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Abstract: Pulmonary arterial hypertension (PAH) is a rare, progressive disease in which there is a
persistent, abnormal increase in pulmonary artery pressure. Symptoms of pulmonary hypertension
are nonspecific and mainly associated with progressive right ventricular failure. The diagnosis of
PAH is a multistep process and often requires the skillful use of several tests. The gold standard
for the diagnosis of PAH is hemodynamic testing. Echocardiography currently plays an important
role in the diagnostic algorithm of PAH as it is minimally invasive and readily available. Moreover,
many echocardiographic parameters are closely related to pulmonary hemodynamics. It allows
assessment of the right heart′s structure and function, estimation of the pressure in the right ven-
tricle, right atrium, and pulmonary trunk, and exclusion of other causes of elevated pulmonary
bed pressure. Echocardiographic techniques are constantly evolving, and recently, measurements
made using new techniques, especially 3D visualization, have become increasingly important. In
echocardiographic assessment, it is crucial to know current guidelines and new reports that organize
the methodology and allow standardization of the examination. This review aims to discuss the
different echocardiographic techniques used to evaluate patients with PAH.

Keywords: pulmonary arterial hypertension; echocardiography; three-dimensional; Doppler

1. Introduction

Pulmonary arterial hypertension (PAH) is a hemodynamic condition characterized
by a persistent, abnormal increase in pulmonary artery pressure. Consequently, right
ventricular heart failure develops, and symptoms such as dyspnea, fatigue, weakness,
angina pain, and syncope appear [1]. The European Society of Cardiology has proposed
the following clinical classification in which PAH is divided into the following subtypes:
idiopathic, hereditary, associated with other diseases such as systemic connective tissue
diseases or heart defects, as well as drug or toxin-induced [2,3].

PAH remains a chronic disease with an incompletely elucidated pathogenesis [4].
Clinical assessment of the patient plays a key role in selecting the treatment, observing the
patient′s response to treatment, and potential escalation of the therapy [5,6]. Therapeutic
decisions should be based on parameters that have a proven prognostic value [7]. Echocar-
diography plays an important role in the diagnosis of PAH as it is noninvasive and readily
available. Moreover, many echocardiographic parameters are closely related to pulmonary
hemodynamics [8]. Echocardiographic data provides a wealth of relevant information
underpinning clinical management [9]. The purpose of this article is to describe the various
echocardiographic techniques used to evaluate patients with PAH.

2. The Assessment of the Right Heart Cavities and Pericardial Dimensions Using
Transthoracic Echocardiography

When pulmonary circulation pressure increases in the course of PAH, the right ven-
tricle (RV) is subjected to overload. Initially, it adapts to an increased vascular load by
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increasing muscle contraction force by up to 5-fold, thus maintaining normal stroke vol-
ume values. To maintain the increased contractility, the right ventricular muscle mass
increases [10], and wall hypertrophy and RV cavity dilatation occur [11]. Thus, in the
course of PAH, there are changes in the size ratio between the two ventricles. In advanced
stages, the right ventricle is larger than the left (Figures 1 and 2). Statistically, in patients
with PAH, the RV is more dilated and functions worse than in other diseases characterized
by pulmonary hypertension [12].

Figure 1. Enlarged right ventricle. Two-dimensional transthoracic echocardiography (2D-TTE),
parasternal long-axis view (PLAX). RV: right ventricle, LV: left ventricle, LA: left atrium.

Figure 2. Enlarged right ventricle. 2D-TTE, parasternal short-axis view (PSAX). RV: right ventricle,
LV: left ventricle.

Measurements of both ventricles are recommended in the four-chamber (4CH) view,
and the correct projection during measurements should be maintained (Figures 3 and 4).
In assessing the linear dimension of the right ventricle, the goal should be to obtain the
maximum dimension of the right ventricle while preserving the visibility of the apex and
the plane of section passing through the center of the LV. RV measurement in a five-chamber
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view with a visible left ventricular outflow tract is erroneous [13]. Under these measure-
ment conditions, the normal RV size should not exceed 2/3 of the LV dimension [14].

