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Abstract: Licensed human papillomavirus (HPV) vaccines contain virus-like particles (VLPs) self-
assembled from L1 major-capsid proteins that are remarkably effective prophylactic immunogens.
However, the induced type-restricted immune response limits coverage to the included vaccine types,
and costly multiplex formulations, restrictive storage and distribution conditions drive the need for
next generation HPV vaccines. Vaccine candidates based upon the minor structural protein L2 are
particularly promising because conserved N-terminal epitopes induce broadly cross-type neutralizing
and protective antibodies. Several strategies to increase the immunological potency of such epitopes
are being investigated, including concatemeric multimers, fusion to toll-like receptors ligands or T
cell epitopes, as well as immunodominant presentation by different nanoparticle or VLP structures.
Several promising L2-based vaccine candidates have reached or will soon enter first-in-man clinical
studies. RG1-VLP present the HPV16L2 amino-acid 17–36 conserved neutralization epitope “RG1”
repetitively and closely spaced on an immunodominant surface loop of HPV16 L1-VLP and small
animal immunizations provide cross-protection against challenge with all medically-significant
high-risk and several low-risk HPV types. With a successful current good manufacturing practice
(cGMP) campaign and this promising breadth of activity, even encompassing cross-neutralization of
several cutaneous HPV types, RG1-VLP are ready for a first-in-human clinical study. This review
aims to provide a general overview of these candidates with a special focus on the RG1-VLP vaccine
and its road to the clinic.

Keywords: human papillomavirus; minor capsid protein L2; RG1-VLP; broad-spectrum prophylactic
HPV vaccine

1. Human Papillomaviruses (HPV)

So far, more than 220 human papillomavirus (HPV) genotypes have been identified.
This large group of double-stranded DNA viruses is grouped into five genera (alpha, beta,
gamma, mu and nu) based on the nucleotide sequence of the major structural protein
L1, and can be classified into mucosal or cutaneous types based upon their preferential
infection site [1,2]. Generally, HPV encode at least six early genes (E1, E2, E4, E5, E6 and
E7) and two late genes (structural L1 major and L2 minor capsid proteins). E1 and E2 are
important for viral genome replication and its regulation, E4 promotes virion release from
keratinocytes, while oncogenes E6 and E7 interfere with the host’s cell cycle regulators to
ensure viral genome replication.

The HPV infection starts by viral binding to heparin sulfate proteoglycan (HSPG) moi-
eties within the epithelial basement membrane (BM) of mucosa or skin exposed by minor
abrasion. Attachment triggers a conformational change within the viral capsid that exposes
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a furin/pro-protein convertase site within the N-terminus of L2 [3]. Upon cleavage, another
conformational change exposes the L2 N-terminus with its cross-neutralization epitopes
but also uncovers a formerly occluded and still unknown keratinocyte entry receptor(s)
within L1. During wound healing, the virus is transferred onto basal keratinocytes migrat-
ing in to close the wound, and is thus able to establish an infection in mitotically active cells.
After an initial amplification phase, the viral genome is maintained as episome and in low
copy numbers (~102) in such epithelial basal stem cells [4]. Viral gene expression is tightly
regulated but some oncogenic mucosal HPVs can drive cell cycle progression for genome
amplification in the basal and parabasal cells layers, while other types generally promote
high level vegetative replication in the mid to upper epithelial layers in association with
E4-mediated collapse of keratin bundles. As infected cells undergo terminal differentiation,
and L1 and L2 capsid protein expression, genome packaging and viral maturation occurs
in the superficial keratinocytes layers. Important for L1 capsid assembly and stabilization
is the generation of inter-L1 disulfide bonds in an oxidative environment, which is a slow
process occurring during desquamation [5,6]. The viral capsid is a T = 7 non-enveloped
icosahedral structure composed of 360 copies of the major structural protein L1 that further
assembles into 72 capsomers (or pentamers). This pseudo-symmetry can be upheld because
L1 capsomers can occupy both pentavalent and hexavalent positions [7]. In contrast, the
minor structural protein L2 is present in varying numbers of 12–72 molecules that appear
buried beneath the lumen of L1 capsomers and is only transiently exposed during the
entry process [8]. L2 is essential for infectivity, participates in viral genome encapsidation,
capsid stability via L1 interaction, endosomal escape and guidance of the viral genome
into the host nucleus, but it is not required for capsid assembly (reviewed in [9]). The top
of the antiparallel-stranded beta-jellyroll L1 core fold is composed of hypervariable loop
structures against which the majority of neutralizing L1 antibodies are directed against [6].

1.1. Mucosal HPV

Mucosal HPV can be further grouped into high-risk (hr) or low-risk (lr) types based
upon their oncogenic potential, the former being the causative agent of a variety of ano-
genital cancers, predominantly cervical cancer (CxCa), but also vaginal-, vulva-, penile-,
and anal cancers, and a subset of oro-pharyngeal cancers [10,11]. Around a dozen mucosal
HPV types are categorized as carcinogenic (HPV16/18/31/33/35/39/45/51/52/56/58/59),
while HPV68, HPV26/53/66/67/70/73/82/30/34/69/85/97 are categorized as proba-
bly or possibly carcinogenic, respectively [11]. The majority of HPV types are lr types
(including HPV6/11/13/40/43/44/74 etc.), and especially HPV6 and HPV11 cause the
majority of genital warts (condylomata acuminate) or the more severe recurrent laryngeal
papillomatosis in children. Lesions mediated by lr types are usually self-limiting and very
rarely progress to cancer [12]. HPV16 and HPV18 are the two most frequent hr types
responsible for ~50% and 20% of all CxCa cases, and a large portion of head and neck
cancers appear to be exclusively associated with HPV16 [13]. Mucosal HPVs are sexually
transmitted and the cumulative lifetime risk to acquire a genital HPV infection can be as
high as ~90% [14]. For HPV16, most infections will resolve spontaneously within 2 years,
but a quarter will progress to pre-cancer (CIN3) or worse over the next decade [15]. CxCa is
the fourth most common cancer around the world, from which more than a quarter million
of women die each year. Such a high number is attributed to CxCa cases particularly in
developing countries that cannot afford routine cytological cervical screening nor costly
HPV vaccines.

