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Abstract: Background: The composition of the gut microbiota is associated with the response to im-
munotherapy for different cancers. However, the majority of previous studies have focused on a single
cancer and a single immune checkpoint inhibitor. Here, we investigated the relationship between the
gut microbiota and the clinical response to anti-programmed cell death protein 1 (PD-1) immunother-
apy in patients with advanced cancers. Method: In this comprehensive study, 16S rRNA sequencing
was performed on the gut microbiota of pre-immunotherapy and post-immunotherapy, of 72 ad-
vanced cancer patients in China. Results: At the phylum level, Firmicutes, Bacteroidetes, Proteobacteria,
and Actinobacteria were the main components of the microbiota in the 72 advanced cancer patients.
At the genus level, Bacteroides and Prevotella were the dominant microbiota among these 72 patients.
The PD_whole_tree, Chao1, Observed_species and Shannon indices of R.0 and R.T were higher
than those of NR.0 and NR.T. The results of LEfSe showed that Archaea, Lentisphaerae, Victivallaceae,
Victivallales, Lentisphaeria, Methanobacteriaceae, Methanobacteria, Euryarchaeota, Methanobrevibacter, and
Methanobacteriales were significantly enriched in the response group before immunotherapy (R.0),
and the Clostridiaceae was significantly enriched in the non-response group before immunotherapy
(NR.0) (p < 0.05). Lachnospiraceae and Thermus were significantly enriched in the response group after
immunotherapy (R.T), and Leuconostoc was significantly enriched in R.0 (p < 0.05). ROC analysis
showed that the microbiota of R.T (AUC = 0.70) had obvious diagnostic value in differentiating
Chinese cancer patients based on their response to immunotherapy. Conclusions: We demonstrated
that the gut microbiota was associated with the clinical response to anti-PD-1 immunotherapy in
cancer patients. Taxonomic signatures enriched in responders were effective biomarkers to predict
the clinical response. Our findings provide a new strategy to improve the efficiency of responses to
immunotherapy among cancer patients.
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1. Introduction

Immunotherapy has become a major therapeutic strategy in oncology. The recent clin-
ical success achieved with immune checkpoint inhibitors, for example, by using blocking
antibodies against programmed cell death ligand 1 (PD-L1), programmed death-1 (PD-1),
and cytotoxic T lymphocyte antigen-4 (CTLA-4), illustrates the potential of the immune
system in the elimination of cancer cells. A variety of immune checkpoint inhibitors have
been approved by the U.S. Food and Drug Administration (FDA) for clinical use in multiple
types of cancer. However, the current effectiveness of cancer immunotherapy is not satis-
factory in all patients. Even if the initial treatment is effective, some patients still undergo
early drug resistance to immune checkpoint inhibitors. Patient intrinsic factors, tumor
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stromal intrinsic factors and environmental factors (such as the gut microbiome) might
contribute to the failure of immune checkpoint blockade [1]. Therefore, the identification of
reliable biomarkers to ensure the optimization of immunotherapy would be of paramount
interest. It has been reported that the effects of the specific gut microbiome can help to
identify the microbe–host interaction networks that shape the host’s immune system, with
the goal of manipulating these interactions for host’s health [2]. The gut microbiome may
influence anti-tumor immune responses via innate and adaptive immunity, and therefore
may improve the therapeutic responses.

The 16S ribosomal RNA (rRNA)-based sequencing of gene amplicons and the deoxyri-
bonucleic acid (DNA) sequencing of patient fecal samples could identify subsets of the
microbiome. For example, an increase in the permeability of the upper gastrointestinal
tract could lead to the translocation of Enterococcus hirae from the small intestine to the
spleen, as well as the accumulation of Barnesiella intestinihominis in the colon, which causes
a coordinated immune-stimulatory effect on antitumor immune system responses [3]. The
oral administration of Bifidobacterium could augment the dendritic cell function, leading to
enhanced CD8(+) T cell priming and accumulation in the tumor microenvironment and
mediating the response to immunotherapy [4].

The role of the gut microbiota in modulating cancer responses to immunotherapy
has received increased attention in recent years. For metastatic melanoma patients receiv-
ing anti-PD-1-based immunotherapy, gut bacterial species more abundant in responders
include Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus faecium [5]. Fur-
thermore, in melanoma patients undergoing anti-PD-1-based immunotherapy, significant
differences were observed in the diversity and composition of the gut microbiome of respon-
ders versus non-responders, with significantly higher α−diversity and relative abundance
of bacteria of the Ruminococcaceae family in responders [6]. However, the above-mentioned
studies were all well designed clinical trials, and all enrolled patients met strict screening
requirements. It should also be highlighted that variations exist between the different
studies, which included patients with distinct genetic patterns and dietary habits, and
clinical trials that were conducted in different geographic locations within the United States
or Europe.

In clinical practice, there are obvious differences in the dietary structure of China and
other countries. Chinese patients often have different physical conditions, and there are
also many tumor patients over 75 years old. Since tumors are systemic diseases, patients
are often accompanied by various complications. Faced with such a complex population,
whether similar results are obtained between cases needs to be further confirmed by a
real-world study. Additionally, a real-world study is expected to enable the development
of more effective combination therapy strategies for immune checkpoint inhibitors and the
advancement of precision medicine strategies.

Previous research to date has focused more on a single tumor type such as melanoma
or lung cancer, rather than the diversity in real-world China. Based on previous results, the
main objectives of the current study were to describe the association between immunother-
apy clinical response and gut microbiota in different Chinese cancer patients, and to explore
whether there are taxonomic signatures of gut microbiota that can predict clinical response
or act as a biomarker.

