focused on hyperprogression by ra-
diomic analysis using a model integrating intratumoral and peritumoral texture and vessel
tortuosity parameters on baseline CT scans. The random forest classifier distinguished
between hyperprogression and other response patterns with an AUC of 0.85 and 0.96 in
the training set and validation set, respectively. Moreover, the predicted hyperprogressive
patients by the model have a lower OS compared with either responders or non-responders.
The quantification of blood vessel morphology, showing that patients were characterized
by more tortuous vessel structure in the peritumoral area, was one of the peculiar strengths
of the study.

As we have observed from the abovementioned studies, TME is thought to play an
important role in aggressive cancers and drug resistance, as well as in chemo- and im-
munotherapy efficacy. As a matter of fact, different studies have explored the relationship
between radiological and/or metabolic uptake features and signaling pathways [30,39].
Similarly, two key studies have investigated the association between radiomic features and
T cells infiltration [40,41]. Notably, Tang et al. [40] developed a model, based on the combi-
nation of radiomic parameters from pre-treatment CT and tumor immune parameters (i.e.,
PD-L1 expression and density of TILs) from excised primary NSCLC, for predicting TME.
This model divided patients into four clusters and identified a group with longer OS char-
acterized by low CT intensity and high heterogeneity (i.e., low PD-L1 expression and high
CD3 infiltration), suggestive of an immune-activated microenvironment. The association of
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tumor radiomics with immunologic profiles held on multivariate analysis of the training set.
The c-index for the multivariate model was 0.70. Likewise, Yoon et al. [41] predicted type 2
helper T cells infiltration with CT radiomic features. In particular, the model that included
clinical variables and CT radiomic features showed higher performance compared with
that with clinical variables alone (c-indices = 0.646 vs. 0.550). Nevertheless, selection of only
patients with PD-L1 information as well as the absence of external validation represent two
potential biases of the study. On the contrary, Sun et al. [42] reported a correlation between
T cell infiltration and tumors with homogeneous core and heterogeneous peripheries. Their
radiomics model was useful for discriminating between immuno-inflamed and immune-
desert tumors (AUC 0.76) and for predicting clinical outcomes (i.e., objective response at 3
and 6 months, and OS). Jiang et al. [43], on the other hand, investigated radiomics utility in
the prediction of PD-L1 expression, reporting interesting results throughout the application
of logistic regression and random forest classifiers, for realizing single predictive models
for CT, PET, and PET/CT features. The authors reported that models derived from CT and
PET/CT presented the best AUC (0.85–0.97 for 1% level, and 0.77–0.88 for 50% level of
PD-L1). However, in the study were employed different machines with different scanning
parameters, which may determine potential bias in the analysis.

Tumor-related hypoxia represents another protagonist in the TME, as it is involved
with tumor vascularization, growth, invasiveness, metastases, and resistance to therapeu-
tic agents inducing either cell quiescence or an immunosuppressive environment. As a
result, tumor hypoxia is associated with clinical outcomes in cancer patients [44]. Recently,
Tunali et al. [45] have identified a significant association between gray-level co-occurrence
matrix (GLCM) inverse difference and CAIX gene, which is implicated in pH regulation,
allowing an acidic TME. Therefore, they suggested a potential application of these biomark-
ers in the context of immunotherapy, able to identify patients who are unlikely to respond
to ICI. Another potential non-invasive biomarker for predicting ICI efficacy has become
tumor mutational burden (TMB). He et al. [46] investigated the correlation between deep
learning radiomic biomarker and TMB. Using CT images and deep learning technology,
they well differentiated high-TMB and low-TMB in NSCLC patients (AUC 0.85 and 0.81 in
the training and test group, respectively). In addition, the TMB-radiomic biomarker was
able to divide patients as high- and low-risk for both PFS and OS. Hence, although limited
to Chinese patients in early NSCLC stage, the study highlighted the role of non-invasive
imaging biomarkers for patient selection in the immunotherapy setting.

Although radiomics models have demonstrated a predictive and prognostic value
in several cancers, the performance of these models alone is still not enough. In order to
improve the prediction of clinical benefits of ICI, the combination of radiomic features with
clinicopathological variables has been proposed recently by Yang and colleagues [47]. In a
cohort of 92 NSCLC patients, the authors developed two nomogram models, combining
radiomic features from baseline CT and clinicopathological variables (i.e., higher Rad-
score, younger age, N stage and M stage), identifying with good accuracy (AUC 0.902 in
the training cohort) patients with durable response and longer PFS, although without an
external validation. Similarly, in one of the largest radiomics studies with 203 patients,
Trebeschi et al. [48] used enhanced CT images before treatment to assess the efficacy of ICI
in patients with melanoma and NSCLC by an artificial intelligence approach. In particular,
their model significantly predicted OS for both tumors (AUC 0.76 and 0.77 for NSCLC and
melanoma, respectively. In addition, genomics signature analysis was performed to define
the biological substrate of the proposed radiographic biomarkers, revealing a significant
association with pathways involved in mitosis.