1.2. Cutaneous HPV

High risk mucosal HPVs are found within the genus alpha, while cutaneous HPV
types are predominantly classified within the genera gamma, mu and nu with only a few
exceptions in the alpha genus. Cutaneous HPV types are associated with certain skin
pathologies, including HPV types that cause common and palmo–plantar warts predom-
inantly on hands or feet in children and immunosuppressed patients [16]. Even though
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those warts are benign, they are associated with great morbidity as they can be uncomfort-
able and recalcitrant, causing considerable costs for treatment. HPV types within the genus
beta have been originally identified within skin lesions of patients suffering from the rare
genodermatosis epidermodysplasia verruciformis (EV) [17]. EV patients develop persis-
tent, generalized warts with high risks for non-melanoma skin cancer (NMSC) progression
particularly on sun-exposed skin areas in midlife. Around 90% of these lesions are positive
for beta types HPV5 and HPV8, which are thus regarded potentially oncogenic [18]. Organ
transplant recipients (OTRs) show an up to 100-fold increased risk for NMSC development,
particularly cutaneous squamous cell carcinoma (cSCC) and basal cell cancers [19–21].
The risk is increased in countries with higher sunlight exposure and is dependent upon
other co-factors, predominantly UV-radiation and immunosuppressive therapy [22,23].
While the role of beta types in cancer development in EV patients and OTR are established
or likely, their role in the general population is much more controversial. Beta HPV can
be regarded as skin commensals, with an overall prevalence reaching up to ~90% with
increasing age, and even ~45% of babies being infected a few days after birth [24–27]. Hair
follicles have been found to act as a viral reservoir in which infection is being maintained in
stem cells in the bulge region [25,27]. Additionally, beta HPVs use different, less rigorous
molecular mechanisms than their hr mucosal counterparts in influencing the cell cycle and
apoptosis (reviewed in [28]). It is hypothesized that a number of beta HPVs initially act
in accordance with the main carcinogen UV-light by maintaining UV-damaged infected
cells in a proliferative state to propagate the infection. This is achieved by influencing cell
cycle progression, and molecules important in DNA damage repair. Eventually, acquired
mutations are able to drive cancerous progression and the viral genome, which is kept
episomally in beta HPV infections, is lost. In accordance with such a “hit-and-run” mecha-
nism, precancerous lesions (actinic keratosis) are often found beta HPV-positives while the
virus is lost in cSCC [29,30]. In contrast to the case in EV patients, no particular beta type
predominates in cSCC in OTRs or the general population, pointing towards the need for a
broadly cross-protective HPV vaccine.

2. Licensed HPV Vaccines

The first HPV vaccines licensed were bivalent CervarixTM (GlaxoSmithKline, GSK,
Brentford, UK) and quadrivalent Gardasil-4® (Merk and Co, Inc., Kenilworth, NJ, USA) in
2006 that both target around 70% of CxCa mediated by the most frequent hr types HPV16
(~50% of CxCa) and HPV18 (~20% of CxCa). Gardasil-4 additionally includes L1-VLP of the
two lr types HPV6 and HPV11, thus protecting against 90% of genital warts (condylomata
acuminata). L1-VLP induce a predominantly type-restricted immune response as neutraliz-
ing antibodies, which mediate protection, are raised against conformational epitopes within
the hypervariable surface loops of the capsid. Some reports suggested a limited ability
for cross-protection against phylogenetically related types [31,32]. To increase the breadth
of the protective spectrum, Merck developed Gardasil-9®, which includes L1-VLP of five
additional hr types (HPV31/34/33/52/58) to their Gardasil-4 formulation, thus potentially
targeting up to 90% of CxCa. Since the remaining 10% of CxCa are still unaddressed, there
is still the need to perform routine cervical screenings (Pap smears) even in vaccinated
women. Recently a HPV16/18 L1 VLP vaccine, Cecolin, was approved in China.

These licensed vaccines are produced by recombinant expression of L1 in yeast
(Gardasil®) or insect cells (CervarixTM) or bacteria (Cecolin), which self-assemble to virus-
like particles (VLP) that are morphologically similar to native virions [33,34]. While
Gardasil® employs the widely used aluminum salt (amorphous aluminum hydroxyphos-
phate sulfate, alum) as adjuvant, CervarixTM’s L1-VLP are adjuvanted with ASO4 adjuvant,
combining the toll-like receptor 4 agonist 3-O-desacyl-4’-monophosphoryl lipid A (MPL)
adsorbed onto aluminumhydroxide (Al(OH)3). L1-VLPs have shown to be immunogenic
and able to induce high-titers of protective neutralizing antibodies (nAb), which are trig-
gered by repetitive and tightly spaced epitopes that readily activate B cells via the B cell
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receptor or toll-like receptor cross-linking. Additionally, L1 is rich in T cell epitopes needed
to provide B cell help [35–37].

Vaccination is recommended before sexual debut prior to exposure with hrHPV as
L1-VLP-raised antibodies do not have any effect upon an already existing infection or
disease, thus vaccine efficacy decreases with increasing age. Adolescents up to the age
of 15 years are recommended to receive two doses, while older teens and adults (up
to the age of 45 years) are recommended three doses in order to compensate for lower
antibody titers, even though the minimal protective antibody levels are still unknown.
In addition, there is evidence than even one immunization is sufficient for protective
immunity [38,39]. Antibody titers show the highest level a few weeks after the final boost,
with levels decreasing over time and eventually reaching a plateau, which is still several
logs higher than antibody levels after a natural infection [40,41]. Long-term clinical studies
provided evidence of the induction of an anamnestic response and a long lasting protective
antibody response more than a decade after vaccination [42–44].

All three vaccines are protein based and do not contain any viral DNA, and have
proven safe and immunogenic even in immunosuppressed populations, including HIV-
positive children and adults and OTRs, and are recommended in a three-dose regimen in
these populations [45–47]. L1-VLP-based vaccines do not induce any therapeutic effect
and cannot eliminate an established infection as the L1 protein is a predominantly nuclear
protein only expressed in upper layers of terminally differentiated keratinocytes, but not in
(latently) infected basal cells.

CxCa is the fourth most common cancer in women worldwide, with around 500,000
new cases and ~250,000 deaths per year. Developing countries carry a major CxCa burden
because they have not yet been able to routinely implement either cervical screenings or
HPV vaccination programs even though some organizations such as GAVI, the Global
Vaccine Alliance, have achieved immense success in negotiating a reduced vaccine cost for
eligible countries. A part of the high vaccine costs can be attributed to the multivalent and
thus very complex formulation, which makes it highly unlikely that L1-VLP of all relevant
hrHPV types, yet alone mucosal lr or NMSC-associated cutaneous types, will be included
in future L1-based HPV vaccines. Additionally, high costs arise because HPV vaccines are
dependent upon an existing cold-chain for transport and storage. They need to be kept at
two to eight degrees Celsius, and any temperature mismanagement, including storage at
higher temperatures or accidental freezing, can cause decreased immunogenicity, the latter
particularly because of the alum adjuvant, which agglomerates upon freezing [48,49].