2. Materials and Methods
2.1. Patients and Medications

This study is a single-center, observational, prospective study. Cancer patients treated
with immunotherapy were prospectively enrolled at the Department of Medical Oncology,
Sir Run Run Shaw Hospital, Zhejiang University between September 2019 and April 2020.
This study was performed with the approval of the Ethics Committee of Sir Run Run Shaw
Hospital, Zhejiang University. The enrollment criteria were as follows: (1) patients aged
18 years and above with adequate organ functions (e.g., neutrophil count ≥ 1.5 × 109/L.
platelet count≥ 100× 109/L, hemoglobin≥ 80 g/L, serum bilirubin≤ 1.5× upper normal
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limit, transaminase ≤ 3 upper normal limit, calculated creatinine clearance ≥ 60 mL/min);
(2) histologically confirmed cancer, regardless of the tissue of origin; (3) had not received
previous immunotherapy; (4) measurable disease by Response Evaluation Criteria in Solid
Tumors, version 1.1 (RECIST version 1.1); (5) no synchronous or metachronous cancer;
(6) had not received antibiotic treatment in the preceding 2 months. The patients with
actively progressing brain metastases or a history of serious autoimmune disease were
excluded from our study. All patients were enrolled after signing an informed consent. All
procedures were carried out in accordance with the Declaration of Helsinki. All patients
underwent a pre-treatment clinical workup.

The feces were collected at baseline (V0) and 6 weeks after the initiation of treatment
(VT). The choice of immunotherapy was at the discretion of the treating oncologist; typically,
Nivolumab was given every 2 weeks, and Pembrolizumab, Sintilimab, Camrelizumab and
Toripalimab were given every 3 weeks. All patients were followed up with a physical
examination, serum tumor marker evaluation, chest computed tomography (CT) and
abdominal CT after every two cycles of immunotherapy. When necessary, a whole-body
bone scan, positron emission tomography/computed tomography (PET/CT) scan, and
cranial and abdominal magnetic resonance imaging (MRI) were additionally performed.
After the completion of all cycles of immunotherapy, each patient was monitored every
3 months until the confirmation of disease progression.

In this study, we regarded the response to immunotherapy at 6 months after the initia-
tion of treatment as the primary endpoint. Eligible patients were classified as responders (R)
or non-responders (NR) based on radiographic assessment using the Response Evaluation
Criteria in Solid Tumors (RECIST 1.1) criteria at 6 months after the initiation of treatment.
Patients with good immunotherapy-related responses were defined as responders with
long-term benefits, i.e., with an objective response (complete or partial response or stable
disease lasting at least 6 months). Patients with progression or stable disease lasting less
than 6 months were defined as non-responders.

Fecal samples were collected at baseline (V0) from each patient before the first ad-
ministration of immunotherapy and 6 weeks after the initiation of treatment (VT). The
fecal samples were stored at −20 ◦C until analysis. The samples represented four groups:
response group before immunotherapy (R.0), response group after immunotherapy (R.T),
non-response group before immunotherapy (NR.0) and non-response group after im-
munotherapy (NR.T).

2.2. DNA Extraction

In 3 days after collection, total DNA was extracted from fecal sample aliquots (150 mg)
using the PowerMax DNA isolation kit (MoBio Laboratories, Carlsbad, CA, USA), following
the manufacturer’s instructions. The tissue lyser (YMY-200, Saiyasi) was used to facilitate
DNA extraction. The quantity and quality of extracted DNA were measured using a
NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA)
and agarose gel electrophoresis, respectively.

2.3. The 16S rRNA Amplicon Pyrosequencing

The extracted DNA was subjected to polymerase chain reaction (PCR) to amplify the
V4 region of bacterial 16S rRNA, using the forward primer 515F (5′-GTGCCAGCMGCCGC
GGTAA-3′) and the reverse primer 806R (5′-GGACTACHVGGGTWTCTAAT-3′). Sample-
specific paired-end 6 bp barcodes were incorporated into the TrueSeq adaptors using PCR,
which was performed prior to multiplex sequencing. PCR amplicons were purified with
Agencourt AMPure XP Beads (Beckman Coulter, Indianapolis, IN, USA) and quantified
using the Qubit dsDNA HS Assay Kit. After quantification, amplicons were pooled in
equal amounts, and paired-end 2 × 150 bp sequencing was performed using the Illumina
NovaSeq6000 platform at the Precision Diagnosis Center, Dian Diagnostics Group Co., Ltd.
(Hangzhou, China).
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2.4. Sequence Analysis

The Quantitative Insights into Microbial Ecology (QIIME, v1.9.0) pipeline was em-
ployed to process the sequencing data. Briefly, raw sequencing reads were assigned to
each sample according to the paired sample barcodes. The low quality reads were fil-
tered. Paired-end reads were assembled using Vsearch V2.4.4 and operational taxonomic
units (OTUs) were identified using Vsearch V2.4.4, as well as dereplication, clustering,
and detection of chimeras. OTU taxonomic classification was conducted by Vsearch by
comparing the representative sequences set against the Greengeen database. An OTU table
was generated to record the abundance of each OTU in each sample and the taxonomy of
these OTUs.

2.5. Bioinformatics and Statistical Analysis

Sequence data analyses were mainly performed using QIIME and R packages (v3.2.0).
OTU-level alpha diversity indices, such as the Chao1 richness estimator, ACE metric
(Abundance-based Coverage Estimator), PD_whole_tree, Shannon diversity index and
Simpson index, were calculated using the OTU table in QIIME. Abundance curves depicting
ranked OTU levels were generated to compare the richness and evenness of OTUs among
samples. Beta diversity analysis was performed to investigate the structural variation of
microbial communities across samples using UniFrac distance metrics and the data were
visualized via principal coordinate analysis (PCoA). Differences in the UniFrac distances
for pairwise comparisons among groups were determined using the Student’s t-test and
the Monte Carlo permutation test with 1000 permutations, and were visualized through
box-and-whisker plots. The significance of differentiation of microbiota structure among
groups was assessed by PERMANOVA (permutational multivariate analysis of variance)
using the R package “vegan”. A Venn diagram was generated to visualize the shared and
unique OTUs among samples or groups using the R package “VennDiagram”, based on the
occurrence of OTUs across samples/groups regardless of their relative abundance. Taxa
abundances at the phylum, class, order, family, genus and species levels were statistically
compared among samples or groups by the Kruskal test from the R stats package. LEfSe
(Linear discriminant analysis effect size) was performed to detect differentially abundant
taxa across groups using the default parameters. Random forest analysis was applied to
discriminate the samples from different groups using the R package “randomForest” with
1000 trees and using all default settings. The expected “baseline” error was also included,
which was obtained by a classifier that simply predicts the most common category label.
Microbial functions were predicted by PICRUSt (phylogenetic investigation of communities
by reconstruction of unobserved states) and BugBase.