Figure 3. Enlarged right ventricle and right atrium. An abnormal size ratio between the right and
left heart. 2D-TTE, 4CH view. 2D-TTE: two-dimensional transthoracic echocardiography; 4CH:
four-chamber.

Figure 4. Enlarged right ventricle and right atrium. Tricuspid regurgitation. 2D-TTE, RV-focused
apical 4CH view.

Measurement of the RV-free wall is also important in the assessment of the long-term
RV overload. This dimension should not exceed 0.5 cm in the end-diastolic phase [15]. Due
to the irregular shape of the right ventricle, the assessment of its volume is difficult.

Given the complexity of the RV structure, three-dimensional echocardiography is
extremely valuable. It allows for better visualization of the RV myocardial fibers and
endocardial boundaries, and therefore a more accurate calculation of RV volume and
ejection fraction [16]. However, obtaining an accurate 3D image of the right ventricle may
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be problematic. When using this technique, the manual selection of the relevant cardiac
cycle phase is of particular importance, as well as the precise identification of endocardial
margins and the inclusion of the tricuspid annulus.

Current studies suggest evaluating RV volume in relation to body surface area, which
increases the diagnostic value of this parameter [17]. However, this technique requires
extensive experience of the investigator and is not routinely used.

Transthoracic echocardiography (TTE) in a patient with advanced PAH is conspicuous
by the RV cavity′s abnormal shape, especially in the parasternal short axis (Figure 5). The
RV assumes a spherical shape, and the interventricular septum protrudes into the LV,
forming the so-called D-shape sign [18]. If a D-shaped LV appears in the end-diastolic
phase, it suggests RV pressure overload, whereas a D-sign shape in diastole suggests RV
volume overload [19,20].

Figure 5. D-sign, enlarged right ventricle, ventricular septum displaced towards LV. 2D-TTE, short-
axis view (SAX). LV: left ventricle; 2D-TTE: two-dimensional transthoracic echocardiography.

Another valuable parameter that determines the shape of the left ventricle is the left
ventricular eccentricity index (EI), which is defined as the ratio of the anterior–inferior and
septal–posterolateral cavity dimensions at the mid-ventricular level. A normal EI value
does not exceed 1, and a measurement >1 indicates a flattened interventricular septum [21].
The results of this study showed that an EI ≥ 1.7, combined with a tricuspid annular plane
systolic excursion (TAPSE)≤ 15 mm, was associated with a higher rate of death and cardiac
transplantation compared to patients with normal values [22].

When assessing the right heart′s size, the dimensions of the right atrium (RA) should
not be overlooked (Figure 6). The linear dimension of RA should be marked in the 4CH
view, perpendicular to the long axis of the heart (Figure 7) [23]. However, more valuable in
terms of clinical significance is the RA volume, also measured in the 4CH view [23]—an
RA area greater than 18 cm2 indicates enlargement and is one of the most common echo
abnormalities found in PAH patients [24].

The assessment of the pericardial fluid is of utmost importance in echocardiography
in patients with PAH. In a study of 81 patients with PAH, Raymond et al. demonstrated
that pericardial effusion was a significant independent predictor of the adverse course of
PAH and was associated with higher mortality [25]. Pericardial effusion can be assessed
by 2D echocardiography, M mode, and Doppler analysis. However, four views (subcostal,
four-chamber, and parasternal long and short axes) are recommended to determine the
maximum thickness and precise location of the fluid [26]. Pericardial fluid in impending
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cardiac tamponade may be associated with the diastolic collapse of the right ventricle and
left atrium, significant variability of inflow through the tricuspid valve (an increase of 50%),
and mitral valve (a decrease of 25%) on the inhale; and decreased respiratory variation of
the inferior vena cava due to increased central venous pressure [27]. However, in patients
with advanced pulmonary hypertension, these features may be absent, even in cases where
a large volume of pericardial fluid is present.