Finally, one of the last studies aimed at predicting the risk of cachexia, which is
hypothesized to be a cause of ICI resistance. The radiomic signature, based on pre-
treatment [18F]FDG PET/CT images, was found to be a significant predictor of cachexia
(AUCs ≥ 0.74) and clinical outcomes (AUCs ≥ 0.66) in patients with NSCLC treated with
ICI [49].
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To summarize, despite the great impulse on radiomics research, we are still far from
mature conclusions, and clinical implementations will require further processes. In fact, as
demonstrated in a recent meta-analysis, exploring the role of radiomic features to predict
response to ICI in NSCLC, most of the studies are characterized by poor methodological
quality and scarce reproducibility [50].

3.3. Other Tumors

In an analogy to NSCLC, other studies have explored the potential role of radiomic
features for predicting response to immunotherapy and clinical outcomes in different
malignancies. Nevertheless, almost all studies have been focused on the analysis of TME,
investigating CD3 and CD8 tumor-infiltrating lymphocytes in order to evaluate more
whether there is a therapeutic window for the application of ICI rather than the actual
response to ICI [51–57]. For example, in a recent study on 45 patients with locally advanced
head and neck cancer, the authors investigated whether PET radiomic features could reflect
tumor transcriptomics. They identified a significant association between radiomic features
and genes involved in cell-cycle, disease, DNA repair, extracellular matrix organization,
immune system, metabolism, or signal transduction pathways. Hence, their results sug-
gest a potential role for PET radiomic features in predicting tissue gene expression and,
indirectly, personalizing treatment through better patient selection [57]. On the other hand,
only Bathia and colleagues [58] evaluated 88 patients with 196 melanoma brain metastases
who actually received ICI. According to radiomic analysis of MRI, several features were
associated with increased OS. Particularly, higher mean Laplacian of Gaussian resulted
in being the most relevant (hazard ratio 0.68, p < 0.01), although its clinical significance
was lost at multivariate analysis incorporating lactate dehydrogenase and performance
status. Similarly, Basler et al. [59] generated seven multivariate prediction models from
PET/CT radiomics features, tumor volume, and blood parameters to differentiate pseudo-
progression from true progression in 112 metastatic melanoma patients treated with ICI.
Of note, higher delta CT coarseness and lower delta CT fractal dimension combined with
blood biomarkers (i.e., LDH) showed encouraging results for the early identification of
pseudoprogression (AUC 0.82) compared with blood, volume, and radiomics models taken
singularly. Even though the study needs external validation, it potentially contributes
to a reduction in typical issues during ICI therapy, such as delayed treatment switch or
added toxicity.
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Table 1. Summary of general study features.

Author Pts Cancer Design Imaging Timing ICI Outcomes
Combination with

Non-Radiomics
Predictors

Mu [49] 194 NSCLC Retro-,
prospective PET/CT, CT Pre-ICI Anti-PD-(L)1 DCB, PFS, OS Histology, ECOG,

metastases

Ravanelli [23] 104 NSCLC Retrospective CT Pre-ICI Nivolumab PFS, OS NR

Polverari [25] 57 NSCLC Retrospective PET/CT Pre-ICI Anti-PD-(L)1 RECIST, PFS,
OS NR

Ladwa [26] 47 NSCLC Retrospective CT Pre-ICI Nivolumab TTP, PFS, OS NR

Shen [27] 63 NSCLC Retrospective CT Pre-ICI Anti-PD-(L)1 iRECIST, PD
vs non-PD NR

Liu [28] 46 NSCLC Retrospective CT Pre-ICI Nivolumab PFS, OS NR

Khorrami [29] 139 NSCLC Retrospective CT
Pre-and post
3-4 cycles of

ICI
Anti-PD-(L)1 RECIST, OS Gender, smoker

status

Nardone [30] 59 NSCLC Retrospective CT Pre-ICI Nivolumab PFS, OS NR

Dercle [31] 92 NSCLC Retrospective CT
Pre-and post
3-4 cycles of

ICI
Nivolumab iRECIST, BOR NR

Liu [32] 197 NSCLC Retrospective CT
Pre-and post
3-4 cycles of

ICI
Nivolumab iRECIST NR

Valentinuzzi
[34] 30 NSCLC Retrospective PET/CT Pre-, 1mo, and

4mo post-ICI Pembrolizumab iRADIOMICS NR

Tunali [37] 228 NSCLC Prospective CT Pre-ICI Anti-PD-(L)1 hyperprogression Metastases, prior
therapy, NLR

