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Abstract: Glioblastoma multiforme (GBM) carries a poor prognosis and usually presents with
heterogenous regions of a necrotic core, solid part, peritumoral tissue, and peritumoral edema.
Accurate demarcation on magnetic resonance imaging (MRI) between the active tumor region and
perifocal edematous extension is essential for planning stereotactic biopsy, GBM resection, and
radiotherapy. We established a set of radiomics features to efficiently classify patients with GBM
and retrieved cerebral multiparametric MRI, including contrast-enhanced T1-weighted (T1-CE),
T2-weighted, T2-weighted fluid-attenuated inversion recovery, and apparent diffusion coefficient
images from local patients with GBM. A total of 1316 features on the raw MR images were selected
for each annotated area. A leave-one-out cross-validation was performed on the whole dataset, the
different machine learning and deep learning techniques tested; random forest achieved the best
performance (average accuracy: 93.6% necrosis, 90.4% solid part, 95.8% peritumoral tissue, and
90.4% peritumoral edema). The features from the enhancing tumor and the tumor shape elongation
of peritumoral edema region for high-risk groups from T1-CE. The multiparametric MRI-based
radiomics model showed the efficient classification of tumor subregions of GBM and suggests that
prognostic radiomic features from a routine MRI exam may also be significantly associated with key
biological processes that affect the response to chemotherapy in GBM.

Keywords: glioblastoma; MRI; quantitative imaging; oncologic imaging; radiomics; texture analysis;
ground truth; machine learning; precision medicine

1. Introduction

Glioblastoma multiforme (GBM) is characterized by its rapid growth and infiltration
into the surrounding brain parenchyma. In adults, it occurs most often in the cerebral
hemispheres, especially in the frontal and temporal lobes. The survival rate of brain tumor
patients is only approximately 14.2 months after diagnosis [1]. The 2016 World Health
Organization Classification of Tumors of the Central Nervous System (CNS WHO) presents
a major restructuring of the diffuse gliomas and incorporates new entities defined using
both histological and molecular features, including glioblastoma, isocitrate dehydrogenase
(IDH)-mutant status, and 1p/19q codeletion [2].

Several imaging modalities can help diagnose and locate the recurrence of brain
tumors, such as computed tomography (CT), magnetic resonance imaging (MRI), and
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positron emission tomography (PET) scans. Dynamic contrast-enhanced (DCE) CT/MR
perfusion provides functional information about the neoangiogenesis of the tumor. Diffu-
sion MR imaging can enunciate tumor cellularity and the integrity of white matter. MR
spectroscopy (MRS) is used to study the chemical profile of tumors and oncogene markers
such as IDH mutation. Of these, conventional MRI images providing multi-parametric
tissue contrast are the most commonly used modality to assess the treatment response
compared with other imaging modalities. Brain MRI not only helps describe the tumor
location and morphology for semiautomated contouring but also offers ground truth data
for machine learning.

Radiomics is an emerging technique for the characterization of tumor phenotypes
through extracting and quantifying thousands of imaging features such as geometrical
and morphological characteristics, cluster shade, intensity, diffusion kurtosis, and texture
or wavelet ascribed to the cancer phenotype [3]. This technique is becoming increas-
ingly popular in data mining, especially with the urgent need for medical imaging anal-
ysis. Briefly, an optimal radiomics analysis involves four steps: (1) imaging acquisition,
(2) mark up or segmentation, (3) feature extraction, and (4) statistical analysis. The result-
ing features can be used to inform imaging diagnosis, predictive, and prognostic factors
for therapy response in oncology [4–6]. In addition, combining anatomical and functional
imaging to analyze radiomics features can help in the classification of imaging biomarkers
in oncology. The peculiarity of GBM is its heterogeneous regions containing different cell
types (including blood vessels) and areas of dead cells (necrosis) that are locally invasive,
and these characteristics can be used for feature extraction.