2.6. Statistical Analyses

Categorical baseline variables were compared using the Fisher’s exact test or the Chi-
squared test and continuous baseline variables were compared using the t-test. Associations
between microbiota dominant profiles and immunological parameters were assessed with
the Spearman’s correlation coefficient and a two-sided Wilcoxon test. Analyses were
performed with SPSS software (version 23.0). A p < 0.05 was considered statistically
significant. No adjustment for multiple comparisons was made because of the exploratory
component of the analyses.

3. Results
3.1. Characteristics of the Study Population

A total of 144 fecal samples were submitted for 16S rRNA gene sequencing from
72 patients with advanced cancer (III–IV stage) before and after receiving immunotherapy.
The clinical characteristics of patients are listed in Table 1. The median age of patients at
diagnosis was 63 years (range 29–81 years). Of the patients, 51 (70.83%) were male and
21 (29.17%) were female. There were 18 cases (25%) diagnosed as non-squamous non-small
cell lung cancer, 14 cases (19.44%) of lung squamous cell carcinoma, 7 cases (9.72%) of
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hepatocellular carcinoma, 5 cases (6.94%) of gastric cancer, 5 cases (6.94%) of colorectal
carcinoma, 5 cases (6.94%) of melanoma, 4 cases (5.56%) of nasopharyngeal carcinoma,
3 cases (4.17%) of cervical cancer, 2 cases (2.78%) of small-cell lung cancer, and other cancers
(1 case of laryngeal cancer, 1 case of osteosarcoma, 1 case of renal pelvic carcinoma, 1 case
of bladder cancer, 1 case of pancreatic cancer, 1 case of esophageal cancer, 1 case of ureteral
cancer, 1 case of mediastinal carcinoma, and 1 case of cholangiocarcinoma). As for therapy,
45 cases (62.5%) had received chemotherapy, 28 cases (38.89%) had received radiotherapy,
41 cases (56.94%) had undergone surgery, and 26 cases (36.11%) had received targeted
therapy prior to immunotherapy. In addition, 56 cases (77.78%) underwent immunotherapy
combined with chemotherapy. All patients had an ECOG PS of zero or one.

Table 1. The characteristics of patients at baseline (n = 72).

Baseline Characteristics n (%)

Age

Median (range) 63 (29–81)

Gender

Male 51 (70.83%)

Female 21 (29.17%)

Cancer

Non-squamous non-small cell lung cancer 18 (25.00%)

Lung squamous cell carcinoma 14 (19.44%)

Hepatocellular carcinoma 7 (9.72%)

Gastric cancer 5 (6.94%)

Colorectal carcinoma 5 (6.94%)

Melanoma 5 (6.94%)

Nasopharyngeal carcinoma 4 (5.56%)

Cervical cancer 3 (4.17%)

Small-cell lung cancer 2 (2.78%)

Other cancer 9 (12.50%)

Immunotherapy monotherapy or combined with chemotherapy

Immunotherapy monotherapy 16 (22.22%)

Immunotherapy combined with chemotherapy 56 (77.78%)

Received chemotherapy prior to immunotherapy

Yes 45 (62.50%)

No 27 (37.50%)

Received radiotherapy prior to immunotherapy

Yes 28 (38.89%)

No 44 (61.11%)

Underwent surgery prior to immunotherapy

Yes 41 (56.94%)

No 31 (43.06%)

Received targeted-therapy prior to immunotherapy

Yes 26 (36.11%)

No 46 (63.89%)



J. Clin. Med. 2022, 11, 5479 6 of 14

We set the response to immunotherapy at 6 months after the initiation of treatment
as the cut-off valve. The patients were classified as responders (n = 33) group or non-
responders (n = 39). We compared the baseline characteristics between the two groups
and no significant differences were observed. The characteristics of the responders and
non-responders, and the results of statistical analysis, are summarized in Table 2. All
p values were >0.05, indicating no significant differences between the two groups.

Table 2. The characteristics of responders and non-responders at baseline (n = 72).

Responders (n = 33) Non-Responders (n = 39) p Value

Age

Median (range) 66 (42–81) 61 (29–79)

Gender 0.059

Male 27 (81.82%) 24 (61.54%)

Female 6 (18.18%) 15 (38.46%)

Cancer 0.639

Non-squamous non-small cell lung cancer 8 (24.24%) 10 (25.64%)

Lung squamous cell carcinoma 6 (18.18%) 8 (20.51%)

Hepatocellular carcinoma 2 (6.06%) 5 (12.82%)

Gastric cancer 3 (9.09%) 2 (5.13%)

Colorectal carcinoma 1 (3.03%) 4 (10.26%)

Melanoma 2 (6.06%) 3 (7.69%)

Nasopharyngeal carcinoma 3 (9.09%) 1 (2.56%)

Cervical cancer 1 (3.03%) 2 (5.13%)

Small-cell lung cancer 2 (6.06%) 0 (0.00%)

Other cancer 5 (15.15%) 4 (10.26%)

Immunotherapy monotherapy or combined with chemotherapy 0.850

Immunotherapy monotherapy 7 (21.21%) 9 (23.08%)