Vaidya [38] 109 NSCLC Retrospective CT Pre-ICI Anti-PD-(L)1 hyperprogression NR

Tang [40] 290 NSCLC Retrospective
CT+tumor
immune
sample

Pre-ICI Anti-PD-L1 OS

Lesion size,
N-status, histology,

age at surgery,
prior therapy

Yoon [41] 149 NSCLC Retrospective CT Pre-ICI Anti-PD-L1 T-cell
infiltration

Age, female,
smoker status,

EGFR+

Sun [42] 135
HNSCC,

NSCLC, HCC,
BLCA

Retrospective CT Pre-ICI Anti-PD-(L)1 CD8
expression

Tumor volume,
prior therapy,

Royal Marsden
Hospital

prognostic score

Jiang [43] 399 NSCLC Retrospective PET/CT Pre-ICI Anti-PD-(L)1 PD-L1
expression NR

Tunali [45] 332 NSCLC Retrospective CT Pre-ICI Anti-PD-(L)1 PFS, OS Albumin,
metastases

He [46] 123 NSCLC Retrospective CT Pre-ICI Anti-PD-(L)1 TMB NR

Yang [47] 92 NSCLC Retrospective CT Pre-ICI Anti-PD-(L)1 DCB, PFS age, metastases

Trebeschi [48] 123 NSCLC,
melanoma Retrospective CT Pre-ICI Anti-PD-1 RECIST NR

Mu [49] 210 NSCLC Retrospective PET/CT Pre-ICI Anti-PD-(L)1 cachexia, PFS,
OS

BMI, metastases,
ECOG

Bathia [58] 88 Melanoma Retrospective MRI Pre-ICI Anti-PD-(L)1 PFS, OS ECOG, LDH

Basler [59] 112 Melanoma Retrospective PET/CT Pre-ICI Anti-PD-1 ±
anti-CTLA4 pseudoprogression LDH, S100

Abbreviations: BLCA, bladder endothelial carcinoma; BOR, best overall response; DCB, durable clinical benefit;
ECOG, Eastern Cooperative Oncology Group performance status; HCC, hepatocellular carcinoma; HNSCC,
head and neck squamous cell carcinoma; ICI, immune checkpoint inhibitors; LDH, lactate dehydrogenase; NLR,
neutrophils-to-lymphocytes ratio; NSCLC, non-small cell lung cancer; NR, not reported; PFS, progression-free
survival; OS, overall survival; TMB, tumor mutational burden; TTP, time-to-progression.
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Table 2. Summary of radiomic features.

Author Radiomic Software Total/Reduced
Radiomic Features Validation Model Building

Test Phase RQS (%)

Mu [49] MATLAB 790/8 Split sample AIC, HL III 24 (68.1)

Ravanelli [23] TexRAD NR Cross-validation Cox proportional
hazards II 10 (27.8)

Polverari [25] LIFEx NR NR NR Discovery science −3 (0.0)

Ladwa [26] MATLAB NR Cross-validation
General model for
combining pairs of
texture parameters

0 2 (5.6)

Shen [27] Mazda NR/10 NR LDA, NDA, PCA 0 4 (11.1)

Liu [28] Python 1106/3 Cross-validation SVM, LR, GNB 0 11 (29.1)

Khorrami [29] 3D Slicer, MATLAB 99/8 Split sample,
external LDR II 11 (30.6)

Nardone [30] LifeX, X-Tile NR Split sample,
external Texture score I 3 (8.3)

Dercle [31] MATLAB 1160/4 Split sample RF 0 13 (36.1)

Liu [32] in-house software 402/7 Split sample LR II 17 (45.8)

Valentinuzzi [34] 3D Slicer 490/12 Cross-validation LR 0 13 (36.1)

Tunali [37] MATLAB 600/409 NR LR Discovery science 5 (15.3)

Vaidya [38] 3D Slicer, MATLAB 198/3 Split sample RF, LDA, DLDA,
QDA, SVM II 11 (29.2)

Tang [40] 3D Slicer, IBEX 12/4 Split sample Cox proportional
hazards II 14 (38.9)

Yoon [41] AVIEW 63/8 Internal,
bootstrapping LR II 15 (41.7)

Sun [42] LIFEx 84/5 External LEN II 18 (50)

Jiang [43] Python 1744/24 Cross-validation LR, RF II 8 (22.1)

Tunali [45] MATLAB, C++ 213/2 External Cox proportional
hazards Discovery science 22 (61.1)

He [46] 3D Slicer, Python 1688/1020 Split sample deep learning II 16 (44.4)

Yang [47] Python 110/88 Cross-validation RF 0 14 (37.5)

Trebeschi [48] NR 5865/68 Split sample RF II 11 (31.9)

Mu [49] ITK-SNAP,
MATLAB 1053/9 Cross-validation LR II 17 (45)

Bathia [58] ITK-SNAP, CERR 21/12 Cross-validation LR 0 7 (19.4)

Basler [59] Python 344/NR Cross-validation LR II 14 (38.8)

Abbreviations: AIC, Akaike information criteria; DLDA, diagonal linear discriminant analysis; GNB, Gaussian
naïve Bayes; HL, Hosmer–Lemeshow; LDA, linear discriminant analysis; LEN, linear elastic-net; LR, logistic
regression; NDA, non-linear discriminant analysis; NR, not reported; PCA, principal component analysis; QDA,
quadratic discriminant analysis; RF, random forest; SVM, support vector machine.