Recently, machine learning and deep learning models have been developed to analyze
the radiomic features of, and classify, GBM regions. Such computational models in biomed-
ical imaging aim to learn information directly from data and can have various applications,
such as sub-typing in diagnosis and determining tumor margins for surgical planning. In
2017, segmented labels and radiomics features of high- and low-grade glioma datasets of
The Cancer Genome Atlas (TCGA) (i.e., TCGA-GBM and TCGA-LGG) were released [7],
which attracted considerable attention to this segmentation task, and numerous models
have been proposed, such as convolutional neural networks [8] and U-net architecture [9].
To obtain the radiomic features affecting GBM segmentation, Lu et al. [10] proposed a
support vector machine framework for the three-layer classification of GBMs. Wu et al. [11]
developed a random forest-based approach for IDH genotype prediction using radiomic
features. Different analyses have been performed to establish optimal radiomics features for
GBM imaging features to predict molecular subtypes and the prognosis of tumor [12–14].

In this study, we developed a radiomics-based approach to explore which radiomic
features and machine learning algorithms are the most helpful in the tissue classification
of patients with GBM. Radiomic features were computed on four different GBM tissue
regions—necrosis, solid part, peritumoral tissue, and peritumoral edema. Classification
and feature selection were performed using different machine learning and deep learning
techniques. We established important radiomic features, which provide a better under-
standing of GBM classification and novel clinical insights into GBM characteristics for
personalized precision medicine.

2. Materials and Methods

A multiparametric MRI-based radiomic analysis (Figure 1). The resulting features can
be used to inform imaging diagnosis, predictive, and prognostic evaluation for treatment
selection in precision medicine.

2.1. Patients

This study recruited 23 patients with GBM from local hospitals after receiving institu-
tional review board approval (TMU-JIRB No. 201603086). All patients suspected of having
cerebral GBM based on conventional radiologic findings were enrolled in this prospective
study before any treatment (10 women, 13 men; age range, 42–83 years; average age,
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62.60 years), and imaging was performed between October 2014 and February 2019. The
inclusion criteria were as follows: (1) neuropathological evaluation following surgery or
stereotactic biopsy, with all lesions being histopathologically confirmed grades IV glioma,
classified as per the 2016 CNS WHO [2], and (2) available preoperative MRI consisting of
gadolinium-based contrast-enhanced T1-weighted images (T1-CE), T2-weighted images
(T2-WI), T2-weight fluid-attenuated inversion recovery (T2-FLAIR), and apparent diffusion
coefficient (ADC) images. Moreover, we also retrieved 31 patients with GBM from The
Cancer Imaging Archive (TCIA) database as our validation cohort (Table 1). This dataset
was released by BraTS challenge, in which the MRIs were also used to segment GBM
patients [15].
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Figure 1. A multiparametric MRI-based radiomic analysis in step (1) medical imaging acquisition, (2) imaging segmentation,
(3) feature extraction, (4) statistical analysis, and (5) results. The tumor ROI on all MR slices to extract the radiomic features.
Features such as tumor shape, histogram, and texture features were extracted from the ROI to discriminate the biological
processes of GBM habitats and facilitate personalized precision medicine. Note: GBM, glioblastoma multiforme; ROI, region
of interest.

Table 1. Patient demographics for two subsets of studies GBM from TCIA database as our validation cohort.

Cohort Case
Number Gender Mean Age (Years) Required Image Contrasts Model in

Machine Learning

GBM Local
Patients 23 13 Males,

10 Females 62.60 (Range: 42–83) T1-CE, T2-WI, T2-FLAIR, ADC Random Forest

GBM TCIA
Database 31 16 Males,

15 Females 55.13 (Range: 18–84) T1-CE, T2-WI, T2-FLAIR Random Forest

2.2. Data Processing and Region of Interest (ROI) Segmentation

All patients underwent routine MRI scans. The segmentation is performed slice-wise,
where the input data include the T1-CE, T2-WI, T2-FLAIR, and ADC MR images of each
patient. All methods were applied to the T1 postcontrast images using default parame-
ters, except for machine learning models that have no tunable parameters. The manual
adjustment was performed, if demanded, by an experienced researcher in neuroradiology
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(F-Y C). Additionally, the experienced neuroradiologist recognized after segmentation MR
Imaging (C-Y C).