Immunotherapy combined with chemotherapy 26 (78.79%) 30 (76.92%)

Received chemotherapy prior to immunotherapy 0.077

Yes 17 (51.52%) 28 (71.79%)

No 16 (48.48%) 11 (28.21%)

Received radiotherapy prior to immunotherapy 0.169

Yes 10 (30.30%) 18 (46.15%)

No 23 (69.70%) 21 (53.85%)

Underwent surgery prior to immunotherapy 0.705

Yes 18 (54.55%) 23 (58.97%)

No 15 (45.45%) 16 (41.03%)

Received targeted-therapy prior to immunotherapy 0.054

Yes 8 (24.24%) 18 (46.15%)

No 25 (75.76%) 21 (53.85%)
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3.2. Taxonomic Profiles of Cancer Patients Pre- and Post-Immunotherapy

From all 144 fecal samples, 123,970 raw reads were generated and filtered to 115,656 high
quality reads of the 16S rRNA gene (V4) region, per sample. The datasets were classi-
fied into 9708 OTUs, with 5393 OTUs being common, 7900 OTUs with R.0, 7662 OTUs
with R.T, 7578 OTUs with NR.0, and 7982 OTUs with NR.T (Figure 1A). At the phylum
level, Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria were the main compo-
nents of the microbiota in the four groups, accounting for 98% of the total (Figure 1B).
F_Bacteroidaceae (22.55–25.26%), f_Lachnospiraceae (12.51–15.68%) and f_Ruminococcaceae
(11.89–16.01%) were the dominating microbiota in the four groups. In individual groups,
f_Prevotellaceae (10.90–12.03%) was abundant in R.0 and R.T, f_Veillonellaceae (9.65%) was
abundant in NR.0, and f_Enterobacteriaceae (11.50%) was abundant in NR.T. At the genus
level, g_Bacteroides (22.55–25.26%) and g_Prevotella (7.44–12.03%) were the dominating
microbiota in the four groups. In the individual groups, g_Faecalibacterium (5.01%) and
g_Megamonas (3.46%) were abundant in R.0, g_Faecalibacterium (4.29%) and g_Bifidobacterium
(2.66%) were abundant in R.T, g_Faecalibacterium (4.78%) and g_Bifidobacterium (3.67%) were
abundant in NR.0, and g_Veillonella (3.43%) and g_Lachnospira (2.98%) in were abundant
NR.T (Figure 1C). The dominating bacteria at the family level were not determined, because
of failing classification at the genus level.
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3.3. Overall Microbial Richness and Diversity of Cancer Patients

We found that neither α-diversity nor β-diversity was significantly different the
between four groups. However, there was an obvious increase in the PD_whole_tree,
Chao1, Observed_species and Shannon index of R.0 and R.T compared with NR.0 and
NR.T. Interestingly, the levels of these four indices were elevated after immunotherapy
(Table 3).
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Table 3. The indices of α-diversity analysis.

PD_Whole_Tree Chao1 Goods_Coverage Observed_Species Shannon Simpson

R.T 20.07 677.15 0.94 464 4.89 0.90

R.0 18.77 594.96 0.94 414 4.95 0.90

NR.0 17.11 555.62 0.94 372 4.75 0.90

NR.T 19.19 627.71 0.95 433 4.75 0.88

In the PCoA results, different colored dots represent different groups. PCoA could not
completely differentiate between the four groups of patients (PC1 = 37.58%, PC2 = 11.84%,
Figure 2).
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3.4. Significantly Enriched Microbiome and Functional Pathways in the Responder Group

Before immunotherapy, the results of LEfSe showed that the Archaea, Lentisphaerae,
Victivallaceae, Victivallales, Lentisphaeria, Methanobacteriaceae, Methanobacteria, Eur-
yarchaeota, Methanobrevibacter, and Methanobacteriales were significantly enriched in
R.0, and Clostridiaceae was significantly enriched in NR.0 (p < 0.05, Figure 3A). The re-
sponders were compared before and after immunotherapy; Lachnospiraceae, Thermus
were significantly enriched in R.T, and Leuconostoc was significantly enriched in R.0
(p < 0.05, Figure 3B). The function prediction of Picrust showed that L3_Stilbenoid diaryl-
heptanoid and gingerol biosynthesis were significantly enriched in R.0 compared with NR.0
(p < 0.05, Figure 3C). When the responders were compared before and after immunotherapy,
L3_Glycosaminoglycan degradation was significantly enriched in R.0 (p < 0.05, Figure 3D).
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ROC analysis showed that the microbiota (R.0, the area under the receiver operating char-
acteristic curve (AUC) = 0.65; R.T, AUC = 0.70; NR.0, AUC = 0.62; NR.T, AUC = 0.64) had
obvious diagnostic value in differentiating the four groups of cancer patients (Figure 3E).

1 
 

 
Figure 3. LEfSe analysis results and Picrust prediction in each group. (A) LEfSe analysis with
significantly different representations in the R.0 group and NR.0 group. (B) LEfSe analysis with
significantly different representations in the R.0 group and R.T group. (C) Picrust prediction of
functional differences in the R.0 group and NR.0 group. (D) Picrust prediction of functional differences
in the R.0 group and R.T group. (E) The AUC based on the microbiome for the R.0 group, R.T group,
NR.0 group and NR.T group.