Nevertheless, we must acknowledge some limitations in this systematic review. Basi-
cally, only published articles in English were included, and we did not perform a quantita-
tive analysis of the results due to high heterogeneity of the included studies in terms of
methodology for image reconstruction, feature extraction, and algorithms used.

4. Discussion

Despite radiomics being a promising tool for response assessment and prediction
of survival in patients treated with ICI, by mining more data beyond those traditionally
acquired, it has not yet been employed in daily clinical practice [60]. Indeed, the number
of ongoing radiomic clinical trials are 142 compared with more than 2000 on ICI. Among
these 142, only 18 studies aimed at evaluating the impact of radiomics in immunotherapy
(Table 3). To explain why radiomics is still facing difficulties for translation in the clinical
arena, scientists should be aware of the potential sources of error in the radiomic pipeline.
These errors could concern both strictly clinical methods and more technical issues related
to image mining tools. In fact, the majority of studies are based on small cohorts of
patients, mostly derived from only one institution. Moreover, they are observational
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and have a retrospective design, so that standardization of image acquisition protocols is
compromised. A further notable methodological deficiency in the current studies is the lack
of adequate external validation, which is the essence of the stability of a radiomic model.
As a consequence, radiomic features show different cut-off values among studies, and the
relative radiomic models cannot be widely generalizable. This might depend also on the
absence of radiomic software standardization, which would guarantee the same feature
values extracted from the same image when using different software. Another reason for
such variability is related to different PET/CT technology and quality of images among
nuclear medicine departments, as it was already evident with the SUV parameter. Therefore,
before harmonization of data becomes a constant, results should be examined carefully
because the robustness of radiomic models on independent data is still unknown [61,62].

Table 3. Summary of the ongoing clinical trials with ICI and radiomic analysis (source:
https://clinicaltrials.gov/, accessed on 14 February 2022).

Cancer Type Trial Identifier Number Phase/Status ICI Radiomics Aim

Lung Cancer

NCT04984148 recruiting not specified PD-L1 expression, PFS, OS,
pneumonitis

NCT03305380 completed not specified pneumonitis
NCT04364776 III, recruiting durvalumab PFS, OS
NCT04994795 not yet recruiting pembrolizumab ± chemo PFS, OS, DoR, TTP
NCT04007068 unknown pembrolizumab iRADIOMICS vs. irRC

NCT03311672 withdrawn pembrolizumab ± RT AraG PET-CT radiomic
analyses

NCT04541251 II, recruiting camrelizumab ± chemo therapy efficacy and
decision-making assistance

NCT04452058 recruiting not specified assist surgery, PFS, OS, ORR,
CBR

Lung, melanoma NCT04193956 recruiting not specified treatment response, toxicity
Merkel NCT03304639 not recruiting pembrolizumab ± RT pneumonitis

Esophageal
NCT04821765 II, recruiting tislelizumab ± chemo, RT pathologic response, OS

NCT04821778 III, recruiting not specified ± chemo ± RT treatment adverse events,
pathologic response, OS

NCT04821843 III, recruiting not specified ± chemo ± RT
(neoadjuvant) pathologic response, OS

Urothelial
NCT03237780 II, recruiting atezolizumab ± chemo changes in tumor

NCT03387761 I, completed Ipilimumab ± nivolumab responders vs.
non-responders

Solid tumors
NCT04079283 completed not specified ± chemo treatment response
NCT04892849 recruiting not specified tumor tissue pattern
NCT04954599 I-II, not yet recruiting multiple hypoxia

Abbreviations: PD-L1, programmed death ligand-1; PFS, progression-free survival; OS, overall survival; DoR,
duration of response; TTP, time-to-progression; ORR, overall response rate; CBR, clinical benefit rate.

In the recent years, some criteria for classifying radiomic studies have been proposed.
For example, the Radiomic Quality Score (RQS) is based on 16 items ranging from acquisi-
tion parameters to data sharing in order to improve the quality of radiomic research [16].
More recently, some authors [18] have applied the classification used for drug development,
i.e., from phase I to IV, to the radiomic models, highlighting that the scarcity of phase III
and IV studies precludes their clinical implementation. Moreover, these scores are not free
from drawbacks. For instance, although one of the most cited studies in the radiomic field
has a high RQS of about 55%, it was still highly biased, as demonstrated by Welch and
colleagues [39,63]. Indeed, they showed that tumor volume was highly correlated with
three out of four model features proposed by Aerts, suggesting a lack of feature indepen-
dence. This is a typical example of the so-called “Clever Hans phenomenon” or, in more
scientific terms, spurious correlation, which we should keep in mind when we approach to
this new world of radiomics and cutting-edge deep learning systems. Table 4 shows the
main shortcomings and possible solutions for improving the quality of radiomic studies.

https://clinicaltrials.gov/
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Table 4. Summary of main issues and possible solutions for radiomic studies.