2.3. Extraction of Radiomics Features

This study implemented semiautomatic annotation for radiomic features using a
previously described programming system [10] in MATLAB. Radiomic features from slice-
by-slice segmentations were extracted by an experienced neuroradiologist. To ensure
the reliability of quantitative imaging features, tumor contouring by manual delineation
to separate four different regions of tissues, twice for each case, was performed. The
manually corrected segmentation features were extracted from four subregions: necrosis,
solid part, peritumoral tissue, and peritumoral edema. The feature dataset was divided
into three groups: (1) histogram: the first-order statistics computed from pixels and voxel
intensities, (2) geometry: the three-dimensional morphological characteristics of the tumor,
and (3) texture: second- and high-order spatial distributions of the intensities in the image.
The texture features were extracted using several methods, including features based on
the gray-level co-occurrence matrix (GLCM) and gray-level run-length matrix (GLRLM).
GLCM is the most commonly used texture feature, which considers only voxels within
a specific range of gray value; it can produce a matrix of the spatial relationships [4,16]
and considers the arrangements of pairs of voxels to calculate texture indices. GLRLM
is a matrix of all the voxels within the same gray-level value [17], which gives the size of
homogeneous runs for each one. Determining texture matrix representations requires the
voxel intensity values within the volume of interest to be discretized. This step reduces
image noise and normalizes intensities across all images [18]. We adopted local binary
pattern (LBP) histogram for texture; this summarizes the texture characteristics and patterns
of a surface into a histogram, which can be used as input for pattern classification.

Radiomic features were extracted as described previously [10]. A total of 1316 features
on the raw MR images were selected for each annotated area, including 128 intensity
histogram (64 first-order and 64 histogram features of LBP), 32 geometry features (shape-
and size-based features), 132 texture features (88 GLCM features and 44 GLRLM features),
and 1024 scale-invariant feature transform features. All the features were combined and
used as the input radiomic features for the machine learning model.

2.4. Machine Learning Algorithms and Measurement Metrics

To evaluate the performance of our model, we compared different machine learning
(such as k-nearest neighbors (kNN), naïve Bayes (NB), and random forest) and deep
learning (deep neural network (DNN)) techniques. The hyperparameters of all classifiers
were also optimized using a grid search with cross-validation (gridsearchCV) to reach the
best performance, to ensure a fair comparison. As a detail, we ran the kNN algorithm
with a different number of neighbors (k = 1 . . . 30) and three distance learning metrics
(euclidean, manhattan, minkowski). For random forest, we used the number of features
ranging from 100 to 2000 (stepsize = 100), and maximum depth values ranging from zero
to 110 (stepsize = 10). Finally, the DNN was tuned with a different number of layers and
parameters. Furthermore, different feature selection techniques were examined to reduce
the noise of features and the computational complexity of the machine learning model. All
the models were implemented using the Python programming language with scikit-learn
and keras packages.

Due to the limited data, leave-one-out cross-validation was used to validate the overall
performance [19]. In this approach, each sample is used as a test set while the others are the
training set for that sample, and the reported accuracy is the mean of all testing accuracy
values. The accuracy of classification was evaluated with majority vote (i.e., a threshold
cutoff of 50%). We also adopted different performance metrics in the prediction model,
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such as recall, precision, F1-score, accuracy, and area under the curve (AUC) to stratify the
training data to improve machine learning-based brain tumor region classification.

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

F1 = 2· Precision·recall
Precision + recall

(3)

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Here, TP is the number of true positives; TN is the number of true negatives; FP is
the number of false positives; and FN is the number of false negatives. Moreover, two
testing methods (Spearson and Spearman) were applied to show the significance of our
radiomics features. Statistical analysis and machine learning were implemented using
different packages with the Python programming language.