Although proven highly effective, the above mentioned shortcomings of L1-VLP drive
the need to develop enhanced next-generation HPV vaccines that offer: (i) an increased
spectrum of protection covering all clinically relevant hr, lr and ideally cutaneous HPV
types, (ii) a less complex or ideally monovalent formulation, (iii) cheaper production by,
for example, switching to bacterial expression systems, (iv) reduced dosing and/or needle-
free administration, (v) reduced costs for storage and distribution by offering cold-chain
independence, and (vi) a combined prophylactic and therapeutic approach.

This review aims to provide a general overview of L2-based broad-spectrum vaccine
candidates—particularly RG1-VLP—and their advancement in clinical studies.

3. L2-Based Vaccine Candidates

After natural infection with HPV, around 50% of people mount an L1-specific immune
response, but L2-specific antibodies are very rarely found [50]. This likely reflects L2 being
buried except during the entry process, after furin cleavage occurs, and its wider spacing,
lower occupancy and possibly greater flexibility in the capsid as compared to L1. However,
immunizations with L2 protein or peptides alone generate relatively low titers of antibodies,
sufficient to protect animals from homologous and even from heterologous papillomavirus
infection [51,52]. Thus, even though transient exposure of L2 cross-neutralization epitopes
might offer little opportunity for potent antibody response in their natural context, L2-
based vaccine candidates are protective against experimental viral challenge [53]. This
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suggests that low antibody titers are sufficient for protection, which we speculate is because
of the slow pace of infection. Cross-neutralization epitopes have been identified exclusively
within the first 200 amino (N)-terminal amino acids (aa) of L2 which is highly conserved
among diverse papillomaviruses; for example peptides of bovine papillomavirus type 1
(BPV1) L2 aa1–88 [54], BPV4 L2 aa11–200 and aa101–120 [51,55], or HPV16 L2 aa17–36 [56],
aa20–38, aa56–75 [57], aa69–81 [58] and aa108–120 [59,60] have shown to induce broadly
cross-neutralizing antibodies (Figure 1B).

Figure 1. RG1-VLP design (A). Five L1 monomers built up a pentamer (capsomer), and 72 capsomers
assemble to a virus-like particle. The RG1 epitope is inserted into the HPV16 L1 DE surface loop
for presumably 360-fold presentation by the assembled chimeric VLP. Part of the illustration is
reprinted from (Chen et al., 2000) with permission from Elsevier. L2 organization (B) with N-terminal
cross-neutralizing epitopes RG1 aa17–36, aa56–75 and aa108–120 depicted. Reprinted from (Wang
and Roden, 2013) with permission from Elsevier.

In vivo, there are distinct mechanisms as to how L1- and L2-raised antibodies can
neutralize an HPV infection. L1-raised antibody-mediated protection differs based upon
antibody levels. High doses of L1 antibodies prevent viral BM binding leading to the
Fc-mediated opsonization of antibody-bound viral particles by phagocytes, mainly neu-
trophils [61]. In contrast, low L1 antibody levels allow some level of BM binding but
potently inhibit L1 engagement of the yet unknown secondary keratinocyte entry receptor
causing loss of the virus from the cells. L2 cross-neutralization epitopes become accessi-
ble only after virus to BM binding, subsequent capsid conformational changes and furin
cleavage. Thus L2-specific antibodies mediate protection by both opsonization and phago-
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cytosis, and by sterically inhibiting stable engagement with the epithelial entry receptor
and cell surface. The mechanism as to how systemic L1- or L2-raised antibodies reach
the epithelial/mucosal site of infection was shown to be independent upon neonatal Fc
receptor-mediated transcytosis (transudation), but instead dependent upon exudation after
wounding required for successful infection.

The mouse monoclonal antibody (mAb) RG-1, which recognizes epitope aa17–36
of HPV16 L2, was shown to cross-neutralize HPV16 and HPV18. Furthermore, vaccina-
tion with the HPV16 aa17–36 peptide (cross-linked to keyhole limpet hemocyanin (KLH)
to provide T cell help) elicits very broadly neutralizing antibodies against mucosal hr
and lr HPV6/11/16/18/31/45/52/58, cutaneous beta type HPV5 and BPV1, and con-
fers in vivo protection against homologous experimental HPV16 challenge in mice [56].
Rubio et al. analyzed a panel of mAb raised against HPV16 L2 fused into thioredoxin
and found peptide aa20–38 to induce (cross-)neutralization against mucosal hr types
HPV16/18/31/45, cutaneous types HPV27/57 and BPV1 [62,63]. Kondo et al. investigated
the cross-neutralization potential of several HPV16 L2 N-terminal epitopes against four
hr HPV types; the most promising among all the epitopes analyzed was aa56–75 which
(cross-)neutralized HPV16/18/31/58 [57]. Kawana et al. raised mAb against HPV16 L1+L2
capsids, identifying aa69–81 of HPV16 L2 as an accessible surface immunodeterminant
reacting with human sera positive for multiple hr and lr HPV types [58]. Further, a mAb
was mapped to HPV16 L2 aa108–120 that (cross-)neutralized HPV16 and HPV6 [60]. In
murine peptide immunizations, the epitope induced serum and vaginal (cross-)neutralizing
antibodies to HPV16 and authentic HPV11 virions [59]. In a small placebo-controlled trial,
the immunogenicity of this epitope was further investigated in nasal immunization in
healthy adults, revealing that a higher antigen dose induced HPV16/52 cross-reactive
and cross-neutralizing antibodies in the majority of participants [64]. Importantly, results
indicated that the L2 peptide was well tolerated and immunogenic in triggering HPV16
and HPV52 (cross-)neutralizing antibodies, but that the use of a potent adjuvant might
have aided in improving induced antibody levels.

All these peptides used for immunizations have in common a promising cross-
neutralization capacity. However, the induced serum antibody titers are very low. Thus,
several approaches have been employed to overcome L2′s sub-dominance to L1 and
stimulate increased cross-neutralization titers. Most often, different scaffolds have been
investigated for the improved and more immunogenic presentation of promising HPV16
L2 cross-neutralization epitopes, which include presentation by HPV L1-VLP, non-HPV
VLP, or the generation of nanoparticles of concatemeric peptides, filterable aggregates, or
fusions of epitopes to immunostimulatory agents (Table 1).