Limitations Suggestions

Small cohort from single center Multicenter clinical trials

Heterogeneous data (“center effect”)
- prospective studies: imaging protocols can be harmonized
before data acquisition (e.g., EARL recommendations)
- retrospective studies: phantom acquisition, post-filtering
steps, or ComBat method

Repeatability and Reproducibility
Open-source software packages with detailed description of the

workflow used in the studies;
Compliant with the IBSI guidelines

Results Both positive and negative should be reported to avoid the
misuse of algorithms or excessive generalization of results

Interpretability (“black box”) Graph-based or visualization tools for improving the
interpretability of radiomic results

Model Validation Preferably performed on external and independent groups,
prospectively collected, ideally within clinical trials

Accessibility
Shared databases among different institutions (anonymized),

able to be used as validation sets;
Incorporated into or interfaced with existing RIS/PACS systems

Abbreviations: EARL, EANM Research GmbH; IBSI, image biomarker standardization initiative; RIS, Radiology
Information System; PACS, Picture Archiving and Communication System.

5. Conclusions

Radiomics is still a relatively new field in the domain of medical images in the era
of big data and machine learning. Despite the present radiomics being limited to cancer
research, its future is certainly bright in order to personalize cancer medicine, including
tumor assessment in the course of immunotherapy with checkpoint inhibitors. The positive
preliminary results of quantitative imaging features in this context, however, require further
investigation in prospective cohorts, and randomized clinical trials in the pipeline could
provide the necessary information for proceeding toward the method’s validation. When
main issues related to closer collaboration among scientists (e.g., physicians, physics, imag-
ing experts, informatics, statistics), standardization, and reproducible software applications,
as well as data-sharing are solved, radiomics will grow exponentially and will play the role
of protagonist in everyday practice.

Author Contributions: Conceptualization, E.L., L.M. and A.C.; methodology, M.C., L.F. and L.U.;
resources, all authors; data curation, E.L., A.C. and L.M.; writing—original draft preparation, A.C.;
writing—review and editing, all authors; supervision, E.L. and L.M. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all participants.

Data Availability Statement: The data presented in this study are available on motivated request to
the corresponding author.

Conflicts of Interest: E.L. reports receiving grants from AIRC and from the Italian Ministry of Health,
and faculty remuneration from ESMIT (European School of Multimodality Imaging and Therapy)
and MI&T congressi. No other potential conflict of interest relevant to this article exist.

References
1. Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [CrossRef] [PubMed]
2. Cavallo, F.; De Giovanni, C.; Nanni, P.; Forni, G.; Lollini, P.-L. 2011: The immune hallmarks of cancer. Cancer Immunol. Immunother.

2011, 60, 319–326. [CrossRef] [PubMed]

http://doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
http://doi.org/10.1007/s00262-010-0968-0
http://www.ncbi.nlm.nih.gov/pubmed/21267721


J. Clin. Med. 2022, 11, 1740 13 of 15

3. Hoos, A. Development of immuno-oncology drugs—From CTLA4 to PD1 to the next generations. Nat. Rev. Drug Discov. 2016, 15,
235–247. [CrossRef]

4. Yu, J.X.; Hubbard-Lucey, V.M.; Tang, J. Immuno-oncology drug development goes global. Nat. Rev. Drug Discov. 2019, 18,
899–900.

5. Huemer, F.; Leisch, M.; Geisberger, R.; Melchardt, T.; Rinnerthaler, G.; Zaborsky, N.; Greil, R. Combination Strategies for
Immune-Checkpoint Blockade and Response Prediction by Artificial Intelligence. Int. J. Mol. Sci. 2020, 21, 2856. [CrossRef]

6. Yu, J.X.; Hodge, J.P.; Oliva, C.; Neftelinov, S.T.; Hubbard-Lucey, V.M.; Tang, J. Trends in clinical development for PD-1/PD-L1
inhibitors. Nat. Rev. Drug Discov. 2020, 19, 163–164.