3. Results
3.1. Ground Truth Segmentation and Identification of Tumor Habitats on MRI

(Figures 2 and 3) display tumor habitats which are color-coded and overlaid on T2-
FLAIR and T1 and T2 annotated images for the ground truth and semantic features from
GBM. First, different GBM regions were accurately labeled into four ROIs and joint intensity
color-maps on T2-FLAIR: necrosis (red), solid part (orange), peritumoral tissue (yellow),
and peritumoral edema (green). Second, computational features were extracted using
annotated imaging; both color-coded semantic and features were derived from multimodal
MR radiomics to analyze GBM texture features to compare tumor characteristics such as
homogeneity and entropy, and correlate them with spatial-habitat imaging (Figure 4). All
features were combined and fed into the machine learning algorithms.
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Figure 4. Radiomic signature shows representative T1-CE, T2-WI, ADC and T2-FLAIR images that demonstrate tumor
habitats color-coded and overlaid, i.e., necrosis (red), solid part (orange), peritumoral tissue (yellow), and peritumoral
edema (green). Each annotated area based on the raw MR images. Note: T1-CE, contrast-enhanced T1-weighted; T2-WI,
T2-weighted images; T2-FLAIR, T2-weight fluid-attenuated in-version recovery; ADC, apparent diffusion coefficient images.

3.2. Classification of GBMs Using Different Machine Learning and Deep Learning Algorithms

We evaluated the performance of our GBM classification using kNN, Naïve Bayes, ran-
dom forest, and DNN models. The input was a set of 329 radiomic features (as mentioned
in Section 2.2). For a fair comparison, we used the grid search strategy (with leave-one-out
cross-validation) to determine the optimal parameters for the models. The average accuracy
of kNN, Naïve Bayes, random forest, and DNN classifiers was 55.9%, 80.6%, 91.4%, and
67.7%, respectively, indicating that the random forest model outperformed others.

Because our models were trained in multiclassification, we presented the performance
results using ROC curves and AUC (Figure 5). For the random forest model, all GBM
regions demonstrated similar performance curves with extremely high sensitivity and
specificity (Figure 5c). The other classifiers had inconsistent performance, which means
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that they sometimes could not classify some regions correctly, especially the solid part
(accuracy: 90.4%) and edematous region (accuracy: 90.4%) (Table 2).
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Table 2. Performance results of classifying GBMs using the random forest algorithm.

ROIs Recall Precision F1-Score Accuracy

Necrosis 94.6 97.1 0.837 93.6
Solid part 93.6 94.3 0.745 90.4

Peritumoral 97.3 97.3 0.898 95.8
Edema 92.1 95.8 0.732 90.4

Random forest hyperparameters: n_trees = 500, n_features = 8.

Two testing methods (Pearson and Spearman) were applied, and the testing results
are shown in (Figure 6). According to this list, some radiomics features were consistent
and highly correlated to the ROI labels, such as LBP_Uniformity, surface-to-volume ratio,
spherical disproportion, and LBP_Skewness. These features might play essential roles in
deciding on different regions of GBMs. This list also revealed some overlapping information
between our features and previous works on radiomics-based classification.
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To clarify the metrics related to the random forest model for each region, we dissected
our multiclassification into four binary classifications. As presented (Table 2), all of the
measurement metrics for four regions reached significant levels and compare with the
small subset of TCIA dataset; thus, we considered our features to be helpful in efficient
GBM classification from different modalities and data sources. Furthermore, the overall
performance was consistent with multiclassification performance.

3.3. Selection Approach for Radiomics Features Using Random Forest

The most important concern in machine-learning-based classifiers using radiomics
features is the dimensions of data. The large amount of information used as feature sets
for the models will increase the model complexity and may lead to overfitting. Therefore,
reducing the number of features is essential, which can be achieved by commonly used
methods, such as principal component analysis and clustering (k-means or hierarchical).
However, this study tested the possibility of supervised learning in identifying the optimal
features—the top-ranking radiomic features that might affect the classification model.
Thus, we attempted to determine the important features when training the random forest
algorithm. We arranged the important scores (IS) from the highest to lowest: the top-
rank scores were from the following features: LBP_Mean (IS = 0.058151), LBP_Entropy
(IS = 0.040182), and LBP_Kurtosis (IS = 0.037939). Twenty top-rank features generated
from random forest were used as inputs to evaluate the correlations of these features. The
models were trained for classification among four tumor subregions, consisting of necrosis,
solid part, peritumoral, and edema as accuracy percentages of the corresponding values in
93.6%, 90.4%, 95.8%, and 90.4% for each target outcome, respectively.

