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Abstract: Adequate preoperative evaluation of frailty can greatly assist in the efficient allocation
of hospital resources and planning treatments. However, most of the previous frailty evaluation
methods, which are complicated, time-consuming, and can have inter-evaluator error, are difficult
to apply in urgent situations. Thus, the authors aimed to develop and validate a predictive model
for pre-operative frailty risk of elderly patients by using diagnostic and operation codes, which
can be obtained easily and quickly from electronic records. We extracted the development cohort
of 1762 people who were hospitalized for emergency operations at a single institution between
1 January 2012 and 31 December 2016. The temporal validation cohort from 1 January 2017 to
31 December 2018 in the same center was set. External validation was conducted on 6432 patients
aged 75 years or older from 2012 to 2015 who had emergency surgery in the Korean national
health insurance database. We developed the Operation Frailty Risk Score (OFRS) by assessing the
association of Operation Group and Hospital Frailty Risk Score with the 90-day mortality through
logistic regression analysis. We validated the OFRS in both the temporal validation cohort and two
external validation cohorts. In the temporal validation cohort and the external validation cohort I
and II, the c-statistics for OFRS to predict 90-day mortality were 0.728, 0.626, and 0.619, respectively.
OFRS from these diagnostic codes and operation codes may help evaluate the peri-operative frailty
risk before emergency surgery for elderly patients where history-taking and pre-operative testing
cannot be performed.

Keywords: frailty; emergency operation; elderly; hospital frailty risk score

1. Introduction

Aging is an inevitable process that is measured by chronological age. There are no
definite criteria for an age at which one becomes “elderly”, but according to the WHO, peo-
ple aged 65 or older are classified as elderly. The number of elderly patients who undergo
surgery has increased rapidly, and their age is increasing dramatically as the proportion of
elderly in the population increases [1,2]. Some elderly patients with more serious adverse
outcomes than in the usual clinical course have come to be called frail. Frailty describes
decreased physiological reserves across multiple organ systems and increased vulnerability
to disability, but it happens at different rates in different people; hence, there is a high risk
for poor results given an apparently innocuous stimulus in geriatric patients [3]. Surgical
stress can be a clinically significant issue for the frail in geriatric medicine [4]. Frailty in
elderly surgical patients increases not only postoperative mortality and morbidity, but
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also the likelihood of experiencing postoperative complications and the tendency to incur
more hospital costs [5–7]. In particular, pre-operative frailty in the emergency setting has a
greater impact on poor clinical outcomes [8–12].

Pre-operative assessment of frailty can be helpful for the efficient application of
hospital resources and planning treatments [13]. However, most of the previous evaluation
systems for frailty, which can be complicated, time-consuming, and subject to inter-operator
error, are difficult to apply in urgent situations requiring emergency surgery [14,15]. There
are currently no relevant tools to measure peri-operative frailty risk for elderly patients
undergoing emergency surgery. Almost all emergency operations have been performed
without proper assessment of frailty risk; there was not enough time to do so, as previous
methods of frailty risk assessment required many laboratory or clinical test results. In a
previous study, there was a rapid frailty-risk evaluation method called Hospital Frailty
Risk Score (HFRS) that used International Statistical Classification of Diseases and Related
Health Problems, Tenth Revision (ICD-10) codes, which are diagnostic codes, but it was
not a model designed for surgical patients [16].

Therefore, we aimed to create a predictive model to assess the pre-operative frailty
risk of elderly patients by using diagnostic codes and operation codes that can be easily
and quickly obtained from the electronic medical recording system in situations where
pre-operative clinical information is insufficient, such as emergency surgery.

2. Materials and Methods

This study was a nationwide cohort study using the Korean National Health Insurance
Database (KNHID) and a dataset from the electronic medical records of a tertiary academic
center. This study was approved by the Ethics Committee (AMC IRB 2019-1145), and
written informed consent was waived for retrospective data analysis. In this study, datasets
from four cohorts were needed. Figure 1 shows the flow chart of the patients in this study.