7. Castello, A.; Lopci, E. Update on tumor metabolism and patterns of response to immunotherapy. Q. J. Nucl. Med. Mol. Imaging
2020, 64, 175–185. [CrossRef]

8. Dromain, C.; Beigelman, C.; Pozzessere, C.; Duran, R.; Digklia, A. Imaging of tumour response to immunotherapy. Eur. Radiol.
Exp. 2020, 4, 2. [CrossRef]

9. Nishino, M.; Hatabu, H.; Hodi, F.S. Imaging of Cancer Immunotherapy: Current Approaches and Future Directions. Radiology
2019, 290, 9–22. [CrossRef]

10. Okwundu, N.; Grossman, D.; Hu-Lieskovan, S.; Grossmann, K.F.; Swami, U. The dark side of immunotherapy. Ann. Transl. Med.
2021, 9, 1041. [CrossRef]

11. Castello, A.; Lopci, E. The Role of PET/CT in the Era of Immune Checkpoint Inhibitors: State of Art. Curr. Radiopharm. 2019, 13,
24–31. [CrossRef] [PubMed]

12. Ibrahim, A.; Primakov, S.; Beuque, M.; Woodruff, H.C.; Halilaj, I.; Wu, G.; Refaee, T.; Granzier, R.; Widaatalla, Y.; Hustinx, R.; et al.
Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework. Methods 2021, 188,
20–29. [CrossRef] [PubMed]

13. Wang, J.H.; Wahid, K.A.; van Dijk, L.V.; Farahani, K.; Thompson, R.F.; Fuller, C.D. Radiomic biomarkers of tumor immune biology
and immunotherapy response. Clin. Transl. Radiat. Oncol. 2021, 28, 97–115. [CrossRef]

14. Porcu, M.; Solinas, C.; Mannelli, L.; Micheletti, G.; Lambertini, M.; Willard-Gallo, K.; Neri, E.; Flanders, A.E.; Saba, L. Radiomics
and “radi- . . . omics” in cancer immunotherapy: A guide for clinicians. Crit. Rev. Oncol. Hematol. 2020, 154, 103068. [CrossRef]
[PubMed]

15. Zhang, C.; de AF Fonseca, L.; Shi, Z.; Zhu, C.; Dekker, A.; Bermejo, I.; Wee, L. Systematic review of radiomic biomarkers for
predicting immune checkpoint inhibitor treatment outcomes. Methods 2021, 188, 61–72. [CrossRef]

16. Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even,
A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol.
2017, 14, 749–762. [CrossRef]

17. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;
Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71.
[CrossRef]

18. Sollini, M.; Antunovic, L.; Chiti, A.; Kirienko, M. Towards clinical application of image mining: A systematic review on artificial
intelligence and radiomics. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2656–2672. [CrossRef]

19. Evangelista, L.; Cuppari, L.; Menis, J.; Bonanno, L.; Reccia, P.; Frega, S.; Pasello, G. 18F-FDG PET/CT in non-small-cell lung cancer
patients: A potential predictive biomarker of response to immunotherapy. Nucl. Med. Commun. 2019, 40, 802–807. [CrossRef]

20. Seban, R.-D.; Mezquita, L.; Berenbaum, A.; Dercle, L.; Botticella, A.; Le Pechoux, C.; Caramella, C.; Deutsch, E.; Grimaldi, S.;
Adam, J.; et al. Baseline metabolic tumor burden on FDG PET/CT scans predicts outcome in advanced NSCLC patients treated
with immune checkpoint inhibitors. Eur. J. Nucl. Med. Mol. Imaging 2019, 47, 1147–1157. [CrossRef]

21. Castello, A.; Toschi, L.; Rossi, S.; Mazziotti, E.; Lopci, E. The immune-metabolic-prognostic index and clinical outcomes in patients
with non-small cell lung carcinoma under checkpoint inhibitors. J. Cancer Res. Clin. Oncol. 2020, 146, 1235–1243. [CrossRef]
[PubMed]

22. Mu, W.; Tunali, I.; Gray, J.E.; Qi, J.; Schabath, M.B.; Gillies, R.J. Radiomics of 18F-FDG PET/CT images predicts clinical benefit
of advanced NSCLC patients to checkpoint blockade immunotherapy. Eur. J. Nucl. Med. Mol. Imaging 2019, 47, 1168–1182.
[CrossRef] [PubMed]

23. Ravanelli, M.; Agazzi, G.M.; Milanese, G.; Roca, E.; Silva, M.; Tiseo, M.; Rondi, P.; Baggi, A.; Ganeshan, B.; Muri, M.; et al.
Prognostic and predictive value of histogram analysis in patients with non-small cell lung cancer refractory to platinum treated
by nivolumab: A multicentre retrospective study. Eur. J. Radiol. 2019, 118, 251–256. [CrossRef] [PubMed]

24. Parmar, C.; Grossmann, P.; Bussink, J.; Lambin, P.; Aerts, H.J. Machine learning methods for quantitative radiomic biomarkers.
Sci. Rep. 2015, 5, 13087. [CrossRef] [PubMed]

25. Polverari, G.; Ceci, F.; Bertaglia, V.; Reale, M.L.; Rampado, O.; Gallio, E.; Passera, R.; Liberini, V.; Scapoli, P.; Arena, V.; et al.
18F-FDG Pet Parameters and Radiomics Features Analysis in Advanced Nsclc Treated with Immunotherapy as Predictors of
Therapy Response and Survival. Cancers 2020, 12, 1163. [CrossRef] [PubMed]