3.4. Statistical Analysis

Statistical analysis and machine learning were implemented using different packages
with the Python programming language. Two testing methods (Pearson and Spearman)
were applied, and the testing results are shown in (Figure 6). According to this list,
some radiomic features were consistent and highly correlated to the ROI labels, such as
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LBP_Uniformity, surface-to-volume ratio, spherical disproportion, and LBP_Skewness.
These features might play essential roles in deciding different regions of GBMs. This list
also revealed some overlapping information between our features and previous works on
radiomic-based classification.

4. Discussion

Medical imaging is becoming the cornerstone for managing and evaluating the treat-
ment response to cancer. Radiomic-based approaches provide new insights into disease
characteristics, particularly in the field of oncology. However, well-validated noninvasive
biomarkers that can reflect underlying tumor habitats to provide information to guide
therapy are lacking. GBM is primarily diagnosed by neuroimaging, followed by biopsy
or resection of the tumor tissue to diagnose, characterize, and grade and stage the tu-
mor. Confirmatory analysis can be achieved using immunohistochemistry and molecular
analyses, including 1p/19q codeletion, IDH1 mutation, and/or expression of p53 and
O6-methylguanine methyltransferase hypermethylation in epigenetic alterations [20,21].
The present study leveraged radiomic features based on imaging signatures of the heteroge-
nous GBM tumor tissue parts and created a radiomic-based model for the semiautomatic
annotation of GBM using MRI, ground truth, and machine learning.

Our study classified GBMs into four regions—necrosis, solid part, peritumoral tissue,
and peritumoral edema. This criterion was different from most studies on the segmen-
tation of GBM since they all defined three regions: necrosis, solid part, and peritumoral
edema [11,22,23]. Notably, the fourth region—peritumoral tissue—performed well in our
model, with an accuracy reaching 95.8%, which was 2%–5% better than those of the other
three regions (Table 2). This implies that this region was useful for extracting more radiomic
features for the segmentation and diagnosis of GBM.

Traditionally, machine learning methods in the radiomics domain have usually been
separate from the feature selection techniques [11,16]. However, we used supervised
learning to determine the optimal set of radiomic features. Notably, the important radiomics
features were obtained from the original model, not from the other unsupervised learning
techniques. Thus, our radiomic features are reliable and more suitable to our selected
model. We also validated different machine-learning and deep-learning techniques to
establish the most useful model for generating the optimal radiomics feature set. Our
radiomic features (LBP_Uniformity, surface-to-volume ratio, spherical disproportion, and
LBP_Skewness) differ from previous works on GBM using traditional feature selection
techniques [18,23,24] and may guide further research on the segmentation of GBMs.

Semiautomatic segmentation currently represents the classification for response assess-
ment using volumetric measurements that may capture tumor geometry more accurately;
this is particularly useful for GBMs, which are often irregularly shaped. Moreover, large-
scale studies have established the benefits of using volumetry-based radiomics features for
tumor segmentation compared with complicated verification approaches [25].

Semiautomatic segmentation has three crucial challenges for accurate features. The
first challenge is variability in tumoral extraction: an image preprocessing analysis that sep-
arates the tumor from normal brain tissue is essential for many neuroimaging applications.
This needs to be compared with different neuroimaging biomarkers for quantitative and
tumoral heterogeneity surrogates as a reference. DCE MR perfusion provides functional in-
formation regarding the tumor hemodynamic status such as relative cerebral blood volume
(rCBV), and transfer constant (Ktrans) was evaluated as a quantitative biomarker; it also
can help in the differential diagnosis by tumor recurrence and radiation necrosis [26,27].
Diffusion-weighted MR imaging together with ADC maps reflect hindered and restricted
diffusion pools within a voxel on diffusion-weighted MR images. This is always in the
routine diagnostic protocol, but diffusion kurtosis imaging is usually reserved for research
purposes [28]. Within a specific ROI, areas of necrosis and peritumoral edema can in-
crease ADC values, which increase cellular density architecture due to the reduced ADC
values [27]. Hilario et al. [29] reported that combined maximum rCBV and minimum
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ADC values improve the accuracy of preoperative MRI grading of gliomas. The ADC
threshold value of 1185 × 10−6 mm2/s has a sensitivity of 97.6% and specificity of 53.1%
in the discrimination of high-grade (grades III and IV) and low-grade (grade II) gliomas.
Regarding tumor physical processes, MRS can be used to study tumor biomarkers such as
IDH mutations, morphological image processing for quantitative analysis, and metabolism
in noninvasive investigations of the link between the molecular basis of GBM and imaging
attributes [27,28]. Most high-grade tumors have greater choline concentrations in astro-
cytoma. By contrast, the typical spectroscopic characteristics of lower-grade tumors and
normal brain tissue include high choline, lactate, and lipid concentrations and low N-acetyl
aspartate and myoinositol concentrations [30].