3.5. The Microbial Network of the Gut Microbiome

Based on our data, 16 phyla were used for the network analysis, among which 20
showed a positive correlation and 16 showed a negative correlation. Acidobacteria was
most positively correlated with TM7, and the correlation coefficient was 0.98. Bacteroidetes
showed the strongest negative correlation with Proteobacteria, with a correlation coefficient
of −0.57. Considering the main composition of the gut microbiota, Bacteroidetes was nega-
tively correlated with Firmicutes (correlation coefficient = −0.49), Proteobacteria (correlation
coefficient = −0.57), and Actinobacteria (correlation coefficient = −0.57). Proteobacteria was
positively correlated with Actinobacteria (correlation coefficient = 0.16) (Figure 4).
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4. Discussion

Multiple studies have highlighted the role of the gut microbiome in modulating
immunotherapy efficacy in epithelial tumors, such as melanoma [5,7,8]. A previous study
reported that the gut microbiome could impact on CpG–oligonucleotide immunotherapy
responses, which in turn activated innate immune cells through TLR9 [9]. Investigators then
focused on the role of the gut microbiome in shaping the T helper cell profile. The generation
of specific subsets of Th17 and memory Th1 cells could modulate immunotherapy efficacy.
Vetizou and colleagues showed that the efficacy of anti-CTLA-4 therapy was dependent
on B. fragilis, B. thetaiotaomicron and Burkholderiales populations, with T cell responses
specific for B. fragilis and B. thetaiotamicron being associated with immunotherapeutic
efficacy. In addition, the reintroduction of B. fragilis cells or the adoptive transfer of
B. fragilis-specific T cells could restore the efficacy of immunotherapy and reduce immune-
mediated colitis through activation of Th1 cells. The cross-reactivity to bacterial antigens
and tumor neo-antigens could activate the Th1 cells [10]. In terms of PD-1 and PD-L1
inhibitors, differences in responses have been linked to the gut microbiome composition.
In particular, an increased abundance of A. muciniphila and Enterococcus hirae has been
associated with anti-PD-1 inhibitor immunotherapy responders when compared with non-
responders [8]. These responder and non-responder phenotypes have also been shown to
be transmissible, as mice receiving a fecal microbiome transplants subsequently acquire
donor responder or non-responder efficacy. The non-responsive phenotype can be rescued
by the addition of A. muciniphila alone or in combination with E. hirae.

The findings from our study of the association between the gut microbiome and the
immunotherapy response in advanced cancer patients are consistent with the results of
previous studies [11–13]. Several studies examining the relationship between the diversity
and composition of the gut microbiome and the clinical response during immunotherapy
have identified that dysbiosis of the gut microbiome was related to adverse events and
the clinical response to cancer immunotherapy [14]. These studies suggested that the
gut microbiome prior to cancer treatment could be used as a predictor of the clinical re-
sponse and recommended that assessment of the gut microbiome in cancer immunotherapy
could improve patient care [15,16]. Extensive research revealed the synergistic activity of
bacteria genera including A. muciniphila, Alistipes indistinctus, Bacteroides, Bifidobacterium,
Burkholderia cepacia, Collinsella aerofaciens, and Enterococcus, as well as Faecalibacterium and
Gemmiger formicilis, in immunotherapy. However, Blautia obeum, Roseburia intestinalis, and
some combination of antibiotics compromised the efficacy of immunotherapy [8,17,18].
Similarly, a number of clinical studies have demonstrated a direct link between dysbiosis of
the gut microbiome and cancer pathogenesis [19–21]. It is essential to develop a potential
predictive biomarker; however, variations exist in the composition of the microbiome be-
tween studies, suggesting that there may be other unidentified factors that affect microbial
diversity. Perhaps, a combination of commensal microbiome structure, tumor genomics,
germline genetics, and other elements in a multi-parameter model may predict the clinical
response to immunotherapy. Many clinicians and researchers rightly point out that further
well-designed randomized controlled trials are required to explore the causal effects of the
gut microbiome in cancer immunotherapy.

Lung cancer accounted for 47.2% of the total patients in our study. In a previous
study, the diversity and stability of the gut microbiome appeared to be a biological marker
for sensitivity to immunotherapy in lung cancer patients, and some specific species were
found to predict the immunotherapy response. In the Checkmate 078 and Checkmate 870
studies of 37 patients with advanced NSCLC treated with nivolumab, investigators found
that patients who responded to nivolumab had higher gut microbiome diversity at the
beginning of treatment and a more stable gut microbiome composition during treatment.
The enrichment of Bifidobacterium longum, Alistipes putredinis and Prevotella copri was as-
sociated with improved immunotherapy efficacy [22]. In addition, Song and colleagues
found that higher β-diversity in the gut microbiome of lung cancer patients treated with
immunotherapy predicted longer progression-free survival (PFS), and Parabacteroides and
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Methanobrevibacter predicted better cancer control [23]. Another study found that germ-free
or antibiotic-treated mice transplanted with the gut microbiome from immunotherapy re-
sponders showed higher antitumor activities to PD-1 inhibitors than mice transplanted with
non-responders’ feces. Sivan and coworkers found that mice administered Bifidobacterium
presented with enhanced dendritic cell function and a concomitant intensified accumula-
tion of CD8(+) T cells in the tumor beds, and combination treatment almost eliminated
tumor outgrowth [4]. These results indicated that manipulation of the gut microbiome has
the potential to enhance the efficacy of immunotherapy in lung cancer.

To examine the question of causal links between the gut microbiome and the response
to immunotherapy, an additional review of the effects of gut microbiome modulation
with fecal microbiome transplantation on immunotherapy was undertaken. Some studies
investigated the effect of fecal microbiome transplantation in bacteria-depleted mice from
melanoma immunotherapy responders, and the results indicated that the gut microbiome
is a potential factor in modulating the effectiveness of immunotherapy. More recently, two
clinical trials demonstrated that modulation of the gut microbiome with fecal microbiome
transplantation from donors receiving anti-PD-1 inhibitor immunotherapy who showed a
complete response into patients with refractory metastatic melanoma was safe and capable
of enhancing the efficacy of cancer therapies [24,25]. Despite the differing compositions
of the fecal microbiome transplants from the donors in these two studies, a subgroup of
refractory metastatic melanoma patients (30% (3/10) and 40% (6/15)) demonstrated clinical
responses in both studies [24,25]. Immunotherapy non-responders may not respond to
fecal microbiome transplants for various reasons, including (i) an inability to respond to the
tumor regardless of the microbiome composition because of the patient’s immune-deficient
status or lack of tumor immunogenicity, (ii) an absence of taxa needed for immunotherapy
effectiveness in the fecal microbiome transplant, or (iii) failure of the fecal microbiome
transplant to successfully implant into the recipient.