Table 1. List of L2-based HPV vaccine candidates in preparation for or currently in clinical trials.

Antigen Properties Status

VLP-based

HPV16-L1 RG1-VLP

- In vitro (cross-) neutralization against a large panel
of mucosal hr, lr and cutaneous HPV types

- In vivo cross-protection of mice against all mucosal
hr and multiple tested lr HPV types

- Long-lasting immunity after 1 year in animals
- Potential for thermostable after lyophilization

(unpublished)
- SF9 insect cell expression (similar to CervarixTM)

cGMP 1 production

Bacteriophage MS2 VLP-16L2
(aa17–31)

- Cross-neutralizes and cross-protects a panel of
tested mucosal hr, lr types and beta type HPV5

- Long-lasting immunity
- Thermostable after spry-drying and protective even

after year-long storage
- Single-shot administration induces a (cross-)

neutralizing response
- Bacterially expressed (E. coli)

cGMP production
(on hold)
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Table 1. Cont.

Antigen Properties Status

Adeno-associated
virus AAVLP-HPV

- Induces (cross-)neutralizing antibodies against a
panel of tested hr types after a two-dose vaccination
regimen

- In vivo (cross-)protection against QV-challenge of 7
tested mucosal hr HPV types

- Thermostable after lyophilization

Phase I
completed

Fusion to immunostimulatory agents

Thioredoxin trivalent 2 PfTrx-L2

- (Cross-)neutralizes a panel of tested hr HPV types
- Shows in vivo (cross-) protection against clinically

relevant hr types
- Thermostable due to use of an archaebacterial

thioredoxin

cGMP production

Multimeric L2 proteins

aa11–88x5
(HPV6/16/18/31/39)

- (Cross-)protection against a panel of tested hr types
- Neutralized HPV18 native virions
- Long lived immunity (> 1 year)
- Bacterially expressed

cGMP production

aa11–88x5 or x8
In process

development by
Bravovax

L2 peptide

aa108–120 (HPV16)

- Nasal inoculation of 13 volunteers with 0.1 mg or 0.5
mg peptide (unadjuvanted) or a placebo control

- 4/5 participants (0.5 mg group) showed HPV16/52
cross-neutralization

Phase I completed

Combined prophylactic and therapeutic

CRTE6E7L2 3

naked DNA
vaccine with

electroporation

- Pre-clinical: triggers E6- and E7-specific CD8 cells
protective against tumor challenge and L2-raised
neutralizing antibodies

- T cell response maintained in CD4-deficient mice
(HIV+ model)

Phase I initiation

TA-CIN 4
HPV16

L2-E6-E7
Fusion protein

- Safe in humans
- Induces B- and T-cell responses to early proteins and

L2-specific neutralizing antibodies
- Causes local infiltration of CD4 and CD8 cells
- Trend towards clinical efficacy when used together

with immunomodulator imiquimod

Phase II completed

TA-GW 5
HPV6
L2-E7

Fusion protein

- Safe in humans
- Triggers a B- and T-cell response
- Causing CD4 local infiltrations
- Trend towards clinical efficacy

Phase I-IIb
completed

1 cGMP—current good manufacturing practice; 2 PfTrx—pyrococcus furiosus thioredoxin; 3 CRT—calreticulin; 4 TA-CIN—tissue antigen–
cervical intraepithelial neoplasia; 5 TA-GW—tissue antigen–genital warts.

3.1. Concatemeric Peptides

To enhance L2’s immunogenicity, Jagu et al. fused different N-terminal L2 regions
together to form a multitype concatemeric peptide, which included aa11–88 from five
types (HPV1/5/6/16/18), aa11–200 from three types (HPV6/16/18) and aa17–36 from
22 hr, lr and cutaneous HPV types [65,66]. Particularly 11–200x3 and 11–88x5 in com-
bination with potent adjuvants induced high neutralization titers in mice and rabbits
that cross-neutralized HPV16/18/31/45/58/6/5, and protected mice from experimental
HPV16 challenge four months after vaccination. In another study, Jagu et al. confirmed L2
aa11–88 as a potent cross-neutralization region. Additionally, multimeric fusion proteins
comprising L2 aa11–88 from eight HPV types and L2 aa13–47 from 15 HPV types were
designed and used in mouse immunizations. Surprisingly, the aa13–47x15 concatemer
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was less immunogenic than aa11–88x8, which induced cross-neutralization against eleven
tested HPV types and provided in vivo protection against vaginal HPV16 challenge [67].
The authors concluded that use of the longer concatemer aa11–88x8 appears to more
broadly trigger cross-neutralization because it contains multiple cross-neutralization epi-
topes when compared to aa13–47, which includes only one cross-neutralization epitope.
Both L2 aa11–88x5 and aa11–88x8 protected mice from vaginal challenge with eleven HPV
types, including HPV6/16/26/31/33/35/45/51/56/58/59 [68]. This approach is being
developed by Bravovax (Wuhan, China). A potential advantage of this system is that the
concatemers are produced in bacteria (Escherichia coli) and production is thus cheaper when
compared to L1-VLP expression in insect cells (CervarixTM) or yeast (Gardasil®).

3.2. VLP-Based L2-Approaches

Another approach to enhance the immune presentation of L2 epitopes is by insertion
within, or conjugation to surface loops of highly immunogenic scaffolds like VLPs from
divergent viruses, including bacteriophages or adeno-associated virus.

