Supplement for Elemental dynamics in hair accurately
predict future autism spectrum disorder diagnosis: an
international multi-center study

Christine Austin'?t, Paul Curtin'*"", Manish Arora'?", Abraham Reichenberg!'?t, Austen Curtin'?,
Miyuki Iwai-Shimada*, Robert Wright!, Rosalind Wright'?, Karl Lundin Remnelius$, Johan Isakssons?,
Sven Boltes”8, Shoji F. Nakayama*

1 Linus Biotechnology Inc., New York, NY 10013, USA

2 Environmental Medicine and Public Health, Mount Sinai School of Medicine, New York, NY
10029, USA

3 Seaver Autism Center, Department of Psychiatry, Mount Sinai School of Medicine,
New York, NY 10029, USA

4 Exposure Dynamics Research Section, Health and Environmental Risk Division, National
Institute for
Environmental Studies, Tsukuba 305-8506, Japan

5 Department of Pediatrics, Mount Sinai School of Medicine, New York, NY 10029, USA

6 Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research,
Department of Women’s and Children’s Health, Karolinska Institutet and Stockholm Health
Care Services, Region Stockholm,
11330 Stockholm, Sweden

7 Department of Medical Sciences, Child and Adolescent Psychiatry Unit, Uppsala University,
75185 Uppsala, Sweden

8 Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm,
11861 Stockholm, Sweden

9 Curtin Autism Research Group, Curtin School of Allied Health, Curtin University,

Perth, WA 6102, Australia

Correspondence: paul.curtin@linusbio.com (P.C.); manish.arora@mssm.edu (M.A.)

T These authors contributed equally to this work.



Index
1. Quality Assurance and Quality Control Procedures for Laboratory Hair Analysis

Derivation of Descriptive Features

Model Performance — Confusion Matrix

L

Participant Comorbidity Characteristics



I. QA/QC for Laboratory Analysis of Hair Samples

Reproducibility of results

A second hair strand was analyzed for a subset of 20 samples for QA/QC. Element
signal profiles from duplicates are aligned and the percent difference between each
sequential data point measured and averaged. A difference of <+ 20% (recovery 100 +
20%) was considered acceptable. Percent difference between duplicates is typically less
than 10% for most elements (see Figure S1).

RQA Feature: Shannon Entropy
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Figure S1. Average percent difference across elements in bioinformatic features — here,
Shannon Entropy, estimated via Recurrence Quantification Analysis — measured in two
hairs collected from the same individual at the same time but analyzed by LA-ICP-MS

months apart. Green dashed line indicates + 10% difference between duplicates; red
dashed line indicates +/- 20% difference between duplicates. n=20 participants.
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Figure S2. Average percent difference across elements in bioinformatic features — here,
Determinism, estimated via Recurrence Quantification Analysis — measured in two
hairs collected from the same individual 5 years apart (at age 1 year and then at age 6
years). Green dashed line indicates + 10% difference between duplicates; red dashed
line indicates +/- 20% difference between duplicates. n=20 participants.
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II. Derivation of Descriptive Features

For each of 15 elemental time series measured in each hair, and for the pairwise
interactions between each elemental time series, a recurrence matrix or cross-recurrence
matrix, respectively, was generated to reconstruct underlying signal dynamics.
Supplementary Figure S3 provides an example of this process in the analysis of a single
hair trace. The formation of diagonal lines in a recurrence matrix indicates the
formation and dissolution of transient periodic processes. Likewise, the emergence of
vertical and horizontal lines, referred to as laminar structures, indicates periods of
relative signal stability. Recurrence quantification analysis (RQA) involves the
quantitation of these features to characterize the magnitude and prevalence of these
features in different signals; likewise, cross-recurrence quantification analysis (CRQA)
extends this approach to consider pairwise dependencies between signals. From each
recurrence and cross-recurrence matrix derived from each sample, quantitative metrics
are derived, as described in accompanying Table S1.
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Figure S3. Recurrence analysis of elemental data derived from hair. In left panel, (A),
elemental (Phosphorus) time-series data extracted from analysis of a hair sample are
shown. In right panel, (B), a recurrence matrix is shown. This formation of diagonal and
vertical lines in the recurrence matrix is indicative of underlying periodic dynamics in
the time series. In recurrence quantification analysis, the distribution of these features is
quantified to derive metrics descriptive of underlying processes in the elemental time
series.