Fecal microbiome transplant clinical trials have shown that this procedure is safe.
Davar and colleagues, who used a single fecal microbiome transplant via colonoscopy
at the beginning of the treatment protocol, reported good safety results with −72.9% of
the immunotherapy-related adverse events (irAEs) being mild (grade I) and only three
patients showing severe, grade III irAEs (two with fatigue, one with neuropathy) [25].
Another study that used colonoscopy at the beginning of the treatment protocol followed
by repeated fecal microbiome transplant via stool capsules every 14 days reported no
grade II or above irAEs, even in patients who developed grade III irAEs with previous
immunotherapy [24,26]. These findings suggest that the combination of fecal microbiome
transplants and immunotherapy is not only a more effective treatment but may also have
a better safety profile. A treatment regimen with this type of duality, i.e., combining
available Food and Drug Administration-approved, commonly used, oncological drugs
with a highly available and easily re-produced organic compound (human feces), has
sparked hope among both clinicians and cancer patients.

Several species associated with body mass index (BMI) have also been implicated in
oncogenesis and immune dysregulation. Fusobacteria, a bacterial phylum with a role in
oncogenesis, has been found to be elevated in the saliva and intestine of individuals with
obesity [27,28]. Interestingly, Fusobacteria may activate NF-κB and other proinflammatory
components, such as interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), tumor
necrosis factor-α (TNF-α), matrix metalloproteinase 3 and cyclooxygenase-2, that are
associated with intestinal carcinogenesis [29].

Immunotherapy has been a hot spot in tumor research. Real-world studies can provide
a more comprehensive understanding of the clinical situation and beneficiary groups. The
combination of immunotherapy and real-world study can provide more useful ideas and
evidence for clinical treatment. At present, there are as many as 14 kinds of immune
checkpoint inhibitors on the market in China. From the perspective of pharmacoeconomics,
the formulation of immunotherapy treatment plans in China needs to take into account
the patient’s work, living habits, economic level, and dietary habit, etc. Considering the
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complexity of immunotherapy regimens, a real-world study can more truly demonstrate the
complex situation of the impact of gut microbiota on a patient’s response in actual clinical
practice. Our study of a real-world patients with advanced various cancers who received
immunotherapy treatment identified clinically relevant findings that may aid decision
making: (1) Patients with non-responder gut microbiome phenotypes did not benefit from
immunotherapy. So, the use of immunotherapy may increase these patients’ financial
burden. (2) For those potentially at risk of early progression, we will explore the use of gut
microbiome modulation to enhance the efficacy of immunotherapy in follow-up research.

Our study had several limitations. First, our study was conducted with a hetero-
geneous samples of cancer patients diagnosed with NSCLC, CRC, GC, melanoma, and
HCC, among others. The composition of the human gut microbiome can be affected by
various factors including diet, lifestyle, stress, environment and genetics, which not only
complicates comparisons with animal model studies, but also needs to be controlled, as
it may contribute toward population differences in identified differential microbial taxa.
However, this heterogeneity may mean that the results are more applicable and reflective
of the real-life cancer patient. Furthermore, our study analyzed fecal samples using a 16S
rRNA sequencing method that can measure the composition of the gut microbiome from
the phylum to genus level. To identify and validate a specific gut microbiome within a
common microbiota community that contributes a direct link to immunotherapy responses
in cancer patients, future international multi-center trials will be required to provide com-
prehensive and reliable data utilizing a standardized method of fecal sample analysis.
Taking into account these limitations, studies with larger sample sizes are required to
provide convincing evidence that can be implemented in clinical practice.

5. Conclusions

Our study demonstrated that the gut microbiota is associated with the clinical response
to immunotherapy in various cancer patients in China. The gut microbiota of Archaea,
Lentisphaerae, Victivallaceae, etc., as well as the function of L3_Stilbenoid diarylheptanoid,
gingerol biosynthesis, and L3_Glycosaminoglycan degradation were significantly enriched
in the response group before immunotherapy. These taxonomic signatures could act as
effective biomarkers to predict the clinical response. Multilevel and multidimensional
research designs integrating randomized controlled trials and real-world studies will
become a part of personalized cancer therapy in the future.

Author Contributions: Conceptualization, X.C.; Data curation, X.C., L.G., Y.D. and J.S.; Formal
analysis, X.C., J.W., L.G., Y.D. and J.S.; Funding acquisition, X.C.; Investigation, X.C. and J.W.;
Methodology, X.C. and J.W.; Project administration, X.C.; Resources, X.C.; Writing—original draft,
X.C. and J.W.; Writing—review & editing, H.P., Z.Y. and Y.F. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was mainly supported by the National Key Research and Development Program
of China (Grant numbers 2021YFA1301100, 2021YPA1301104), and partly supported by Natural
Science Foundation of Zhejiang Province [Grant Numbers LY13H160013 and LQ16H160003], Health
Commission of Zhejiang Province [Grant Number 2016KYA115], Medical Science and Technology
Project of Zhejiang Province [Grant Numbers 2016ZDB007, 2017197380, and 2017ZD021], CSCO
Health Project [Grant numbers Y-QL2019-0316 and Y-MSD2020-0314], the Zhejiang Medical In-
novative Discipline Construction Project-2016, and China International Medical Fund Exchange
Conference [XS022].