Figure 6. Patient with PAH-CHD–atrial septal defect. (A) 2D-TTE visualization, short-axis view (SAX). (B) The same defect
visualized in the transthoracic echo (TTE), 3D visualization. PAH-CHD: pulmonary arterial hypertension-congenital heart
disease; 2D-TTE: two-dimensional transthoracic echocardiography.

Figure 7. Enlarged right atrium with an area of 67.2 cm2. 2D-TTE, 4CH view. 2D-TTE: two-
dimensional transthoracic echocardiography; 4CH: four-chamber.

3. Right Ventricular Diastolic Dysfunction

As a result of RV overload, changes in the heart muscle occur at the macroscopic
level and the level of myocytes. Increased tension, contractility, and hypertrophy of the
RV muscle lead to an increased oxygen demand in its cells. The consequence of these
changes is increased RV muscle stiffness, which is observed on echocardiography as
an impaired RV diastolic function [28]. RV relaxation disorders are thought to precede
contractile impairment in PAH patients and are important prognostic factors for PAH [29].
It has been shown that in patients with idiopathic PAH (IPAH), lateral mitral annular
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velocities correlate with pulmonary capillary wedge pressure (PCPW) while simultaneously
excluding a left-heart-related cause of PAH [30].

In practice, the most commonly used parameters to assess RV diastolic function are
the ratio of E- and A-waves of tricuspid inflow and the E-wave deceleration time. These
values should be measured in the apical four-chamber view (4CH), preferably on expiration.
Measurements during atrial fibrillation or in the presence of severe tricuspid regurgitation
should be avoided, as the values obtained are unreliable [31].

Under normal conditions, early diastolic inflow predominates, i.e., E > A. When the
RV is stiffened and less prone to stretch, changes in the E- and A-wave velocities of inflow
across the tricuspid valve may occur [32]. Low E/A ratio values, especially <0.8, indicate
impaired RV muscle relaxation [33]. As the RV muscle stiffens, end-diastolic pressure in
the RV cavity increases, resulting in pseudonormalization of tricuspid inflow, i.e., a relative
increase in early diastolic inflow. In contrast, E/A > 2 with a shortened E-wave deceleration
time argues for even more advanced lesions [34].

An important technique in the evaluation of RV relaxation abnormalities is tissue
Doppler imaging (TDI). It allows the determination of mitral and tricuspid annular ve-
locities: diastolic (early diastolic E′ and after atrial contraction A′) and maximum systolic
velocity (S′). Like the E and A waves of tricuspid inflow, under normal conditions, the early
diastolic myocardial velocity wave predominates, and the lateral E′/A′ ratio is greater
than 1 [35]. In impaired RV relaxation, this ratio is reversed [36]. However, in contrast to
the tricuspid inflow wave velocities E and A, the E′/A′ ratio usually remains constant, i.e.,
<1 at different stages of the development of RV diastolic dysfunction [35].

4. Right Ventricular Systolic Dysfunction

The longitudinal fibers of the right ventricular muscle are mainly responsible for
muscle contraction. Contraction of these fibers also causes movement of the tricuspid valve
annulus, which moves toward the ventricular apex in systole and toward the atrium in di-
astole [37]. Therefore, the amplitude of tricuspid annular systolic motion (TAPSE), obtained
by the M-mode technique from the 4CH view, reflects RV systolic function (Figure 8) [37].
TAPSE values <18 mm are associated with poor prognosis and higher mortality in patients
with PAH [38]. A correlation between TAPSE and RV ejection fraction (RVEF) measured by
radionuclide angiography has also been demonstrated [39]. Considering that the TAPSE
measurement is uncomplicated, highly reproducible, has little dependence on image qual-
ity, and has a high prognostic value, it is recommended that TAPSE is determined in all
patients with PAH to assess RV systolic function [2]. However, TAPSE has a disadvantage
of being angle-dependent and may be overestimated with apical rocking [40]. In addition,
TAPSE may be load-dependent [41].