Tumban et al. followed up on a finding that the display of foreign epitopes, including
HPV16 L2 aa17–31, on RNA bacteriophage PP7 elicits potent anti-L2 antibodies able to
(cross-)protect mice against vaginal HPV16 or HPV45 pseudovirion (PsV) challenge [69]. In
a study to develop a pan-HPV vaccine, aa17–31 peptides of multiple mucosal and cutaneous
HPV types were inserted into the AB surface loop of the PP7 coat protein [70]. All seven
tested recombinant fusion proteins, including HPV5/8, HPV6, HPV11/33, HPV16/73,
HPV18, HPV45/39 and HPV52/58 L2 PP7 VLP were immunogenic and elicited L2-raised
cross-reactive IgG antibodies as measured by L2 peptide ELISA. Even though HPV16 or
HPV18 L2 PP7 VLP protected mice from vaginal challenge with HPV16 and HPV18, mice
immunized with all seven recombinant PP7 VLP showed the broadest cross-reactivity to L2
peptides as well as cross-protection against vaginal challenge using PsVs of eight different
HPV types, including HPV31 that was not included in the VLP mix, and cutaneous HPV5
challenge. Importantly, it was shown that the induced antibody response was long-lived;
even though antibody levels declined starting 17 months after mixed L2 PP7 VLP vaccina-
tion, mice were still protected against vaginal HPV16/31/45 challenge [71]. Presentation
of the HPV16 L2 aa17–31 epitope by N-terminal insertion into the coat protein of another
bacteriophage, MS2, induced an even broader cross-reactivity measured by peptide ELISA
and in vivo cross-protection against vaginal challenge with nine heterologous HPV types,
as well as intradermal HPV5 challenge, when compared to the response mediated by PP7
VLP presenting the same epitope [72]. Such 16L2(17–31) N-term MS2 VLPs were further
enhanced by spray-drying the VLPs to a thermostable powder formulation that remained
immunogenic and able to induce cross-neutralizing antibodies even after prolonged incuba-
tion at 37 ◦C. Importantly, thermostable dry-powder VLPs stored at 37 ◦C for 14 months or
stored at room temperature for 34 months elicited a protective response against HPV16 or
heterologous HPV PsV challenge in mice [73–75]. This could greatly simplify vaccination in
low resource settings. In another study, it was found that a consensus L2 aa65–85 sequence
originating from several hr and lr HPV types induces a more effective cross-neutralization
response than the same epitope from the unique types [76]. Bacteriophage VLPs can be pro-
duced simply and at low cost in E. coli. Unfortunately, the development of this HPV vaccine
technology by Agilvax (Houston, TX, USA) is currently on hold after cGMP development.

Nieto et al. and Jagu et al. investigated the presentation of L2 epitopes by adeno-
associated virus 2 VLPs (AAVLPs) by genetically inserting HPV16 and HPV31 aa17–
31 into separate loops of the VP3 protein of AAV2. AAVLP(HPV16/31L2) immuniza-
tion using adjuvants triggered robust cross-neutralization in mice or rabbits against
HPV16/31/18/45/52/58 and BPV, providing protection against vaginal HPV16 PsV chal-
lenge in mice [77]. Importantly, recombinant VLPs retained their immunogenicity even after
lyophilization. Additionally, AAVLP(HPV16/31L2)-immunized rabbits were protected
from concurrent cutaneous challenges with HPV16/31/35/39/45/58/59 quasivirions
(QVs) or native cottontail rabbit papillomavirus (CRPV) virions six- or 12 months post
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immunization [78]. A phase I study of this vaccine candidate has just been completed by
2A Pharma (Aalborg, Denmark) and results are highly anticipated (NCT03929172).

The presentation of HPV16 L2 aa12–41 by the adenovirus 5 major antigenic capsid
protein hexon has been investigated by Wu et al. In mice, immunization with recombi-
nant L2-Adenoviruses induced (cross-)neutralization to HPV16 and HPV73, and in vivo
protection against HPV16 vaginal and cutaneous challenge but failed to cross-protect
against HPV56. A greater breadth of protection was achieved by display of concatamers
of L2 epitopes of multiple HPV types by the adenovirus type 35 protein IX. A mix of
such pIX-L2 recombinant adenoviruses presenting the S-fragment (aa11–40 for HPV16) of
HPV6, 31, 33 and 16 or HPV11, 52/58, 45 and 18, which spans the RG1 epitope, induced
(cross-)neutralizing antibodies against HPV16, 18, 31 and 59.

The presentation of L2 epitopes by L1-VLP is also a promising strategy to boost
L2-raised titers in addition to maintaining the high-titer L1 scaffold-mediated antibody
response against the homologous type. We inserted the HPV16 RG1 epitope into the
DE surface loop of HPV16 VLP, generating a highly immunogenic chimeric VLP vaccine
candidate (see chapter RG1-VLP below) [79,80]. Similarly, RG1 epitope homologs of other
mucosal hr and cutaneous HPV types have shown to be immunogenic as well. Cross-
protection against four of five alpha-7 mucosal hr HPV types was seen in mice after the
passive transfer of mouse sera raised against HPV18 L1-VLP presenting the RG1 homolog
from HPV45 [81]. In order to target cutaneous HPV more directly, the RG1 epitope homolog
of beta type HPV17 and HPV5 L2 aa53–72 (a homolog to the HPV16 L2 aa56–75 cross-
neutralization epitope) was similarly inserted into HPV5, 16 or 18 L1-VLP [82]. The HPV17
RG1-VLP homolog, but not that displaying the HPV5 L2 aa53–72 epitope, induced L2-
mediated cross-neutralization to several tested beta HPV types in vitro and protected
mice from experimental challenge with PsVs of several beta HPV types. Among the
tested L1-scaffolds, HPV16 L1-VLP appeared to most potently present the inserted epitope
when compared to insertion in the homologous site in HPV5 L1-VLP. Additionally, the
HPV4 RG1 epitope homolog presented on HPV1 L1-VLP induced cross-neutralization and
cross-protection against vaginal HPV4 challenge.

Boxus et al. investigated the single or combined insertion of different L2 epitopes
both in the DE loop and C-terminus of either HPV16 or HPV18 L1-VLP [83]. Among the
tested recombinant VLPs, HPV18 L1-VLP presenting the HPV33 RG1 epitope within the
DE surface loop and HPV58 L2 aa56–75 in another loop near the C-terminus, induced cross-
neutralization. These immune sera neutralized HPV18/5/6/11/16/31/31/33/45/52/58
and (cross-)protected mice from vaginal PsV challenge with HPV16/11/35/58/45/59 one
or six months post vaccination. In addition, rabbits immunized with the double-chimeric
L1/L2 VLP were (cross-)protected against papilloma development after infection with
HPV18/11/58 QV. The cross-protective efficacy was further enhanced by combinatory
vaccination of double-chimeric L1/L2 VLPs together with HPV16/18 L1-VLPs.

Besides expression in bacteria, another approach for more affordable vaccine produc-
tion is in plants. Pineo et al. investigated chimeric L1-L2 VLP expression in plants that
offers great scalability and rapid production of high yields of antigen [84]. Various L2
cross-neutralization epitopes presented by HPV16 L1-VLP were transiently expressed by
Agrobacterium in Nicotiana benthamiana, and particularly L2 aa108–120 L1-VLPs induced
limited cross-neutralization against HPV16 and 52 but not against other tested types.