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Ethics Committee of Sir Run Run Shaw Hospital,
Zhejiang University (protocol code 20220209-331).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



J. Clin. Med. 2022, 11, 5479 13 of 14

References
1. Kalbasi, A.; Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 2020, 20, 25–39. [CrossRef]
2. Clavel, T.; Gomes-Neto, J.C.; Lagkouvardos, I.; Ramer-Tait, A.E. Deciphering interactions between the gut microbiota and the

immune system via microbial cultivation and minimal microbiomes. Immunol. Rev. 2017, 279, 8–22. [CrossRef] [PubMed]
3. Zitvogel, L.; Ma, Y.; Raoult, D.; Kroemer, G.; Gajewski, T.F. The microbiome in cancer immunotherapy: Diagnostic tools and

therapeutic strategies. Science 2018, 359, 1366–1370. [CrossRef] [PubMed]
4. Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Lei, Y.M.; Jabri, B.; Alegre,

M.-L.; et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015, 350,
1084–1089. [CrossRef] [PubMed]

5. Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M.-L.; Luke, J.J.; Gajewski, T.F. The commensal microbiome is
associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018, 359, 104–108. [CrossRef] [PubMed]

6. Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.;
Wei, S.C.; et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018, 359,
97–103. [CrossRef]

7. Frankel, A.E.; Coughlin, L.A.; Kim, J.; Froehlich, T.W.; Xie, Y.; Frenkel, E.P.; Koh, A.Y. Metagenomic Shotgun Sequencing and
Unbiased Metabolomic Profiling Identify Specific Human Gut Microbiota and Metabolites Associated with Immune Checkpoint
Therapy Efficacy in Melanoma Patients. Neoplasia 2017, 19, 848–855. [CrossRef] [PubMed]

8. Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti,
M.P.; et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018, 359, 91–97.
[CrossRef] [PubMed]

9. Iida, N.; Dzutsev, A.; Stewart, C.A.; Smith, L.; Bouladoux, N.; Weingarten, R.A.; Molina, D.A.; Salcedo, R.; Back, T.; Cramer, S.; et al.
Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013, 342, 967–970.
[CrossRef]

10. Cramer, P.; Bresalier, R.S. Gastrointestinal and Hepatic Complications of Immune Checkpoint Inhibitors. Curr. Gastroenterol. Rep.
2017, 19, 3. [CrossRef] [PubMed]

11. Aarnoutse, R.; Ziemons, J.; Penders, J.; Rensen, S.S.; De Vos-Geelen, J.; Smidt, M.L. The Clinical Link between Human Intestinal
Microbiota and Systemic Cancer Therapy. Int. J. Mol. Sci. 2019, 20, 4145. [CrossRef] [PubMed]

12. Ervin, S.M.; Ramanan, S.V.; Bhatt, A.P. Relationship Between the Gut Microbiome and Systemic Chemotherapy. Dig. Dis. Sci.
2020, 65, 874–884. [CrossRef] [PubMed]

13. Secombe, K.R.; Coller, J.K.; Gibson, R.J.; Wardill, H.R.; Bowen, J.M. The bidirectional interaction of the gut microbiome and the
innate immune system: Implications for chemotherapy-induced gastrointestinal toxicity. Int. J. Cancer 2019, 144, 2365–2376.
[CrossRef]

14. Rezasoltani, S.; Yadegar, A.; Aghdaei, H.A.; Zali, M.R. Modulatory effects of gut microbiome in cancer immunotherapy: A novel
paradigm for blockade of immune checkpoint inhibitors. Cancer Med. 2021, 10, 1141–1154. [CrossRef] [PubMed]

15. Shui, L.; Yang, X.; Li, J.; Yi, C.; Sun, Q.; Zhu, H. Gut Microbiome as a Potential Factor for Modulating Resistance to Cancer
Immunotherapy. Front. Immunol. 2020, 10, 2989. [CrossRef] [PubMed]

16. Sims, T.T.; El Alam, M.B.; Karpinets, T.V.; Dorta-Estremera, S.; Hegde, V.L.; Nookala, S.; Yoshida-Court, K.; Wu, X.; Biegert,
G.W.G.; Medrano, A.Y.D.; et al. Gut microbiome diversity is an independent predictor of survival in cervical cancer patients
receiving chemoradiation. Commun. Biol. 2021, 4, 237. [CrossRef]

17. Pushalkar, S.; Hundeyin, M.; Daley, D.; Zambirinis, C.P.; Kurz, E.; Mishra, A.; Mohan, N.; Aykut, B.; Usyk, M.; Torres, L.E.; et al.
The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov.
2018, 8, 403–416. [CrossRef] [PubMed]

18. Cristiana, G.; Vicari, A.P.; Sabina, S.; Giorgio, T.; Colombo, M.P. Redirecting in vivo elicited tumor infiltrating macrophages and
dendritic cells towards tumor rejection. Cancer Res. 2005, 65, 3437–3446.

19. Sheng, Q.; Du, H.; Cheng, X.; Cheng, X.; Tang, Y.; Pan, L.; Wang, Q.; Lin, J. Characteristics of fecal gut microbiota in patients with
colorectal cancer at different stages and different sites. Oncol. Lett. 2019, 18, 4834–4844. [CrossRef] [PubMed]

20. Dahmus, J.D.; Kotler, D.L.; Kastenberg, D.M.; Kistler, C.A. The gut microbiome and colorectal cancer: A review of bacterial
pathogenesis. J. Gastrointest. Oncol. 2018, 9, 769–777. [CrossRef]

21. Vivarelli, S.; Salemi, R.; Candido, S.; Falzone, L.; Santagati, M.; Stefani, S.; Torino, F.; Banna, G.L.; Tonini, G.; Libra, M. Gut
Microbiota and Cancer: From Pathogenesis to Therapy. Cancers 2019, 11, 38. [CrossRef]