Figure 1. Diagram of the study dataset analysis. Four cohort datasets for the development and validation of predictive
models. NSC, Normal Sample Cohort; KNHID, Korean National Health Insurance Database.

2.1. Development Cohort and Temporal Validation Cohort

We extracted the development cohort of people who were hospitalized for emergency
operations at a single institution between 1 January 2012 and 31 December 2016. We also
extracted the temporal validation cohort of people aged 75 years and older who were
admitted for emergency surgeries performed from 1 January 2017 to 31 December 2018 in
the same center. In this study, emergency operations were defined as an operation that can
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claim emergency medical management fees for patients who were admitted to the hospital
through the emergency department to undergo emergency surgery or an additional charge
on the night or holiday/weekend if the surgery was performed after the evening of the
week or during the holiday/weekend.

We included 1612 patients aged 75 years and older from the electronic medical records
of our hospital as the development cohort, excluding those whose follow-up was lost or
those who lacked a pre-operative operation code. We limited elderly patients to patients
75 years and older as the HFRS presented in the previous study was created for patients
75 years of age and older [16], and it is intended to be used in our study. The operation
codes were claiming codes for claiming health insurance fees from the Korean National
Health Insurance Service (KNHIS).

The authors of this study classified all operation codes extracted from the development
cohort into a total of 8 Operation Groups (OG) according to surgical risk. The classification
of operation codes was created by two clinical experts (SWL and EHL) using their clinical
experience, pre-existing studies related to surgical risk, and the American College of
Surgeons National Surgical Quality Improvement Program (ACS NSQIP) surgical risk
calculators [17], and another clinical expert (JSN) independently checked and verified the
classification of the operation codes. In the case of different opinions among experts in the
classification of operation codes, the decision was made in the direction recognized by more
experts by further reflecting the verification and opinions of other experts. Operations with
a higher risk were classified as an increase from OG 1 to OG 8. For example, an operation
code with low risk, such as “N7133” (Mastectomy) or “P4551” (Total thyroidectomy), was
classified in Group 1, while an operation code with high risk, such as “O2033” (Resection
of thoracic aorta aneurysm), was classified as Group 8. Table S1 shows the operation codes
classified into 8 groups. The dataset of the development cohort included information
about the operation codes, diagnostic codes, and death after surgery. The primary clinical
outcome of this study was 90-day all-cause mortality, which was defined as the death rate
within 90 days after surgery regardless of discharge.

2.2. Operation Frailty Risk Score

In the previous study, the HFRS was developed by using cluster analysis in such a
way that scores were given for ICD-10 codes that were at least twice as prevalent in the
frail group as in the other groups [16]. In this study, we created an Operation Frailty Risk
Score (OFRS) by performing univariate and multivariable logistic regression analysis of
the mortality within 90 days after surgery according to the operation codes of the 8 groups
classified as described above, the HFRS score calculated from the diagnosis codes, age, and
sex. A simple scoring system was developed using the penalized maximum likelihood
estimates of the covariates in models that followed the method of Sullivan et al. [18]. After
selecting a reference group of each variable, we used regression coefficients as weights and
the distance from the reference group to generate each point value. Score 1 was defined as
the effect of a 10-year increase in age. Through this analysis, we developed a risk scoring
system of the predictive model for pre-operative frailty based on the mortality within
90 days after the operation. Based on this defined score, scores were assigned to each of
the eight operation risk groups, age, and HFRS by comparing and analyzing the effects
of each variable on mortality within 90 days after the operation. Table 1 summarizes the
OFRS points for each variable.

2.3. External Validation on the Korean National Health Insurance Database

The KNHID cohort used in this study was extracted from the National Sample Cohort
provided by KNHIS version 2.0 (NHIS-NSC v2.0). The NHIS-NSC v2.0 is a population-
based cohort database containing clinical data of about one million patients, 2% of the
sample data, which represents all national health insurance subscribers in South Korea.
For external validation, we extracted patients aged 75 years or older from 2012 to 2015
who had emergency surgery in the NHIS-NSC v2.0. For external validation dataset I, we
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selected data considering the type of medical institutions and excluded data from clinics,
which are the primary care providers. For external validation dataset II, we applied further
restrictions considering the location of the medical institution, including the capital area of
Seoul and Gyeonggi-do. We extracted information about the diagnostic code based on the
ICD-10 and the operation code from NHIS-NSC v2.0 and evaluated the predicted model.