A more recent parameter for assessing RV systolic function is the aforementioned
systolic tricuspid annular velocity (S′), evaluated using the TDI. This is obtained by plac-
ing the pulsed Doppler on the tricuspid valve annulus. Using TDI techniques, excellent
projections can be obtained, however, the Doppler signal must be parallel to the direction
of myocardial motion for reliable strain assessment [42]. A decrease in maximum tricus-
pid annular systolic velocity below 10 cm/s is closely associated with RV dysfunction,
especially in young patients [43]. S′ values are, therefore, significantly reduced in PAH
patients [44]. A correlation between a decrease in S′ velocity and a decrease in isotopically
determining RVEF values in patients with chronic heart failure was also observed, where
S′ < 11.5 cm/s corresponded to an RVEF < 45%.

Compared with LV, RV ejection fraction measurement by 2D technique is not appli-
cable in everyday practice due to the complex spatial structure and extensive RV muscle
fibers. Recent recommendations suggest the assessment of RV ejection fraction using
a three-dimensional technique (RV 3D EF) [34]. For this purpose, it is recommended to
use the automatic endocardial detection function. 3D ejection fraction measurements are
comparable to those obtained using cardiac magnetic resonance (CMR) [45]. RV 3D EF
values <45% are indicative of RV systolic dysfunction [46]. The limitations of this method
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are availability and dependence on the quality of imaging, difficulty in image acquisition
with increased RV volumes, steady heart rate, and experience of the laboratory staff.

Figure 8. Patient with PAH, TAPSE = 1.86 cm. TTE, M-mode. PAH: pulmonary arterial hypertension;
TAPSE: tricuspid annular plane systolic excursion; TTE: transthoracic echocardiography.

The equivalent of RVEF is the functional area change (FAC) of RV. It is a parameter of
a proven clinical significance that has been recognized as a prognostic indicator of heart
failure and sudden cardiac death in the course of PAH [47]. Its value is determined as
a percentage after calculating the diastolic-systolic quotient of the difference in RV area and
its diastolic area in the 4CH view (Figure 9). Normally it should exceed 35%, and lower
values indicate RV systolic dysfunction [48].

Figure 9. (A) End-diastolic volume RV = 21.1 cm2, (B) end-systolic volume RV = 14.6 cm2. FAC = 30.8%.
FAC = A(diast) − A(sys)/A(dias) * 100%. 2D-TTE, 4CH view. RV: right ventricle; FAC: functional area change; 2D-TTE:
two-dimensional transthoracic echocardiography; 4CH: four-chamber.

The dP/dt parameter, an indicator of the rate of pressure rise during the systolic phase
in the RV, has a documented value in assessing RV systolic function [49]. To measure the
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dP/dt parameter, it is necessary to visualize a clear contour of the tricuspid return wave
using the continuous wave Doppler (CWD). Singbal et al. showed that the dP/dt ratio
correlates strongly with RVEF measured by CMR. Values of dP/dt below 400 mmHg/s
were consistent with reduced RVEF [50]. In addition, decreased dP/dt is a significant
TAPSE-independent marker of an adverse course of PAH and CTEPH [51].

The Doppler-derived myocardial performance index (MPI/Tei Index) is a quantitative
method used for the assessment of the global myocardial systolic and diastolic function in
various disease entities, including the evaluation of the right ventricle function in patients
with pulmonary arterial hypertension (PAH) [52]. It’s value is determined by the sum of RV
isovolumetric contraction and diastolic time relative to the RV blood ejection time. Tei index
has been shown to be significantly higher in patients with PAH, compared to controls [53].
Another study demonstrated that Tei index values correlate with PAP determined by
cardiac hemodynamic testing in pediatric patients [54].