22. Jin, Y.; Dong, H.; Xia, L.; Yang, Y.; Zhu, Y.; Shen, Y.; Zheng, H.; Yao, C.; Wang, Y.; Lu, S. The Diversity of Gut Microbiome is
Associated with Favorable Responses to Anti-Programmed Death 1 Immunotherapy in Chinese Patients With NSCLC. J. Thorac.
Oncol. 2019, 14, 1378–1389. [CrossRef]

23. Song, P.; Yang, D.; Wang, H.; Cui, X.; Si, X.; Zhang, X.; Zhang, L. Relationship between intestinal flora structure and metabolite
analysis and immunotherapy efficacy in Chinese NSCLC patients. Thorac. Cancer 2020, 11, 1621–1632. [CrossRef] [PubMed]

24. Baruch, E.N.; Youngster, I.; Ben-Betzalel, G.; Ortenberg, R.; Lahat, A.; Katz, L.; Adler, K.; Dick-Necula, D.; Raskin, S.;
Bloch, N.; et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021,
371, 602–609. [CrossRef]

http://doi.org/10.1038/s41577-019-0218-4
http://doi.org/10.1111/imr.12578
http://www.ncbi.nlm.nih.gov/pubmed/28856739
http://doi.org/10.1126/science.aar6918
http://www.ncbi.nlm.nih.gov/pubmed/29567708
http://doi.org/10.1126/science.aac4255
http://www.ncbi.nlm.nih.gov/pubmed/26541606
http://doi.org/10.1126/science.aao3290
http://www.ncbi.nlm.nih.gov/pubmed/29302014
http://doi.org/10.1126/science.aan4236
http://doi.org/10.1016/j.neo.2017.08.004
http://www.ncbi.nlm.nih.gov/pubmed/28923537
http://doi.org/10.1126/science.aan3706
http://www.ncbi.nlm.nih.gov/pubmed/29097494
http://doi.org/10.1126/science.1240527
http://doi.org/10.1007/s11894-017-0540-6
http://www.ncbi.nlm.nih.gov/pubmed/28124291
http://doi.org/10.3390/ijms20174145
http://www.ncbi.nlm.nih.gov/pubmed/31450659
http://doi.org/10.1007/s10620-020-06119-3
http://www.ncbi.nlm.nih.gov/pubmed/32026181
http://doi.org/10.1002/ijc.31836
http://doi.org/10.1002/cam4.3694
http://www.ncbi.nlm.nih.gov/pubmed/33369247
http://doi.org/10.3389/fimmu.2019.02989
http://www.ncbi.nlm.nih.gov/pubmed/32010123
http://doi.org/10.1038/s42003-021-01741-x
http://doi.org/10.1158/2159-8290.CD-17-1134
http://www.ncbi.nlm.nih.gov/pubmed/29567829
http://doi.org/10.3892/ol.2019.10841
http://www.ncbi.nlm.nih.gov/pubmed/31611994
http://doi.org/10.21037/jgo.2018.04.07
http://doi.org/10.3390/cancers11010038
http://doi.org/10.1016/j.jtho.2019.04.007
http://doi.org/10.1111/1759-7714.13442
http://www.ncbi.nlm.nih.gov/pubmed/32329229
http://doi.org/10.1126/science.abb5920


J. Clin. Med. 2022, 11, 5479 14 of 14

25. Davar, D.; Dzutsev, A.K.; McCulloch, J.A.; Rodrigues, R.R.; Chauvin, J.-M.; Morrison, R.M.; Deblasio, R.N.; Menna, C.; Ding, Q.;
Pagliano, O.; et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science 2021, 371,
595–602. [CrossRef] [PubMed]

26. Wang, Y.; Wiesnoski, D.H.; Helmink, B.A.; Gopalakrishnan, V.; Choi, K.; DuPont, H.L.; Jiang, Z.D.; Abu-Sbeih, H.; Sanchez, C.A.;
Chang, C.C.; et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat. Med. 2018,
24, 1804–1808. [CrossRef]

27. Yang, Y.; Weng, W.; Peng, J.; Hong, L.; Yang, L.; Toiyama, Y.; Gao, R.; Liu, M.; Yin, M.; Pan, C.; et al. Fusobacterium nucleatum
Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling
to Nuclear Factor-κB, and Up-regulating Expression of MicroRNA-21. Gastroenterology 2017, 152, 851–866. [CrossRef] [PubMed]

28. Chen, Y.; Peng, Y.; Yu, J.; Chen, T.; Wu, Y.; Shi, L.; Li, Q.; Wu, J.; Fu, X. Invasive Fusobacterium nucleatum activates beta-catenin
signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget 2017, 8, 31802–31814. [CrossRef] [PubMed]

29. Berger, N.A. Obesity and cancer pathogenesis. Ann. N. Y. Acad. Sci. 2014, 1311, 57–76. [CrossRef] [PubMed]

http://doi.org/10.1126/science.abf3363
http://www.ncbi.nlm.nih.gov/pubmed/33542131
http://doi.org/10.1038/s41591-018-0238-9
http://doi.org/10.1053/j.gastro.2016.11.018
http://www.ncbi.nlm.nih.gov/pubmed/27876571
http://doi.org/10.18632/oncotarget.15992
http://www.ncbi.nlm.nih.gov/pubmed/28423670
http://doi.org/10.1111/nyas.12416
http://www.ncbi.nlm.nih.gov/pubmed/24725147

	Introduction 
	Materials and Methods 
	Patients and Medications 
	DNA Extraction 
	The 16S rRNA Amplicon Pyrosequencing 
	Sequence Analysis 
	Bioinformatics and Statistical Analysis 
	Statistical Analyses 

	Results 
	Characteristics of the Study Population 
	Taxonomic Profiles of Cancer Patients Pre- and Post-Immunotherapy 
	Overall Microbial Richness and Diversity of Cancer Patients 
	Significantly Enriched Microbiome and Functional Pathways in the Responder Group 
	The Microbial Network of the Gut Microbiome 

	Discussion 
	Conclusions 
	References