26. Ladwa, R.; Roberts, K.E.; O’Leary, C.; Maggacis, N.; O’Byrne, K.J.; Miles, K. Computed tomography texture analysis of response
to second-line nivolumab in metastatic non-small cell lung cancer. Lung Cancer Manag. 2020, 9, LMT38. [CrossRef] [PubMed]

27. Shen, L.; Fu, H.; Tao, G.; Liu, X.; Yuan, Z.; Ye, X. Pre-Immunotherapy Contrast-Enhanced CT Texture-Based Classification: A
Useful Approach to Non-Small Cell Lung Cancer Immunotherapy Efficacy Prediction. Front. Oncol. 2021, 11, 591106. [CrossRef]

http://doi.org/10.1038/nrd.2015.35
http://doi.org/10.3390/ijms21082856
http://doi.org/10.23736/S1824-4785.20.03251-3
http://doi.org/10.1186/s41747-019-0134-1
http://doi.org/10.1148/radiol.2018181349
http://doi.org/10.21037/atm-20-4750
http://doi.org/10.2174/1874471012666191015100106
http://www.ncbi.nlm.nih.gov/pubmed/31749440
http://doi.org/10.1016/j.ymeth.2020.05.022
http://www.ncbi.nlm.nih.gov/pubmed/32504782
http://doi.org/10.1016/j.ctro.2021.03.006
http://doi.org/10.1016/j.critrevonc.2020.103068
http://www.ncbi.nlm.nih.gov/pubmed/32805498
http://doi.org/10.1016/j.ymeth.2020.11.005
http://doi.org/10.1038/nrclinonc.2017.141
http://doi.org/10.1136/bmj.n71
http://doi.org/10.1007/s00259-019-04372-x
http://doi.org/10.1097/MNM.0000000000001025
http://doi.org/10.1007/s00259-019-04615-x
http://doi.org/10.1007/s00432-020-03150-9
http://www.ncbi.nlm.nih.gov/pubmed/32048008
http://doi.org/10.1007/s00259-019-04625-9
http://www.ncbi.nlm.nih.gov/pubmed/31807885
http://doi.org/10.1016/j.ejrad.2019.07.019
http://www.ncbi.nlm.nih.gov/pubmed/31439251
http://doi.org/10.1038/srep13087
http://www.ncbi.nlm.nih.gov/pubmed/26278466
http://doi.org/10.3390/cancers12051163
http://www.ncbi.nlm.nih.gov/pubmed/32380754
http://doi.org/10.2217/lmt-2020-0002
http://www.ncbi.nlm.nih.gov/pubmed/32774469
http://doi.org/10.3389/fonc.2021.591106


J. Clin. Med. 2022, 11, 1740 14 of 15

28. Liu, C.; Gong, J.; Yu, H.; Liu, Q.; Wang, S.; Wang, J. A CT-Based Radiomics Approach to Predict Nivolumab Response in Advanced
Non-Small-Cell Lung Cancer. Front. Oncol. 2021, 11, 544339. [CrossRef]

29. Khorrami, M.; Prasanna, P.; Gupta, A.; Patil, P.; Velu, P.D.; Thawani, R.; Corredor, G.; Alilou, M.; Bera, K.; Fu, P.; et al. Changes in
CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in
Non–Small Cell Lung Cancer. Cancer Immunol. Res. 2020, 8, 108–119. [CrossRef]

30. Nardone, V.; Tini, P.; Pastina, P.; Botta, C.; Reginelli, A.; Carbone, S.F.; Giannicola, R.; Calabrese, G.; Tebala, C.; Guida, C.; et al.
Radiomics predicts survival of patients with advanced non-small cell lung cancer undergoing PD-1 blockade using Nivolumab.
Oncol. Lett. 2020, 19, 1559–1566. [CrossRef]

31. Dercle, L.; Fronheiser, M.; Lu, L.; Du, S.; Hayes, W.; Leung, D.K.; Roy, A.; Wilkerson, J.; Guo, P.; Fojo, A.T.; et al. Identification of
non-small cell lung cancer sensitive to systemic cancer therapies using radiomics. Clin. Cancer Res. 2020, 26, 2151–2162. [CrossRef]
[PubMed]

32. Liu, Y.; Wu, M.; Zhang, Y.; Luo, Y.; He, S.; Wang, Y.; Chen, F.; Liu, Y.; Yang, Q.; Li, Y.; et al. Imaging biomarkers to predict and
evaluate the effectiveness of immunotherapy in advanced nonsmall-cell lung cancer. Front. Oncol. 2021, 11, 657615. [CrossRef]