Its value does not depend on ventricular geometry, heart rate, preload, or the degree
of tricuspid regurgitation [55]. The time points are determined from two Doppler flow
recordings by the pulse wave method at the top of the tricuspid valve leaflets and RV
ejection time (just below the pulmonary valve). When measured with PW, the index value
should not exceed 0.43 [56]. In addition, MPI can be obtained using tissue Doppler imaging
(TDI) which, records the motion of the tricuspid annulus. In this method, it is possible to
make measurements in one projection and one cardiac cycle. MPI values using this method
should be less than 0.54 [56]. This index should not be determined in patients with atrial
fibrillation, aortic stenosis, and intraventricular conduction disorders [57,58]. Moreover,
its disadvantages include the fact that the determination of the parameter requires high
precision and is less reproducible.

5. Strain

The visual assessment of myocardial contractility is very subjective and requires
considerable experience from the investigator. New techniques can objectify the assessment
of the segmental and global RV systolic function [59]. Myocardial strain is the percentage
change in the distance between two points in the heart muscle during the cardiac cycle.
In contrast, the strain rate is the rate of change in the distance between these points and
is expressed in units of s−1. Initially, strain and strain rate were evaluated using TDI [60].
Currently, 2D strain and speckle tracking techniques are used, which involve automatic
tracking of myocardial acoustic markers in standard echocardiographic images [61]. It
allows the analysis of strain and strain rate in different directions (Figure 10). A newer and
more precise technique for the assessment of strain and strain rate is three-dimensional
echocardiography. This technology is currently under intensive development; however,
reports of this method′s high efficacy in assessing the prognosis in patients with PAH are
already available [62].

The normal RV systolic strain values in healthy subjects amount to: RV global strain
−24.5 ± 3.8 and RV free wall strain −28.5 ± 4.8 [63].

The advantage of these methods is that they offer a very precise analysis of individual
myocardial segments’ function, which enables visualization of discrete abnormalities,
and detection of early stages of systolic dysfunction, often impossible to detect with
conventional echocardiography [64].

Sachdev et al. demonstrated that RV longitudinal peak systolic strain (−15 ± 5%)
and strain rate (−0.80 ± 0.29 s) are significantly reduced in patients with PAH. Moreover,
RV-free wall strain was also reduced in the study group, which was associated with a
decreased 1-year survival [65]. Other studies show that right atrial strain may also have a
diagnostic value in patients with PAH [66].

A: Tracked apical loop with color coding of the RV-free wall and interventricular
septum myocardial segments. B: Regional end-systolic strain. C: Segmental strain curves
and segmental strain values displayed during the cardiac cycle. Global longitudinal strain
at peak strain is visualized with the global strain curve (white dotted line). D: M-mode
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representation of peak systolic strain. The normal RV systolic strain values in healthy
subjects amount to an RV global strain −24.5 ± 3.8 and RV free wall strain −28.5 ± 4.8 [63].

Figure 10. RV regional myocardial contractility (longitudinal strain) assessment by speckle tracking
imaging. RV-focused view, 4CH. (A) Tracked apical loop with colour coding of the RV free wall and
interventricular septum myocardial segments. (B) Regional end-systolic strain. (C) Segmental strain
curves and segmental strain values displayed during the cardiac cycle. Global longitudinal strain at
peak strain is visualized with the global strain curve (white dotted line). (D) M-mode representation
of peak systolic strain. Blue colour- myocardial lengthening, red colour- myocardial shortening.

6. Echocardiographic Assessment of Right Heart Hemodynamic Parameters

The gold standard for assessing the hemodynamic parameters of the pulmonary
circulation is to measure pressures in the right heart and pulmonary vessels during cardiac
catheterization. While this test provides a diagnosis of PAH, it is invasive and more
expensive. Therefore, among patients with suspected PAH, transthoracic echocardiography
(TTE) is used as the first-choice test for noninvasive assessment of pulmonary vascular
hemodynamics and initial estimation of RV, RA, and pulmonary trunk (PA) pressures [2,67].