3.3. Bacterial Presentation of L2

As an approach to develop a mucosal vaccine candidate administered orally, Yoon et al.
generated recombinant Lactobacillus casei (L. casei) that presents the N-terminal HPV16 L2
on its surface [85]. Orally administered lyophilized L. casei-L2 induced HPV16/18/45/58
(cross-) neutralizing antibodies capable to (cross-)protect mice against vaginal challenge
with PsVs of these types.
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3.4. L2 Fusion to Immunostimulatory Molecules

Another approach to enhance L2-raised responses is linkage to immunostimulatory
agents. Alphs et al. linked the HPV16 L2 aa16–37 to the T helper cell epitope P25 and the
toll-like receptor (TLR) ligand dipalitoyl-S-glyceryl cysteine (P2C) [86]. The lipoprotein
induced potent (cross-) neutralizing antibodies against HPV16/18/45, beta type HPV5 and
BPV1 after subcutaneous or intranasal administration, and protected mice from HPV16
and HPV45 PsV challenge at the vaginal or a cutaneous site.

Rubio et al. investigated the presentation of multiple L2 N-terminal peptides in mono-
or multipeptide form presented by bacterial thioredoxin (trx) [62]. All tested candidates
were immunogenic in mice, and higher antibody titers were induced by multipeptide
presentation. In particular, Trx-L2(20–38) appeared most effective in inducing (cross-)
neutralization against HPV16/18/58/45/31. Even more advantageous is the use of a
thermostable archaebacterial thioredoxin from Pyrococcus furiosus (Pf) as scaffold to
present the highly immunogenic tripeptide form of L2 aa20–38 [87]. Building upon that
finding, Seitz et al. investigated the cross-protective potential of a trivalent PfTrx-L2
vaccine candidate [88]. The epitopes aa20–38 from HPV16/31/51 were presented as a
polypeptide by PfTrx and induced cross-neutralizing antibodies against 12 of 13 tested
mucosal hr HPV types (HPV16/18/45/31/33/52/58/35/59/51/39/68 but not HPV56) in
mouse immunizations, and a similar cross-neutralization response was seen in guinea pig
immunizations as well. Further, the passive transfer of trivalent PfTrx-L2 mix-raised sera,
or active immunization, provided cross-protection against vaginal challenge with tested
types HPV16/31/51/18/33. The PfTrx-L2 vaccine candidate is currently being prepared
for a first phase I clinical study. In order to further enhance a PfTrx-L2 vaccine candidate,
Spagnoli et al. fused L2 aa20–31 of eight types HPV16/18/31/33/35/6/51/59 to PfTrx and
the heptamerizing coiled–coil polypeptide OVX313. The resulting PfTrx-L2(8x)-OVX313
appeared thermally stable and induced enhanced cross-neutralizing antibodies against
HPV16/18/31/33/35/39/45/51/58 in mice, when compared to the response raised against
the monovalent or trivalent PfTrx-L2 vaccine candidates. Additionally, Pouyanfard et al.
showed that a thioredoxin-based single peptide vaccine candidate presenting a L2 polytop
made up of eight different HPV types and fusion to the OVX313 heptamerization domain
induced robust cross-neutralization against a large panel of different mucosal hr and lr
types of HPV6/11 in both mice and guinea pigs [89]. The passive transfer of PfTrx-8mer-
OVX313-raised mouse or guinea pig serum protected naïve mice from vaginal challenge
with PsV from HPV16/18/31/33/35/45/58, and HPV39/56/6/11, respectively.

Another promising approach uses L2 epitope fusion to the toll-like receptor 5 (TLR 5)
ligand flagellin generating a self-adjuvanting antigen expressed in bacteria. Kalnin et al. in-
vestigated flagellin fusions with L2 aa11–200, aa11–88x5 or aa11–88x11 that have previously
shown to induce cross-neutralization [65,90]. Vaccination in mice verified the induction of
(cross-)neutralizing antibodies to HPV16/18, and the vaccine efficacy was evaluated in two
pre-clinical settings showing that particularly Fla-L2aa11–88x5 cross-protected mice from
vaginal challenge with PsV from HPV16/33/35/56 and prevented HPV6/16/18/31/45/58
QV-mediated papilloma development in a CRPV–QV animal model. In another study, the
importance of the RG1 epitope was underlined as incorporation of L2 aa17–38 of five HPV
types fused to L2 aa11–200 or aa11–88 enhanced the cross-protective efficacy even further
by [91]. Similarly, the generation of a fusion protein, in which the RG1 epitopes of four
HPV types, HPV16 L2 aa11–88 and an aa65–85 consensus epitope was fused to flagellin
(Fla-5PcL2), induced (cross-)neutralizing antibodies against HPV16/18/31/33/58 in sera
and mucosal fluids [92]. Importantly, subcutaneous or intranasal Fla-5PcL2 immunization
protected mice from vaginal PsV challenge of HPV39/58/5.

3.5. L2-Based Prophylactic and Therapeutic Vaccine Combinations

Generally, L1- and L2-based vaccine strategies are not expected to have a therapeutic
effect upon already established HPV infection or induced disease, since structural proteins
are expressed in superficial layers of differentiated keratinocytes shortly prior to desquama-
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tion. Thus, the immune response to capsid proteins does not target infected basal cells with
latent infection. Early proteins have been the targets of various therapeutic strategies, such
as E6 and E7 oncogenes that are essential for transformation, and which the expression of
cancerous cells are dependent upon for viability.

A recently conducted pre-clinical study followed up on the thioredoxin-L2-OVX313
fusion vaccine candidate [93]. Zhao et al. fused the HPV16 L2 aa20–31 8mer polytope (3x)
and an E7-specific cytotoxic T lymphocyte (CTL) epitope to the thermostable thioredoxin
surface that together with the OVX313 heptamerization module assembled into a nanopar-
ticle format [94]. In mouse immunizations, PfTrx-8mer-flank E7-OVX313 induced both a
humoral immune response to L2 that protected mice from vaginal challenge with PsVs
from HPV11 and 39, and triggered an E7-raised T cell response that protected mice from
tumor development in a double challenge of E7-mediated carcinogenesis.