33. Nardone, V.; Reginelli, A.; Grassi, R.; Boldrini, L.; Vacca, G.; D’Ippolito, E.; Annunziata, S.; Farchione, A.; Belfiore, M.P.;
Desideri, I.; et al. Delta radiomics: A systematic review. Radiol. Med. 2021, 126, 1571–1583. [CrossRef]

34. Valentinuzzi, D.; Vrankar, M.; Boc, N.; Ahac, V.; Zupancic, Z.; Unk, M.; Skalic, K.; Zagar, I.; Studen, A.; Simoncic, U.; et al. FDG
PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with
pembrolizumab. Radiol. Oncol. 2020, 54, 285–294. [CrossRef]

35. Castello, A.; Rossi, S.; Mazziotti, E.; Toschi, L.; Lopci, E. Hyperprogressive Disease in Patients with Non–Small Cell Lung Cancer
Treated with Checkpoint Inhibitors: The Role of 18F-FDG PET/CT. J. Nucl. Med. 2020, 61, 821–826. [CrossRef] [PubMed]

36. Lopci, E. Immunotherapy Monitoring with Immune Checkpoint Inhibitors Based on [18 F]FDG PET/CT in Metastatic Melanomas
and Lung Cancer. J. Clin. Med. 2021, 10, 5160. [CrossRef]

37. Tunali, I.; Gray, J.E.; Qi, J.; Abdalah, M.; Jeong, D.K.; Guvenis, A.; Gillies, R.J.; Schabath, M.B. Novel clinical and radiomic
predictors of rapid disease progression phenotypes among lung cancer patients treated with immunotherapy: An early report.
Lung Cancer 2019, 129, 75–79. [CrossRef] [PubMed]

38. Vaidya, P.; Bera, K.; Patil, P.D.; Gupta, A.; Jain, P.; Alilou, M.; Khorrami, M.; Velcheti, V.; Madabhushi, A. Novel, non-invasive
imaging approach to identify patients with advanced non-small cell lung cancer at risk of hyperprogressive disease with immune
checkpoint blockade. J. Immunother. Cancer 2020, 8, e001343. [CrossRef]

39. Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-
Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat.
Commun. 2014, 5, 4006. [CrossRef]

40. Tang, C.; Hobbs, B.; Amer, A.; Li, X.; Behrens, C.; Canales, J.R.; Cuentas, E.P.; Villalobos, P.; Fried, D.; Chang, J.Y.; et al.
Development of an Immune-Pathology Informed Radiomics Model for Non-Small Cell Lung Cancer. Sci. Rep. 2018, 8, 1922.
[CrossRef]

41. Yoon, J.; Suh, Y.J.; Han, K.; Cho, H.; Lee, H.-J.; Hur, J.; Choi, B.W. Utility of CT radiomics for prediction of PD-L1 expression in
advanced lung adenocarcinomas. Thorac. Cancer 2020, 11, 993–1004. [CrossRef] [PubMed]

42. Sun, R.; Limkin, E.J.; Vakalopoulou, M.; Phd, R.; Paragios, N.; Deutsch, E.; Sun, R.; Limkin, E.J.; Vakalopoulou, M.;
Ammari, S.; et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1
immunotherapy: An imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018, 19, 1180–1191. [CrossRef]

43. Jiang, M.; Sun, D.; Guo, Y.; Guo, Y.; Xiao, J.; Wang, L.; Yao, X. Assessing PD-L1 Expression Level by Radiomic Features From
PET/CT in Non small Cell Lung Cancer Patients: An Initial Result. Acad. Radiol. 2020, 27, 171–179. [CrossRef]

44. Muz, B.; de la Puente, P.; Azab, F.; Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance
to therapy. Hypoxia 2015, 3, 83–92. [CrossRef] [PubMed]

45. Tunali, I.; Tan, Y.; Gray, J.E.; Katsoulakis, E.; Eschrich, S.A.; Saller, J.; Aerts, H.J.W.L.; Boyle, T.; Qi, J.; Guvenis, A.; et al. Hypoxia-
Related Radiomics and Immunotherapy Response: A Multicohort Study of Non-Small Cell Lung Cancer. JNCI Cancer Spectr.
2021, 5, pkab048. [CrossRef] [PubMed]

46. He, B.X.; Dong, D.; She, Y.L.; Fang, M.; Zhu, Y.; Zhang, H.; Huang, Z.; Jiang, T.; Tian, J.; Chen, C. Predicting response to
immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker. J. Immunother.
Cancer 2020, 8, e000550. [CrossRef] [PubMed]

47. Yang, B.; Zhou, L.; Zhong, J.; Lv, T.; Li, A.; Ma, L.; Zhong, J.; Yin, S.; Huang, L.; Zhou, C.; et al. Combination of computed
tomography imaging-based radiomics and clinicopathological characteristics for predicting the clinical benefits of immune
checkpoint inhibitors in lung cancer. Respir. Res. 2021, 22, 189. [CrossRef]
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