Table S1. Features derived from recurrence and/or cross-recurrence quantification
analysis of elemental time series data.

Feature

Algorithm

Interpretation

Recurrence Rate

;] =
RR=—— i
N % Z R(i,))
j-1=k
Where k is the distance of a given diagonal line
from the central diagonal in a square recurrence

This feature measures the ratio of
recurrent points, typically indicated
in black, vs. non-recurrent points
(white space) in a recurrence matrix

Where [ is the length of diagonal lines in the
recurrence matrix, P(I) is the number of lines
with length equal to /, and R is the number of
recurrence points in the full recurrence plot.

(RR) ) ) or cross-recurrence matrix. This
or cross recurrence matrix, N is the total number .
¢ di 1 4 RG.1) is th babili measure reflects the incidence of
Of 1agonal processes, an Rgf] )is t, ¢ probabl ity repetition in each signal. In these
of recurrence at a given coordinate /. analyses, threshold functions were set
adaptively to yield an RR=0.1 in all
analyses; as RR was therefore a
constant, this feature was excluded
from analysis.
DET = Zl:lmin lP(l) . .
xR This feature measures the ratio of
Determinism (DET) diagonal points to non-diagonal

points in a recurrence matrix / cross-
recurrence matrix. This reflects the
prevalence of periodic processes in
the signal.

Mean Diagonal
Length
(MDL)

N0
l—lmln
MDL = Sy

I=lnin
Where N is the number of diagonal lines, Inin is
the minimum specified length of diagonal lines
(in this application, 2), [ is the length of a given
diagonal line, and P(I) is the histogram of all
diagonal lines.

This feature measures the average
length of diagonal lines in a
recurrence matrix / cross-recurrence
matrix. This measure reflects the
duration of periodic processes in the
signal.

Maximum Diagonal
Length
(LMAX)

LMAX = max (P(1))
Where P(]) is the histogram of diagonal lines in a
recurrence Or Cross recurrence matrix.

This feature measures the longest
diagonal line in a recurrence matrix /
cross-recurrence matrix. This measure
reflects the duration of the most
persistent periodic process.

Shannon Entropy in
Diagonal Length
(ENT)

N
ENT = — z p(DIn p(D)

[=lmin

Where [ indicates the length of a diagonal line,
Imin indicates the minimum length of diagonal
lines (in this application, 2), N is the total

In a recurrence matrix / cross-
recurrence matrix, this feature
measures the predictability of the
distribution of diagonal line length.
This can be interpreted as a measure
of complexity involved in periodic
processes in the signal.




number of diagonal lines, and p(I) is the
probability distribution of diagonal lines.

X1(— )RR, — (RR))
TREND =
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This feature measures the relative
density or sparseness of a recurrence

Trend in matrix at the matrix edges relative to
Recurrences Where N is the number of diagonal lines parallel | the center. This measure reflects the
(TREND) to the maximal diagonal in a square recurrence trend in the signal to depart from
or cross-recurrence matrix, i is a diagonal line, stationarity.
RRiis the diagonal-wise recurrence rate, and
(RR;) is the average diagonal recurrence rate.
LAM = D=l VP(V) This feature measures the ratio of
>R vertical lines in a recurrence or cross
Where v is the length of vertical lines the recurrence matrix relative to points
Laminarity recurrence or cross-recurrence matrix, lminis the that do not Comprise vertical lines.
(LAM) minimum length of vertical lines (in these This measure characterizes the
applications, set to 2), and P(U) is the histogram prevalence of periods of stablhty in a
of vertical line lengths. R refers to the sum of all given signal.
recurrence points; as such, this function
essentially constructs a ratio of recurrence points
which contribute to vertical lines relative to all
recurrence points.
TT = Dv=tymin VP (D) This feature measures the distribution
L of temporal intervals between vertical
Where v is the length of vertical lines the lines in a recurrence matrix or cross
Trapping Time recurrence or cross-recurrence matrix, lminis the recurrence matrix. This measure
(TT) minimum length of vertical lines (in these provides the mean interval observed