Table 1. Operation frailty risk scoring system for prediction of 90-day mortality.

Variables Categories Point

Age 75–79 0
80–89 1
≥90 2

HFRS 0 0
1–4 1
≥5 2

Operation Group Group 1 0
Group 2 1
Group 3 0
Group 4 2
Group 5 4
Group 6 4
Group 7 4
Group 8 6

HFRS—hospital frailty risk score.

2.4. Statistical Analysis

Categorical variables are represented by numbers and percentages, while continuous
variables are represented by means and standard deviations or median and interquartile
range. We constructed univariate and multivariable logistic regression models to assess the
association with other variables, including the HFRS and the 90-day mortality rate. Internal
and external validations of the risk scoring system model were performed separately by
measuring the calibration and discrimination ability. The c-statistic was used to estimate
the predictive performance of the models. The calibration plot and Hosmer-Lemeshow
goodness-of-fit statistic was used to evaluate the agreement between the observed and
expected number of 90-days mortality across all strata, based on the probabilities of 90-day
mortality estimated from the prediction model. We compared the prediction of OFRS for
the pre-operative frailty risk in each dataset. For all analyses, a p < 0.05 was considered
significant. All statistical analyses were completed using the “R” statistical language
(R version 3.5.1, R Foundation for Statistical Computing, Vienna, Austria) and “SAS”
Enterprise Guide ver. 7.1 (SAS Institute Inc., Cary, NC, USA).

3. Results

The data characteristics of the four cohorts are shown in Table 2. Comparing the four
cohort groups reveals that the 90-day mortality rates of the four groups were different at a
statistically significant level (p-value < 0.001). The 90-day mortality rate of the development
cohort was 8.9%, whereas the 90-day mortality rate of the temporal validation cohort and
the external validation cohort I and II was 8.4%, 13.8%, and 12.3%, respectively. In addition,
the distribution of HFRS was also different in each data group. The HFRS distribution
of cohort 1 and 2 showed a leftward skewed distribution pattern compared to the HFRS
distribution of cohort 3 and 4.

We analyzed the distribution of emergency operations by surgical department received
by the elderly patients, along with the analysis of the operation codes. According to the
results for the distribution of emergency operations, an operation in the general surgery
department was the most frequent in the development and temporal datasets, whereas
the proportion of orthopedic surgeries was the highest in the external validation datasets.
Figure S1 shows the distribution of emergency operations by surgical department in
each dataset.
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Table 2. Characteristics of the four cohorts.

Cohort 1 Cohort 2 Cohort 3 Cohort 4 p Value

N 1612 826 4664 1768
Age, years 78 (76–82) 78 (76–82) 80 (77–84) 80 (77–84) <0.001

Male 862 (53.5) 445 (53.9) 2777 (59.5) 1047 (59.2) <0.001
90-day death 143 (8.9) 69 (8.4) 643 (13.8) 217 (12.3) <0.001

HFRS <0.001
0 718 (44.5) 416 (50.4) 413 (8.9) 186 (10.5)

1–4 683 (42.4) 335 (40.6) 2033 (43.6) 780 (44.1)
≥5 211 (13.1) 75 (9.1) 2218 (47.6) 802 (45.4)

Data are presented as the median (interquartile range) or number (percentage). Cohort 1, development cohort;
Cohort 2, temporal validation cohort; Cohort 3, external validation cohort I; Cohort 4, external validation cohort â;
HFRS—hospital frailty risk score.