The second challenge is generalizability: MR intensity values vary substantially
depending on the MR scanner properties and acquisition parameters, such as scanner type
protocol and contrast agent injection rate, respectively, resulting in substantial differences
in tumor appearance. This study recruited patients with GBM from local hospitals with
two MR vendors [31,32]. Regarding the texture features, GLRLM is a matrix of all the
voxels within the same gray-level value. To determine texture matrix representations, the
voxel intensity values within the volume of interest need to be discretized. Consequently,
semiautomatic segmentation and specialized algorithms trained on limited datasets may
not apply thoroughly to data acquired from different hospitals, MR acquisition protocols,
and patient populations.

The third challenge is heterogeneous tumor morphology: diffuse astrocytomas often
exhibit the essential neuropathological features of cellular pleomorphism, necrosis, and
microvascular proliferation, but it is their irregular morphological profile that reduces the
accuracy of gross tumor contouring. Notably, irregular rim enhancement surrounding
the necrosis is the most complicated form for imaging annotation; by contrast, it would
be advantageous when using semiautomatic segmentation to determine GBM shape in
each patient. Moreover, GBMs are characterized by heterogeneous angiogenesis, cellular
proliferation, cellular invasion, and apoptosis, which translate into diversifying grades
of necrosis, solid enhancing tumor, peritumoral tissue, and peritumoral edema, which
makes reliable imaging assessment challenging. Radiomic features incorporating machine
learning techniques may, therefore, be well suited to solving such image-based problems
of the accurate and expeditious interpretation of large-quantity and complex data that
minimize semiautomated bias. These data can provide initial ground-truth estimates,
which can then be refined by human experts for enhanced quality [33]. Machine learning
is an efficient technique for analyzing radiomic features, as well as classifying the GBM
tissue regions. Rathore et al. [34] used a radiomics signature of infiltration in peritumoral
edema to predict subsequent recurrence in GBM. Beig et al. [35] proposed a radiomic risk
score analysis which revealed that the “low-risk” and “high-risk” radiomic risk groups
compared with tumor habitat (i.e., necrotic, enhancing tumor, edema) in their ability to
predict progression-free survival on pretreatment MRI. Furthermore, we identified the
features from the enhancing tumor and the tumor shape elongation of peritumoral edema
region for high-risk groups, as previously shown in (Figure 2).

The small sample size is another limitation to this study; we have also retrieved 31
patients with GBM from TCIA database as our validation cohort to carry out a pilot study
for more clinical subjects in rare cases (high aggressive brain tumors), and try to validate the
performance on the whole dataset. Although our model achieved high accuracies in each
region, this is merely due to the small sample size. However, we attempted to compare our
results with real-world clinical experience and across different types of study for correlation
with radiomics features’ accuracy and efficiency related to specific regions of GBM. Efficient
radiomics-based classification of multi-parametric, to identify distinct tumor habitats MR
images in glioblastoma, helps quantitative trait, texture analysis to develop features that
provide novel clinical insights for personalized and precision medicine. It emerged as a
powerful data-driven approach that can offer insights into clinically relevant questions
related to diagnosis, prediction, prognosis, and the assessment of treatment response.
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5. Conclusions

Radiomics classifiers integrating multiparametric MRI parameters may have potential
in prognostication from the routine MRI exam, and may also be significantly associated with
key biological processes that affect the response to chemotherapy in GBM, including the
relative imaging signature of possible underlying tumor biological processes, to facilitate
personalized precision medicine.
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