A further vaccine candidate, tissue antigen–cervical intraepithelial neoplasia (TA-CIN),
is a fusion protein of HPV16 L2, E6 and E7 that forms a filterable aggregate that is capable
of inducing CTL, T helper responses and antibodies. When administered prophylactically,
mice were protected from tumor development following challenge, but the fusion protein
also prevented tumor outgrowth when administered therapeutically after tumor induc-
tion [95]. TA-CIN has since been investigated in several clinical Phase I and II studies by
Cantab/Xenova (Cambridge, UK), verifying the induction of a humoral response as well
as a HPV16-specific T cell response in healthy volunteers [96]. The fusion protein was also
analyzed together with TA-HPV, a live recombinant vaccinia virus encoding HPV16/18 E6
and E7 protein, in patients with HPV16-positive vulval intraepithelial neoplasia (VIN) [97].
A TA-CIN-mediated effect regarding T cell proliferation and antibody induction was seen,
however, there was no marked improvement regarding the clinical symptoms. Another
phase II study analyzed TA-CIN immunization after imiquimod topical treatment in VIN
grade II and II patients. By histology and HPV testing, over 60% of participants showed
HPV16 clearance and around 80% were symptom free. Clearance was associated with
lesional CD4 and CD8 infiltrations in contrast to infiltrations of regulatory T cells seen in
non-responders [98]. Further, an L2-specific weakly cross-neutralizing antibody response
was detected in a subset of TA-CIN vaccinated patients, confirming the potential of TA-CIN
as a prophylactic vaccine that, however, might benefit from combined administration
with a potent adjuvant [99]. Accordingly, mice vaccinated with TA-CIN together with
the saponin derivate GPI-0100 induced high-titer HPV16-neutralizing antibodies as well
as HPV31 and HPV58 cross-neutralizing antibodies. Weak cross-neutralization was also
seen with other heterologous mucosal HPV types. Importantly, TA-CIN vaccinated mice
were protected from cutaneous HPV16 PsV challenge and tumor growth in a TC-1 tumor
challenge. Similarly, vaccination in macaques elicited both a HPV16 neutralizing and a
weakly cross-neutralizing antibody response, as well as E6- and E7-specific antibodies
and IFN-γ producing T cells [100]. A safety and feasibility study in HPV16-positive CxCa
patients is currently underway (NCT02405221).

A similar approach has been taken by Cantab to develop a therapeutic vaccine against
genital warts-causing HPV6. Tissue antigen–genital warts (TA-GW) is a fusion protein of
HPV6 E7 and L2 thus designed to stimulate cellular- and humoral immunity necessary to
cause the regression of existing and prevent recurrence of genital warts. The safety and
immunogenicity of TA-GW adjuvanted with Alhydrogel® was investigated in two clinical
studies revealing the induction of T cell responses as well as a humoral response against
L2 and E6. However, a clear effect of TA-GW vaccination could not be established since
spontaneous regression of genital warts (GWs) at similar rates is common [101–103].

Another approach, which is currently being investigated in a clinical study, is a DNA
vaccine that linked the HPV16 early proteins E6 and E7, as well as L2, to calreticulin (CRT)
(NCT03913117; NCT04131413) [104]. Naked DNA vaccines offer advantages like large-
scale production, safety and efficient delivery of DNA to dendritic cells that effectively
trigger CD4+ and CD8+ responses. The pre-clinical data are promising, since vaccination
with hCRTE6E7L2 in mice was shown to induce E6- and E7-specific CD8+ cells that pro-
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tected mice in a TC-1-mediated tumor protection experiment, and an L2-specific protective
antibody response against HPV16 was demonstrated. Further, pNGVL4a-hCRTE6E7L2
DNA electroporation has shown therapeutic effects in mice carrying a vaginal E6- and
E7-expressing tumor [105]. CD8 T cell induction to early proteins that mediate a thera-
peutic effect was seen in CD4-depleted mice as well, providing first evidence for potential
vaccination in HIV+ patients or organ transplant recipients.

4. RG1-VLP
4.1. Pre-Clinical Data

Our approach to increase the breadth of protection mediated by L2′s cross-neutralization
potential uses HPV16 L1-VLP as a scaffold to present the RG1 epitope from an immunodom-
inant surface loop [80]. Genetic insertion within the HPV16 L1 DE loop displays the RG-1 in
a densely packed and highly repetitive fashion, presumably 360 times, on the VLP surface
(Figure 1A). In mouse and rabbit immunizations, 16L1-16L2aa17–36 (termed RG1-VLP),
combined with alum plus monophosphoryl-Lipid A (MPL) adjuvants, induced (cross-) neu-
tralizing antibodies against HPV6/11/16/18/31/45/52/58 and cutaneous beta type HPV5.
In an extensive pre-clinical study, reproducibility of a cross-neutralizing antibody response
to mucosal hr types HPV16/18/45/31/33/52/58/35/39/51/59/68/73/26/69/34/70, lr
types HPV6/11/32/40 and cutaneous types HPV2/27/3/76 was confirmed in additional
rabbit immunizations by native virion- and PsV-based neutralization assays. Impor-
tantly, immune sera protected mice from experimental vaginal challenge using PsVs
of hr types HPV16/18/45/31/33/52/58/35/39/51/59/68/56/73/26/53/66/34 and lr
types HPV6/43/44, which cover ~96% of all CxCa. Immune sera with undetectable
cross-neutralizing antibodies to HPV58 by the standard PsV-based neutralization assay
did confer cross-protection against this type in vivo, indicating that even lower cross-
neutralization titers might provide sufficient protection. RG1-VLP were shown to induce
B cell memory as a booster immunization raised diminished cross-neutralization titers
back to their former levels. In a pre-clinical dose finding study, three doses of 25 µg of
RG1-VLP in rabbits induced a similar cross-neutralizing antibody response to tested types
HPV16/18/31/52/45/33/58/26/70 as 125 µg of RG1-VLP, indicating dose-depending
saturation of the RG1 epitope response [106]. Additionally, a low dose (5 µg) of RG1-VLPs
was shown to induce similar levels of HPV16-raised neutralizing antibody titers when
compared to the response to 1/4th of a dose of CervarixTM. Importantly, it was shown
that two doses of 5 µg of RG1-VLP are able to trigger cross-neutralizing antibodies against
HPV16/18/33/58/26/20 as well, albeit at lower titers.

Based upon these encouraging findings, RG1-VLP have been produced under cGMP
sponsored by the US National Cancer Institute’s (NCI) PREVENT Cancer program [107]
for a first in human multicenter phase I study scheduled to start in 2021.

A sustained cold-chain is an important requirement to preserve HPV vaccine anti-
genicity and a significant bottleneck limiting worldwide distribution. For licensed vaccines
CervarixTM and Gardasil-9, the recommended temperature range for vaccine storage is nar-
row (2–8 ◦C without freezing). When exposed to elevated temperatures, the disintegration
of VLP content can result in loss of antigenicity and vaccine efficacy.