In the development cohort, the distribution of HFRS scores was less than 5 points by
86.9%, and most were classified into the low-risk group. Therefore, due to this skewed
distribution, risk stratification was performed by classifying the HFRS score with the new
criteria instead of the risk classification suggested in the previous study. We re-categorized
HFRS as low risk for 0 points, intermediate risk between 1 and 4 points, and high risk
if above 5 points. The results of the logistic regression analyses of the risk scores for
the 90-day mortality rate are summarized in Table S2. As a result of the multivariable
regression analysis based on the 90-day mortality rate of the HFRS, group 2, with 1 to
4 points of HFRS, had an odds ratio increased to 1.55 compared to risk group 1 with 0
points of HFRS. However, in the risk group 3, with 5 points or more of HFRS, the risk of a
poor outcome increased with an odds ratio of 2.06 compared to the risk group 1. Table 1
summarizes the points assigned to each variable.

The OFRS is distributed in the range of 0 to 10, and it is skewed to the left in the
distribution graph for each score in four cohorts (Figure 2). Additionally, Figure S2 shows
the distribution of OFRS for each surgical departments. According to the distribution of
mortality rate according to OFRS, OFRS was classified as low risk if it was less than 2, high
risk if it was greater than 4, and intermediate risk if it was between them (Table 3). Table 3
shows the overall predictive performance of the OFRS model proposed in this study in
each cohort. In the temporal validation dataset, 237 (28.7%) were categorized as low risk,
355 (43.0%) as intermediate risk, and 234 (28.3%) as high risk. In the external validation
dataset I, 644 (13.8%) were categorized as low risk, 3027 (64.9%) as intermediate risk, and
993 (21.3%) as high risk. In external validation dataset II, 251 (14.2%) were categorized as
low risk, 1132 (64.0%) as intermediate risk, and 385 (21.8%) as high risk. From the results,
it can be seen that the OFRS of the intermediated risk is more distributed in the external
validation dataset than in the development and internal validation dataset. Different
distributions of OFRS in these datasets affect predictive performance, and calibration
performance declines.

Table 3. Characteristics and prediction performance of OFRS for 90-day mortality in each cohort.

Cohort 1 Cohort 2 Cohort 3 Cohort 4

OFRS

Low risk (0–1) 458 (28.4) 237 (28.7) 644 (13.8) 251 (14.2)
Intermediate risk (2–4) 759 (47.1) 355 (43.0) 3027 (64.9) 1132 (64.0)

High risk (≥ 5) 395 (24.5) 234 (28.3) 993 (21.3) 385 (21.8)
Discrimination ability, c-statics (CI) 0.682 (0.635–0.728) 0.728 (0.665–0.791) 0.626 (0.602–0.649) 0.619 (0.580–0.658)

Calibration ability,
Hosmer and

Lemeshow Test

χ2 3.80 4.88 102.63 20.47
DF 5 5 5 5

p value 0.579 0.430 <0.001 0.001

Data are presented as the number (percentage). OFRS—operation frailty risk score; Cohort 1, development cohort; Cohort 2, temporal
validation cohort; Cohort 3, external validation cohort I; Cohort 4, external validation cohort â; CI—confidence interval; and DF—degrees
of freedom.



J. Clin. Med. 2021, 10, 4612 6 of 11

Figure 2. Distribution of the OFRS in (A) development cohort, (B) temporal validation cohort,
(C) external validation cohort I, and (D) external validation cohort â. The OFRS is distributed in the
range of 0 to 10. OFRS, operation frailty risk score.

Internal and External Validation

We calculated the OFRS by using the operation code and HFRS calculated from the
diagnosis code in each cohort. Table 3 shows the prediction performance of OFRS in each
cohort. The c-statistic for internal validation of the OFRS to predict 90-day mortality was
0.682, while the c-statistic for OFRS in the temporal validation cohort and the external
validation cohort I and II was 0.728, 0.626, and 0.619, respectively. Figure 3 shows the
calibration of the developed OFRS model to predict outcomes in each cohort. These graphs
are calibration plots showing the relationship between the real values and the predicted
values of the developed OFRS model for 90-day mortality (Figure 3). Figure 4 shows the
relationship between these OFRS and the 90-day mortality rate by plotting the 90-day
mortality rate according to the risk scores in each validation cohort. It can be seen that the
mortality rate increases as the risk scores increase.
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Figure 3. Calibration plot of OFRS in (A) development cohort, (B) temporal validation cohort,
(C) external validation cohort I, and (D) external validation cohort â. OFRS, operation frailty risk score.