applications, set to 2), and P(l) is the histogram
of vertical line lengths. L in this case refers to the
frequency of all vertical lines meeting Imin criteria;
thus, in essence this measure reflects the mean
vertical line length.

between periods of signal stability.

Maximum Vertical
Line Length
(VMAX)

VMAX = max (P(v))
Where P(v) indicates the distribution of vertical
line lengths.

This feature measures the maximum
length in the distribution of vertical
line lengths observed in a recurrence
matrix or cross-recurrence matrix.
This measure reflects the peak
duration of stable processes in a given
signal.

Shannon Entropy in
Vertical Line
Lengths
(VENT)

N

VENT = — 2 p(v)In p(v)

v=lmin

Where [ indicates the length of a vertical line, Inin
indicates the minimum length of vertical lines (in
this application, 2), N is the total number of
vertical lines, and p(v) is the probability
distribution of vertical lines.

This feature measures the
predictability of the distribution of
vertical line lengths in a recurrence or
cross-recurrence matrix. This measure
reflects the complexity in the
distribution of intervals of signal
stability.




Mean Recurrence
Time
(TMRP)

SN wP(w)
TMRP = /z:'leP(w)

Where w is the length of vertical white lines, N is
the total number of vertical white lines, and P(w)
is the frequency distribution of vertical white
line lengths.

This feature measures the mean
duration of intervals between vertical
lines indicative of signal stability in a
recurrence or cross-recurrence matrix.

Shannon Entropy in
Recurrence Time
(WENT)

N
WENT = — Z p(wW)ln P(w)
w=1
Where w is the length of vertical white lines, and
P(w) is the frequency distribution of vertical

white lines.

This feature measures the
predictability of the distribution of
intervals separating vertical lines
indicative of signal stability in a
recurrence or cross-recurrence matrix.

Number of the most
probable recurrence
time
(NMPRT)

NMPRT = max (P(w))

Where P(w) indicates the histogram of the
vertical white line distribution

This feature measures the maximum
value of the histogram of recurrence
times. This measure indicates the
most probable interval between
periods of signal stability.




ITI1. Model Performance — Confusion Matrix

Table S2. Confusion matrix: frequencies of predicted diagnoses and actual diagnoses.

Reference Test - DSM-V

Positive |Negative |Total
Positive 27 17 44
Model
Predictions [Negative 1 52 53
Total 28 69 97

Table cells reflect the number of predicted diagnostic outcomes relative to actual
diagnostic status as determined by the DSM-V in the holdout validation dataset.



IV. Participant Comorbidity Characteristics

Table S3. Comorbid diagnoses in participants with and without positive diagnosis
for ASD.

Disorder ASD Control
ADHD 26 21
Intellectual 16 4
Developmental? 30 17
Psychiatric? 16 6
Genetic? 9 5
No comorbidity 123 279

Developmental Delay, Learning Disorder, Language Disorder
2Anxiety, Depression, OCD, Phobia, PTSD, Tics, Tourette’s
3Genetic Syndrome, PMS, DDX3X, FOXP1, ADNP

Cells reflect counts (n) of participants with positive diagnoses in each broad diagnostic
category; note diagnoses are non-exclusive, such that a patient might receive multiple
diagnoses.