To facilitate storage and transportation, we have initiated studies to increase RG1-
VLP thermostability by exploring lyophilization conditions of RG1-VLP in the presence
of an alum adjuvant. However, a required first step in lyophilization is often freezing,
which cannot be employed by alum-adjuvanted vaccines due to agglomeration. HPV16
L1 capsomers have been embedded within organic glasses built up by trehalose during
lyophilization, which has rendered capsomers immunogenic and thermostable even after
incubation at 50 ◦C for 12 weeks [108]. In ongoing studies, RG1-VLPs were lyophilized by
encasing the antigen–alum mix in a sugar matrix. This procedure revealed preparations that
resisted high temperatures up to 70 ◦C for one month without impairment of antigenicity,
a competitive advantage over licensed HPV vaccines. Immunizations of mice induced
(cross-)neutralization of several tested hr, lr and cutaneous HPV types (Huber B, Garcea R,
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Roden R, Kirnbauer R, unpublished), suggesting a possible broad spectrum of protection
provided by this thermostable HPV vaccine candidate.

4.2. Challenges of an L2-Based Vaccine Candidate

Although L2 appears to be promising target to develop a broad-spectrum HPV vac-
cine, the strength and longevity of L2-raised immune responses need to be considered.
L2-induced (cross-)neutralizing antibody titers are generally several logs lower than type-
restricted titers induced by homologous L1-VLP. Even if L2 is presented by highly im-
munogenic viral capsids as scaffold, this raises the question of durability of induced cross-
neutralization responses. Importantly, RG1-VLP and L2-PP7 VLP studies have shown that
even low L2-specific antibody titers provide (cross-)protection against experimental animal
challenge for at least one year post immunization [71,79]. Further, the induction of B cell
memory was confirmed for RG1-VLP vaccination, since a boost by 1 year raised antibody
titers to initial levels. Nevertheless, the longevity of L2-raised protective responses needs
to be further analyzed given long-term protection provided by licensed vaccines.

We have sought to address this duration of protection question without the need of
additional boosters. Utilizing RG1-VLP particles from engineering runs from the NCI
PREVENT program, several recent in vivo studies in both mice and rabbits were per-
formed [107]. For example, utilizing the cotton tail rabbit papillomavirus (CRPV) model, in
a one year long head-to-head vaccine study against Gardasil-9, it was shown that vaccina-
tion with RG1-VLPs adjuvanted with aluminum hydroxide alone (AlhydrogelTM) provided
complete in vivo protection against nine different HPVs (HPV6,16,31,45,52,58,35,39,59).
Importantly, in vivo protection lasted for one year without additional boost and was re-
tained to HPV35, 39 and 59. In contrast, Gardasil-9 was unable to protect against these
non-vaccine HPV types as expected due to type-restriction afforded by L1-VLP vaccines.
Utilizing ELISA assays, durable although lower L2-specific titers were also detected to
these different HPV RG1s. Interestingly, there was no difference between the HPV16
L1-VLP titers between Gardasil-9 or RG1-VLP, demonstrating that incorporation of the
RG1 epitope into the HPV16 VLP platform does not affect induction of L1-type restricted
high-titer neutralizing antibodies.

To improve the immunogenicity of L2 titers, the addition of an adjuvant may be
useful. In a recent study by Zacharia et al., RG1-VLPs were evaluated in two doses
formulated with AlhydrogelTM or in combination with a bacterial enzymatic combinatorial
chemistry (BECC)-derived toll-like receptor 4 (TLR 4) agonist [109]. Results indicated that
adjuvanting with BECC/Alhydrogel allowed for 75% reduction in antigen dose while still
retaining equivalent magnitudes of responses to the full RG1-VLP dose with Alhydrogel.
Collectively, these studies show that optimization of the RG1-VLP formulation can result
in longer-lasting humoral immunity and at a lower dose amount.

L2-based vaccine candidates promise possible advantages beyond expanding protec-
tion to a larger spectrum than technically feasible by multivalent L1-VLP vaccines. Due
to their mono-valency, production costs are expected to be cheaper compared to licensed
multivalent HPV L1-VLP vaccines enabling prime-boost vaccinations in economically
disadvantaged regions.

A sustained cold-chain is an important requirement to preserve HPV vaccine anti-
genicity and a significant bottleneck limiting distribution. Similar to many other vaccines,
refrigeration is essential to prevent vaccine degradation and ensure vaccine potency, which
is a critical feature, especially in developing countries with lesser infrastructure. Sev-
eral L2-based vaccine approaches aim to provide for thermostable formulations either by
lyophilization or spray-drying to counteract cold-chain limitations (see Table 1).

A final challenge for L2-based vaccine candidates would be the design of clinical
studies providing evidence for non-inferiority to licensed HPV vaccines regarding the level
of protection to vaccine-included HPV types, particularly HPV16 and HPV18. Especially
for platforms using L2 antigens alone, because the neutralizing antibodies produced are
fundamentally different, it is anticipated that such vaccines will have to prove clinical
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efficacy against pre-cancerous lesions mediated by rarer hr types accounting for 1%–2%
of CxCa cases, and thus need to enroll large cohorts or present evidence that infection is
prevented via surrogate viral endpoints such as hrHPV DNA detection [110,111].

To this end, a chimeric VLP approach like the RG1-VLP may be able to sidestep
some of these difficulties and attain approval for non-inferiority via L1-specific neutralizing
antibodies, since this vaccine candidate also produces HPV16 L1-VLP specific titers. Indeed,
the use of immunogenicity outcomes for the RG1-VLP provides a sound basis for assessing
equivalence of protection against types that are targeted in the current standard of care
vaccines that would be used as the controls.

5. Conclusions

Multiple approaches have been employed to generate L2-based HPV vaccine candi-
dates, and several provide promising results regarding breadth of protection, a durable
immunity, immunogenicity after reduced dosing, and thermostability. In contrast to li-
censed multivalent L1-VLP vaccines, L2-based candidates nearing or in first clinical studies
are often monovalent and thus simpler to produce, and aim to overcome shortcomings
associated with first-generation HPV vaccines regarding type-restricted efficacy, or cold-
chain dependency hindering distribution in developing countries that carry the majority of
the CxCa burden. L2-based vaccination strategies have the potential to overcome existing
barriers regarding HPV type coverage and global vaccination implementation, aiming to
eradicate HPV-associated cancers.
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