Figure 4. Association between OFRS and 90-day mortality by plotting the 90-day mortality rate
according to the risk scores in each cohort. OFRS, operation frailty risk score.
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4. Discussion

The main findings of this study are that OFRS, developed by using diagnostic codes
and operation code information, can help predict the 90-day postoperative mortality rate,
one of the indicators for pre-operative frailty when elderly patients undergo emergency
surgery. Although functional improvement and decline have recently been suggested as
important outcomes in elderly patients undergoing surgery, 90-day all-cause mortality
rate, which has been dealt with a major postoperative clinical outcome, was set as the
primary outcome in our study [19]. In the national validation cohort used for external
validation, those with a higher OFRS score had higher rates of 90-day mortality, although
the discriminative ability of the predictive model was low.

For elderly patients undergoing emergency surgery, pre-operative risk assessment
is very important in clinical practice. In elderly patients, a high prevalence of frailty is
likely to lead to postoperative adverse outcomes and vulnerability to surgical stress [4,13].
Two main models previously suggested for evaluating frailty are the phenotype model [20],
and the cumulative deficit model [21]. The phenotype model proposed by Fried and
colleagues was developed with five phenotypes that are largely related to frailty, and they
defined “frail” as when the phenotype has more than three factors. The cumulative deficit
model was defined as the proportion of each variable to the total deficits related to frailty,
and they showed the correlation between the index and adverse outcomes by evaluating
frailty based on this model [22]. All of these models are too complex and difficult to apply
in an actual clinical setting, as it is not easy to obtain the values of each variable.

In patients undergoing emergency surgery, there have been previous studies that
have tried to measure the pre-operative frailty and to determine its correlation with the
postoperative outcome [8–11]. Pre-operative frailty in emergency surgical settings mostly
increased the risk of postoperative mortality and longer hospital stays. Some of the previous
studies on frailty in emergency surgical settings have measured frailty using the Clinical
Frailty Scale [9,12,15]. It is a relatively easy and fast frailty measurement tool in the clinical
setting, but it has limitations in terms of inter-operator reliability [23]. Some other studies
measured pre-operative frailty in emergency surgical patients by using assessment tools
such as the Modified Fried’s Frailty Criteria, the Modified Frailty Index-11, the FRAIL
scale, the Triage Risk Screening Tool, and the Share-Frailty Index, and tried to determine
the relationship between the measured frailty and the clinical outcome [24,25]. However,
all of these tools are difficult to apply when the patient is unconscious or without present
caregivers, as the methods previously proposed rely on questionnaires or require direct
tests such as measurement of grip strength or walking speed.

There was a previous attempt to measure the frailty risk by using hospital electronic
medical records, called HFRS, and it may be useful for measuring the frailty risk for
application in acute care settings [16]. However, as the HFRS is a model developed for
patients hospitalized through an emergency department, there are some limitations to
applying it to surgical patients. Therefore, in order to overcome these limitations, more
generally applicable frailty measurement tools are required in the emergency surgical
setting. A recent study showed that both pre-operative frailty and operative stress increased
postoperative mortality [6,26]. Thus, the factors of operative stress must be reflected in the
pre-operative frailty risk assessment of surgical patients.

Therefore, we created an integrated frailty risk assessment tool that reflects these
surgical stress factors. The OFRS proposed in this study has the advantage that it can
be applied easily and quickly in emergency situations as it utilizes diagnostic codes and
operation code information that can be automatically extracted from the hospital database.
It is an automatic risk score that can be systematically obtained by using information from
both codes without relying on the subjectivity of the clinician. It is a very useful model for
elderly patients that need emergency surgery as it does not require clinical information
other than the diagnostic and operation codes. Additionally, we made it possible to use
the risk predictive model more reliably with wide applicability by using the insurance
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claiming code, which is one of the criteria commonly used by all hospitals, rather than
inspection items with different standards for different hospitals.