Right atrial pressure (RAP) is usually estimated based on the dimension and collapse rate
of the inferior vena cava (IVC) in the subcostal view (Figure 11) [68]. The normal IVC width
ranges between 15–21 mm, and IVC collapsibility on inspiration should exceed 50%. Moder-
ately elevated pressure in RA exceeds 5 mmHg, and high pressure exceeds 10 mmHg [69].

It is believed that if there is no RV outflow tract stenosis, the right ventricular sys-
tolic pressure (RVSP) is equal to the pulmonary artery systolic pressure (PASP) [70]. In
everyday practice, the calculation of PASP is based on a simplified Bernoulli equation
applied to peak tricuspid regurgitation velocity (TRV). TRV should be measured in sev-
eral views, aiming at the best image quality and maximum velocity in continuous-wave
Doppler and avoiding excessive gain and artifacts (Figures 12 and 13). According to
the equation, PASP = 4 (TRV)2 + RAP [71,72]. In addition, based on the measurements of
end-diastolic pulmonary regurgitant return wave velocity (PRVend), it is possible to esti-
mate pulmonary artery diastolic pressure (PADP) using the PADP = 4 (PRVend)2 + RAP
formula [73]. On the other hand, PASP and PADP values can be used to calculate approx-
imations of mean pulmonary artery pressure (mPAP) using the mPAP = 1/3 (PASP) + 2/3
(PADP) formula [74]. Several other formulas for calculating mPAP can be found in the litera-
ture. Chemla et al. developed another method to calculate mPAP, according to the formula
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mPAP = 0.61 × PASP + 2 mmHg [75]. Another independent method of estimating mPAP
is based on the measurement of acceleration time (AcT) of pulmonary flow by pulsed-
wave Doppler, measured in the RV outflow tract. This is the time necessary for blood
flowing from the RV to the pulmonary artery to reach maximum velocity. The higher the
pulmonary artery pressure, the faster this velocity is reached and, therefore, the shorter
the AcT [76]. Data suggests that AcT may be more sensitive than TRV in detecting early
or latent pulmonary vascular impedance changes [77]. However, for mPAP estimates to
be reliable, AcT should exceed 100 msec. Furthermore, due to other variables, including
obesity, cardiac index, and left-right atrial leakage, this parameter is not widely used to
calculate mPAP. In contrast, it plays an important role in assessing pulmonary vascular
bed resistance, especially in the diagnosis of acute pulmonary embolism [78].

Figure 11. (A,B) IVC, no respiratory variability of IVC in the course of PAH. TTE, subcostal view. IVC: inferior vena cava;
TTE: transthoracic echocardiography.

Figure 12. Doppler assessment of tricuspid regurgitant velocity (TRV). TTE, 4CH view. TTE: transtho-
racic echocardiography; 4CH: four-chamber.
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Figure 13. Doppler assessment of tricuspid regurgitant velocity (TRV). Differential rate of tricuspid
regurgitation wave jets in atrial fibrillation. TTE, 4CH view. TTE: transthoracic echocardiography;
4CH: four-chamber.

7. Conclusions

Echocardiography examination provides important prognostic data in the assess-
ment of pulmonary vascular hemodynamics and right heart load. The most important
parameters help to estimate the mean pressure in the right ventricle, right atrium, and
pulmonary artery. The examination should also include the assessment of RV systolic
and diastolic function. Everyday clinical practice indicates that a simple and reproducible
TAPSE measurement is most commonly performed in this group of patients. The use of
new measurement techniques such as TDI and 3D visualization is recommended for this
purpose. The combined consideration of several echocardiographic parameters describing
RV systolic and diastolic function increases their prognostic value. The assessment of
the size of the heart chambers and linear values should include parameters that take into
account the RA and RV area. In the case of parameters dependent on height and weight or
gender, indexing is recommended.
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