The c-statistics of the final model in the temporal validation cohort and both external
validation cohorts are 0.728, 0.626, and 0.619, respectively, in predicting the clinical outcome.
Thus, our model did not show a better prediction performance than the previous model
for acute-care settings showing c-statistics ranging from 0.54 to 0.73 [14,27]. Similar to
the previous study [16], our scores did not have strong discriminative ability as there are
unpredictable factors that affect individual outcomes in emergency situations. However, it
is a predictor, which is designed for risk stratification, worth considering for application in
an emergency situation where it is difficult to predict a patient’s clinical outcomes.

As the clinical setting changes according to the size and location of the hospital, it
affects the clinical outcome [28,29]. In this study, the external validation of the OFRS was
corrected according to the clinical environment change according to the size of the hospital
and the location of the hospital. External validation dataset I extracted only hospital-
level data, excluding data from clinics, and external validation dataset II applied further
restrictions considering the location of the medical institution by extracting data from the
capital area, geographically close to the hospital from which the dataset used to develop
OFRS was extracted. In the two external datasets, the c-statistics of this model did not
show significant gains in prediction performance, despite corrections according to hospital
size and region. However, even within the same region, there is a considerable difference
in the size of hospitals and the severity of patients, so it is expected that better predictive
performance can be achieved if corrections are made for these areas in future studies.

The clinical significance of this study is that if the information about the patient is
extremely limited in an urgent situation, such as emergency surgery, the patient’s risk can
be grasped in advance by using the hospital’s computerized system quickly and promptly.
The strength of our model is that no test results are required before surgery. There is also
no need for complicated calculations to estimate the risk. As far as we know, this study is
the first to predict the pre-operative risk by using only diagnostic and operation codes for
surgical patients.

This study has limitations in several areas. First, it cannot safely be generalized to
other clinical settings and other locations, as this model was constructed from the clinical
data of a single center. As there may be differences in postoperative outcomes depending on
the hospital environment, it is necessary to verify the model in various medical institutions
and upgrade the model in order to have more value. In addition, developing a predictive
model based on data from as many different medical institutions as possible in future
studies could be a useful pre-operative risk-predictive model with broader applicability.
Furthermore, it was not known whether this predictive model could be applied to other
countries, especially other races, as it was developed in South Korea, which is known as
an ethnically homogenous country. As the operation code in this study is the insurance
claiming code commonly used in South Korea, it is difficult to apply the operation code to
other countries. In order to apply this model to other countries, operation codes should
be the codes that are commonly used worldwide, such as the ICD-Procedure Coding
System code [30]. Therefore, future studies using this worldwide operation code for wider
usability will need to verify whether the model is validated globally by using data from
different races and countries. Second, another limitation of this study is that, although
three clinical experts classified the OG by referring to their clinical experience, pre-existing
risk prediction models, and previous studies on clinical outcomes, the subjective opinion
of the clinician influenced the classification of the OG. It is expected that better results will
be produced if more clinical experts participate in classifying the OG in future studies or if
it is performed in a more objective fashion [31]. Additionally, in this study, the risk of all
emergency surgery was classified as one criterion. However, it is difficult to classify the
risk simply based on one criterion, as there may be a difference in risk according to the type
of emergency operations. Therefore, in future studies, subdivision of the risk classification
according to the type of emergency operation might increase predictive power. Third,
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another limitation of our study was that it was retrospective. Therefore, further works
are needed to validate the performance and clinical usability of our predictive model in
prospective multi-center studies.

5. Conclusions

In conclusion, the OFRS using ICD-10 diagnostic and operation codes may help to
evaluate the peri-operative risk of elderly patients in emergency surgery where history-
taking and pre-operative testing cannot be performed. It is expected that additional studies
will broaden the applicability of the score, and the use of this score can help with decision
making in various clinical settings.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jcm10194612/s1, Figure S1: Distribution of emergency operations by surgical departments,
Figure S2: Distribution of operation frailty risk score by surgical departments, Table S1: Operation
group classified by clinical experts, Table S2: Univariate and multivariable regression analysis model
for 90-day mortality in the development cohort.
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